Lecture 8: Water treatment processes

(Jan 27th 2015)
by Dr. Arun Kumar (arunku@civil.iitd.ac.in)

Objective: Understand functioning of different unit processes for water treatment

Courtesy: Dr. Irene Xagoraraki (Michigan State University, East Lansing, USA)
Previous lecture re-cap

- Introduction of water treatment schematic concepts
- Discussion on production of water of different final usages
- Discussion on checks
 - Remove solids before removing bacteria
 - Remove solids using sedimentation process before using filtration
 - Remove organic compounds and ammonia-based compounds before disinfection
- Discussion on need for calculating solids waste produced from every unit processes and solid waste management
Example 2: River Water \rightarrow Drinking water

1. Raw water
2. Chlorine, ammonia
 - (Precipitation)
 - (Sludge consists of suspended solids)
3. Alum, Polymers
 - (Mixing, flocculation, settling)
 - (Sludge consists of coagulated colloids, large particles)
 - (Backwash water decanted, dewatered sludge removed; disposal after dewatering)
4. Chlorine
 - (Filtration)
 - (to unity)
Example 2 schematic contd.

From unit #3

4 → 5 (Chlorination) → 6 (Storage) → Distribute System

(AdSORBION) (remove organics, microorganisms, metals)

(Disinfection)

Stream from cleaning cycle condensed & disposed of
Treatment schematic (SW→ Potable drinking water)

• Sequence of unit processes: pre-sedimentation → mixing, flocculation, settling → filtration → adsorption → disinfection

• Function of unit processes: solids removal → removal of ions, and solids using chemical addition → removal of smaller particles → removal of organic compounds and ions → oxidation of oxygen-demanding wastes and chemical killing of pathogens in water

January 28, 2015
(SW→ Potable drinking water) contd..

• Chlorine is added in sedimentation and filtration tank to avoid microbial growth
• Chlorine is used as an oxidizing agent as well as a disinfection solution.
Conventional Surface Water Treatment

• **Screening** (remove relatively large floating and suspended debris)
• **Rapid-mix** (mixing water with chemicals that encourage suspended solids to coagulate into larger particles that will settle easily)
• **Flocculation** (gently mixing water and coagulant allowing the formation of large particles of floc)
Conventional Surface Water Treatment

- **Sedimentation** (flow is slowed enough so that gravity will cause flocs to settle)
- **Sludge processing** (mixture of solids and liquids collected from settling tank are dewatered and disposed of)
- **Disinfection** (ensure that water is free of harmful pathogens)
- **Distribution system protection** (residual disinfection)
Solids removal
Method 1. Sedimentation
Method 1. Sedimentation

- Solids settle based on their gravitational force (with and without externally added chemicals).
- Settling depend on solid physical characteristics (diameter, density) and medium temperature, viscosity, density, etc.

- Some solids do not interact with each other during settling (i.e., discrete particles) (no change in their size and shape). The settling is called discrete settling (Type 1 settling). Ex: settling of sand.
Method 1. Sedimentation

- Some solids interact during their settling and change their size and shape (i.e., flocculent particles) (Type 2 settling). Ex: settling of clay; bacteria.
Sedimentation

- Time for settling = column depth/settling velocity at steady state
- Some particles take less time and some particles take longer time to settle.
- If \(t_{\text{design}} > t_{\text{settling}} \), particles remove 100%. All particles now constitute solid waste.
- If \(t_{\text{design}} < t_{\text{settling}} \), particles do not remove 100%. Remaining particles go to the next unit in the treatment plant scheme.
Method 2. Coagulation-Flocculation-Sedimentation

Some coagulants:
- aluminum sulfate
- ferric sulfate
- ferric chloride

Some coagulant aids:
- activated silica
- clay
- polymers
Coagulation-Flocculation-Sedimentation

Full-scale

Pilot-scale

Bench-scale
Sizes of Particles in Water

- Algae
- Bacteria
- Viruses
- Fungi
- Giardia cysts
- Cryptosporidium cysts
- Colloids
- Suspended particles
- Dissolved particles
- Humic acids
- Colloidal color
- Post-filtered particles
- Flocculated particles

Size, Micrometers (μm)
Method 2. Coagulation-flocculation (sedimentation after chemical addition)

- Some solids take very long time to settle (size in submicron range or in nanometer range).
- Chemicals (ex: alum; ferric chloride) are added in solution to (1) increase size of particles, (2) capture them in hydroxide flocs and then precipitate them.
Coagulation - Flocculation

Colloidal particles
(0.001 - 10 µm)

floc
(1 - 100 µm)
Method 2. Coagulation-flocculation (sedimentation after chemical addition)

- Coagulation methods: (i) ionic layer compressions, (2) charge neutralization and surface complexation, (3) sweep coagulation(iv) polymeric bridging
- Ex: ferric chloride gives ferric ions (acidic pH) and ferric hydroxide (basic pH). These species work in 2 different ways to improve particle settling.
Coagulation-Flocculation

- Double Layer Compression
- Adsorption of Aluminum to Produce Charge Neutralization
- Interparticle Bridging
- Enmeshment in Al(OH)$_3$ Precipitate (sweep floc)

Picture Source: Malvern Instruments, Zeta-Meter Inc.
Coagulation-Flocculation-Sedimentation

Full-scale

Pilot-scale

Bench-scale
Rapid Mixing

(a) Turbine chamber
(b) Propeller chamber
(c) Double-compartment turbine chamber
(d) Double-compartment turbine chamber
(e) Paddle chamber
(f) In-line blender
Flocculation

(a)

(b)

(c)

Sedimentation
Question 1: GDW to Gardening water

• Which parameters do we need to remove?
• Which unit processes do we need for making gardening water from groundwater? Is the order of unit process relevant here?
• How does the schematic of treatment of GDW to Gardening water differ with that of GDW-Drinking water?
Question 2: Injection of gardening water runoff in soil: Requirements?

- Can we inject garden water runoff to soil?
- Which parameters do we measure?
- Do we need to do treatment before we can inject the water (i.e., pretreatment)?
- Will it depend on soil type, depth to water table, etc.?
Question 3: Comparison

- Why schematic for GDW→ DW and SW→ DW differ?
- Can one treatment plant treat GDW as well as SW for producing DW?
Question 4: Domestic WW to Water suitable for discharge to river

- Can you draw schematic for treating domestic wastewater to produce water suitable for discharge to river?
Answer 4: Domestic wastewater \rightarrow Discharge water to river

- Sequence of unit processes: stabilization tank \rightarrow sedimentation \rightarrow biological process \rightarrow secondary settling \rightarrow nitrifier unit \rightarrow denitrifier unit \rightarrow disinfection \rightarrow discharge water suitable for river

- Function of unit processes: making incoming flow rate uniform \rightarrow solid removal \rightarrow breakdown of organic compound \rightarrow settling of microbial biomass \rightarrow removal of ammonium ions \rightarrow removal of nitrate ions \rightarrow killing of microorganisms
Treatment schematic (GW→ Potable drinking water)

- Sequence of unit processes: Aeration chamber ➔ Softening unit ➔ Filtration with chlorination ➔ Disinfection
- Function of unit processes: Gas removal ➔ Cations and solids removal ➔ Solids removal ➔ Microbial removal
- Lime, soda ash and chlorine are required daily.
- Solid waste generated from softening unit and filtration unit are calculated
Next class.