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1. Introduction

The Frobenius Problem (FP) is to determine the largest positive integer that is not 
representable as a nonnegative integer combination of given positive integers that are 
coprime. Due to an obvious connection with supplying change in terms of coins of cer-
tain fixed denominations, the Frobenius problem is also known as the Coin Exchange 
Problem or as the Money Changing Problem. More formally, given positive integers 
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a1, . . . , an, with gcd(a1, . . . , an) = 1, it is well known and not hard to show that for 
all sufficiently large N the equation

a1x1 + · · · + anxn = N (1)

has a solution with nonnegative integers x1, . . . , xn. The Frobenius number g(a1, . . . , an)
is the largest integer N such that (1) has no solution in nonnegative integers. Al-
though the origin of the problem is attributed to Sylvester [26], who showed that 
g(a1, a2) = a1a2 − a1 − a2, an apparent reason for associating the name of Frobenius 
with this problem is possibly due to the fact that he was largely instrumental in popu-
larizing this problem in his lectures. The Frobenius problem has a rich and long history, 
with several applications and extensions, and connections to several areas of research. 
A comprehensive survey covering all aspects of the problem can be found in [18]; also 
see [8].

Exact determination of the Frobenius number is a difficult problem in general. Brauer 
[3] found the Frobenius number for consecutive integers, Roberts [20] extended this result 
to numbers in arithmetic progression (see also [1,29,34]), and Selmer [24] further gener-
alized this to the determination of g(a, ha +d, ha +2d, . . . , ha +nd) (see also [31]). There 
are only a few other cases where the Frobenius number has been exactly determined for 
any n variables; refer to [18] for other instances. In the absence of exact results, research 
on the Frobenius problem has often been focused on sharpening bounds on the Frobe-
nius number and on algorithmic aspects. Although running time of these algorithms 
is superpolynomial, Kannan [15] gave a method that solved the Frobenius problem in 
polynomial time for fixed number of variables using the concept of covering radius, and 
Ramírez Alfonsín [17] showed that the problem is NP-hard under Turing reduction.

The purpose of this article is to give exact results for the Frobenius number 
g(a1, a2, a3) in all cases. Most of the results in this article appeared in the author’s the-
sis [28], but were not communicated earlier. Although the Frobenius number g(a1, a2)
is easy to determine, exact formulae for g(a1, a2, a3) for all choices of the variables were 
not previously known and results concerning this were limited to algorithms, bounds and 
exact results in some special cases.

1.1. A brief overview

We divide our article into three sections. We begin with a brief introduction to the
FP in Section 1. In Section 2, we give a historical perspective to the special case of the
FP in three variables, and cite two crucial results (Theorems 1 and 2) we use to obtain 
our formulae. Section 3 contains the formulae for g(a, b, c). For convenience, we have 
subdivided this into six subsections. We give two independent sets of formulae, each of 
which covers all cases of a, b, c. Both sets include the results given in Lemmas 1 and 2; 
additionally, one set of results is given by Theorems 3 and 5, while the other set is 
given by results in Theorems 4 and 6. The subcases covered by Theorems 3 and 4 give 
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neat results. Formulae given in Theorems 5 (a), when either of the cases apply, or in 
Theorem 6 (a), again when either of the cases apply, also give neat results. Having two 
sets of results means that almost all triples (a, b, c) are covered by either Theorems 3
and 5 (a) or by Theorems 4 and 6 (a).

As a consequence of the well known result of Johnson (Theorem 2), it is no loss of 
generality to assume that a, b, c are pairwise coprime; we also assume that a < b < c. 
We use another well known theorem, of Brauer & Shockley (Theorem 1), to compute 
g(a, b, c). Their result says that g(a, b, c) is given by 

(
max1≤i≤a−1 mi

)
− a, where mi

denotes the least positive integer of the form bx + cy (x, y ≥ 0) that is congruent to i
modulo a. To determine mi, we introduce two key numbers each of which depend closely 
on c/b. More specifically, k equals �cb−1� and � is congruent to cb−1 modulo a. Hence 
beginning with bx +cy, adding 1 to y while either subtracting � from x or adding a −� to 
x results in a number bx′+cy′ that is in the same congruence class modulo a. Depending 
on the relative size of k and �, this increases or decreases the current value of bx + cy. 
Subtracting � from x to offset adding 1 to y leads to our first approach, while the second 
approach requires simultaneous addition of a − � to x and 1 to y. We give arguments 
to cover all cases with the first approach, but give only a sketch of the proof for the 
second approach, since it requires an analogous argument. There are two reasons for 
providing both approaches. First, special cases sometimes easily follow from only one of 
the two. For instance, the result of Corollary 1 can be deduced from Theorem 3 but only 
when c > 1

2 (a − 2)b from Theorem 4, and the result of Corollary 2 can be deduced from 
Theorem 4 but only when c > 2b from Theorem 3. Second, there are many instances of 
triples (a, b, c) for which both Λ = Δ and Λ′ = Δ′ hold and for which at least one of 
Λ > Δ, Δ′

> Λ′ hold, making Theorem 6 much more the viable option than Theorem 5.
Lemma 1 is easy to see, and has been stated for the sake of completeness. Lemma 2

covers the case where � ≤ k, where the definitions imply that c must itself be of the form 
ax +by, with x, y ≥ 0. The nontrivial case is therefore the case where � > k. It is relatively 
straightforward to arrive at the formula for g(a, b, c) when br < cq (Theorem 3) or when 
b(� − r) < c(q + 1) (Theorem 4), leading to a pair of parallel results. Corollaries 1, 2
and 3 are exact results for g(a, b, c) that apply to a family of triples and have previously 
appeared in the literature of the FP; these are deduced as special cases from these two 
theorems. The other subcase is far more complicated, and necessitates the use and study 
of a special set X which we describe in Lemma 11, with analogous definitions and results 
for the set X in Lemma 12. Formulae for g(a, b, c) when br > cq are given by Theorem 5, 
and when b(� −r) > c(q+1) by Theorem 6. There are instances where the formula is not as 
explicit as one may have hoped for, for instance in Theorem 5 (b) and in Theorem 6 (b). 
It is for this reason that a parallel attack has been formulated since the same triple may 
satisfy the requirements in the parallel case, leading to a more easily computable formula. 
For instance, g(100, 101, 139) uses the more cumbersome Theorem 5 (b) (Example 5) but 
falls into Theorem 6 (a) (Example 6).
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2. Preliminaries

In this section, we discuss the Frobenius Problem specifically in the case of three 
variables. There are several algorithms for computing g(a1, a2, a3), none of which lead to 
an exact formula. Selmer & Beyer [25] developed an algorithm to compute g(a1, a2, a3)
that required using the continued fraction expansion of a3/a2. This was simplified first by 
Rødseth [21], and later by Davison [6]. Tinaglia [27] proposed a procedure that reduced 
the computation of g(a1, a2, a3) to g(a1, r, s) where r ≡ a2 mod a1 and s ≡ a3 mod a1. In 
addition, several of the algorithms to compute the Frobenius number in the general case 
are computationally comparable to the ones specific to the three variable case, notably 
those by Böcker & Lipták [2], Greenberg [9], Heap & Lynn [10–12], Nijenhuis [16], Scarf 
& Shallcross [23], and Wilf [33].

The search for an exact formula for g(a1, a2, a3) had proved elusive so far. In fact, 
Curtis [5] showed that the Frobenius number cannot be represented by closed formulae 
of a certain type. An explicit general formula for computing g(a1, a2, a3) in terms of the 
least representable multiples of the three variables was given by Denham [7], Ramírez 
Alfonsín [19], and Tripathi & Vijay [32].

Theorem 1. (Brauer & Shockley, [4]) Let a1, . . . , an be positive integers with gcd(a1, . . . ,
an) = 1. Let Γ = Γ(a1, . . . , an) denote the set of integers of the form a1x1 + · · · + anxn

with each xi ≥ 0. Then

g(a1, . . . , an) =
(

max
1≤i≤a1−1

mi

)
− a1,

where mi = min
(
Γ ∩ (i)

)
and (i) is the residue class of i modulo a1.

Theorem 2. (Johnson, [13]). Let a1, . . . , an be positive integers with gcd(a1, . . . , an) = 1. 
If gcd(a2, . . . , an) = d and ai = da ′

i for i = 2, 3, . . . , n, then

g(a1, . . . , an) = d · g(a1, a
′
2 , . . . , a

′
n) + a1(d− 1).

3. Formulae for g(a, b, c)

3.1. Key definitions

For positive integers a1, . . . , an with gcd(a1, . . . , an) = 1, we write

Γ(a1, . . . , an) := {a1x1 + · · · + anxn : xi ∈ N ∪ {0}},

and let Γc(a1, . . . , an) = N \ Γ(a1, . . . , an). Then the Frobenius number

g(a1, . . . , an) := max Γc(a1, . . . , an).
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We deal with the case n = 3, and write a1, a2, a3 as a, b, c with a < b < c. In view of 
Theorem 2, it is no loss of generality to assume that a, b, c are pairwise coprime.

We give exact results for g(a, b, c) in terms of two variables k and �, the first of which 
is the integral part of cb−1 and the second the equivalence class of cb−1 modulo a. Note 
that the assumption of pairwise coprimality allows for the second definition.

k :=
⌊
c
b

⌋
, � :≡ cb−1 (mod a).

We show that c ∈ Γ(a, b), and consequently, g(a, b, c) = g(a, b) if and only if k ≥ � in 
Lemma 2. For the most part then, we assume that � > k. An integral part of our formulae 
involves the quotient and remainder obtained by dividing a by a − �. By a parallel 
argument, we obtain results involving the quotient and remainder obtained by dividing 
a by �. We know by Theorem 1 that g(a, b, c) is of the form bx + cy − a with x, y ≥ 0, 
and so we seek a pair of nonnegative integers (x0, y0) for which g(a, b, c) = bx0 + cy0 −a. 
We also know by the same theorem that g(a, b, c) is the maximum among the largest 
integer in Γc(b, c) ∩ (i), taken over all nonzero residue classes (i) modulo a. It is easy to 
see that bx + cy and b

(
x +(a − �)

)
+ c(y+1) are in the same equivalence class modulo a. 

By repeated applications of this and by breaking up the results into several cases, we 
determine the pair (xi, yi) that corresponds to the smallest integer bxi+cyi ∈ Γ(b, c) ∩(i)
for each nonzero residue class (i) modulo a.

3.2. Preliminary results

We denote the equivalence class containing x modulo a by (x) and the least positive 
integer in Γ(b, c) ∩ (x) by m(x). We begin with the following result.

Lemma 1. If gcd(a, b) = 1 and a < b, then

g(a, b, c) =
{
g(a, b) if c > g(a, b);
g(a, b) − a if c = g(a, b).

Proof. If c > g(a, b), then c ∈ Γ(a, b), so that Γ(a, b, c) = Γ(a, b). Therefore Γc(a, b, c) =
Γc(a, b), and so g(a, b, c) = g(a, b).

If c = g(a, b) and n < g(a, b), then n ∈ Γ(a, b, c) if and only if n ∈ Γ(a, b). So 
if m�(x) denotes the least positive integer in Γ(a, b, c) ∩ (x), we have m�(x) = m(x)
except for (x) = (c). Since m�(c) = c = g(a, b), and the second part now follows from 
Theorem 1. �
Henceforth, we restrict our attention to c < g(a, b) = ab − a − b, so that k ≤ a − 2. In 
fact, in view of the following result, we may further restrict ourselves to � > k.

Lemma 2. If gcd(a, b) = 1, a < b < c and � ≤ k, then g(a, b, c) = g(a, b).
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Proof. Since c ≡ b� (mod a), we can write c = am + b� for some m ∈ Z. But then 
m = 1

a (c − b�) ≥ 1
a (k − �)b ≥ 0. Hence c ∈ Γ(a, b), and so g(a, b, c) = g(a, b). �

3.3. A key algorithm, more key definitions and preliminary results

As noted earlier, g(a, b, c) is of the form bx + cy − a with x, y ≥ 0. We seek a pair 
(x0, y0) that achieves this, and for brevity, use the notation v(x, y) := bx + cy and call 
this the v-value of (x, y). By Theorem 1,

g(a, b, c) =
(

max
1≤i≤a−1

m(i)
)
− a =

(
max

1≤x≤a−1
m(bx)

)
− a

since gcd(a, b) = 1. For a fixed x0, 1 ≤ x0 ≤ a − 1, we note that

bx + cy ≡ bx0 ⇔ b(x− x0) ≡ −cy ≡ −b�y (mod a) ⇔ x ≡ x0 − �y (mod a).

Hence the integers b
(
(x0 − �t) mod a

)
+ ct, 0 ≤ t ≤ a − 1 all belong to the class (bx0), 

and we record this as the following result.

Lemma 3. Let a, b, c be positive integers that are pairwise coprime. Then

g(a, b, c) = max
1≤x≤a−1

{
min

0≤t≤a−1
v
(
(x + (a− �)t) mod a, t

)}
− a.

Definition 1. Let 1 ≤ x0 ≤ a − 1. For 1 ≤ y0 ≤ a − 2, the integer v(x0, y0) is said to be 
a local minimum if

v(x0, y0) ≤ min
{
v
(
(x0 − �) mod a, y0 + 1

)
,v

(
(x0 + �) mod a, y0 − 1

)}
.

If y0 = 0, v(x0, 0) is said to be a local minimum if v(x0, 0) ≤ v
(
(x0−�) mod a, 1

)
. If y0 =

a −1 v(x0, a −1) is said to be a local minimum if v(x0, a −1) ≤ v
(
(x0 +�) mod a, a −2

)
.

We say that two local minima, v(x0, y0) and v(x′
0, y

′
0), are consecutive provided there 

is no local minimum v(x, y) with y0 < y < y′0.

Note that in order to determine the minimum v-value in each class, we may restrict our 
attention to v-values at local minima.

Lemma 4. For each t, 0 ≤ t ≤ a − 1, we have

v
(
{x + (a− �)(t + 1)} mod a, t + 1

)
− v

(
{x + (a− �)t} mod a, t

)
= b(a− �) + c or c− b�.

Proof. This follows directly from the observation

{x + (a− �)(t + 1)} mod a− {x + (a− �)t} mod a = a− � or − �. �
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Remark 1. We note that Lemma 2 also follows directly from Lemma 4. We have

v
(
x + (a− �)(t + 1) mod a, t + 1

)
− v

(
x + (a− �)t mod a, t

)
≥ c− b� ≥ (k − �)b ≥ 0.

Hence m(bx) = bx for 1 ≤ x ≤ a − 1, and so

g(a, b, c) =
(

max
1≤x≤a−1

bx

)
− a = b(a− 1) − a = g(a, b).

In order to compare the v-values at local minimum in the class (bx), we note that the 
list of integers in this class can be generated in one of two ways. Beginning with v(x, 0), 
for each increment by 1 to the y-coordinate, we could either add a −� to the x-coordinate 
or subtract � from the x-coordinate; the result is the same since each coordinate may be 
assumed to be reduced modulo a. We call each such operation a step. Note that there 
is exactly one value of x mod a corresponding to a value of y. These sequences of steps 
give rise to two parallel methods of attack; we follow the first method of successively 
applying the transformation (x, y) →

(
(x + a − �) mod a, y + 1

)
. Throughout the rest 

of this paper, we work with the first method but give the parallel result in the second 
case, typically without giving a proof. It is clear that if (x0, y0) is a local minimum, the 
next possible local minimum will occur precisely when its x-coordinate first reaches a or 
exceeds it. To make these comparisons possible, we employ the following parallel sets of 
notations.

Definition 2. We define nonnegative integers q, q, r, r by

q :=
⌊

a
a−�

⌋
, r := a− q(a− �); q :=

⌊
a
�

⌋
, r := a− q�.

Thus q(a − �) + r = a = q� + r, with q, q ≥ 1, 0 ≤ r < a − � and 0 ≤ r < �.

Remark 2. Observe that r = 0 implies (a −�) | a, and since a |
(
c +b(a −�)

)
, we also have 

(a −�) | c. Unless � = a −1, this contradicts our assumption that gcd(a, c) = 1. Therefore 
r �= 0 unless � = a − 1. In a similar manner, we note that r �= 0 unless � = 1. The case 
� = 1 is dealt with in Lemma 2 and the case � = a − 1, due to Brauer & Shockley in [4], 
is dealt with in Corollary 1, as a special case of Theorem 3.

We next record the gap between successive local minima in terms of the notations 
just introduced. We give a proof for the first of these, but merely record the second since 
it only requires a parallel argument.

Lemma 5. If v(x0, y0), v(x′
0, y

′
0) are consecutive local minima, with 0 ≤ x0, x′

0 < a − �, 
then
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(x′
0, y

′
0) − (x0, y0) =

{
(a− �− r, q + 1) if 0 ≤ x0 < r;
(−r, q) if r ≤ x0 < a− �.

Proof. If 0 ≤ x0 ≤ r − 1, we need q + 1 steps to arrive at the next local minimum:

(x′
0, y

′
0) =

(
x0 + (q + 1)(a− �) mod a, y0 + (q + 1)

)
=

(
x0 + (a− �− r), y0 + (q + 1)

)
.

If r ≤ x0 ≤ a − � − 1, we need q steps to arrive at the next local minimum:

(x′
0, y

′
0) =

(
x0 + q(a− �) mod a, y0 + q

)
= (x0 − r, y0 + q). �

The steps that lead from one local minimum to the next are crucial to determining 
m(bx). Henceforth, we call the operation (x, y) → (x +a − � − r, y+ q+1) an ↑-step and 
the operation (x, y) → (x −r, y+q) a ↓-step. Note that an ↑-step applies when 0 ≤ x < r

and results in an increase in the v-value by B := b(a − � − r) + c(q+1) whereas a ↓-step 
applies when r ≤ x < a − � and results in a decrease in the v-value by A := br − cq.

Lemma 6. If v(x0, y0), v(x′
0, y

′
0) are consecutive local minima, with 0 ≤ x0, x′

0 < �, then

(x′
0, y

′
0) − (x0, y0) =

{
(r, q) if 0 ≤ x0 < �− r;(
− (�− r), q + 1

)
if �− r ≤ x0 < �.

Analogous to the terminology following Lemma 5, we call the operation (x, y) →
(x + r, y + q) an ↑-step and the operation (x, y) →

(
x − (� − r), y + q + 1) a ↓-step. Note 

that an ↑-step applies when 0 ≤ x < � − r and results in an increase in the v-value by 
B := br + cq whereas a ↓-step applies when � − r ≤ x < � and results in a decrease in 
the v-value by A := b(� − r) − c(q + 1).

The computation of g(a, b, c) is greatly simplified by restricting the evaluation of the 
minimum integer in the class (bx) for all x to those x less than a − �, and by a parallel 
argument to those x less than �.

Lemma 7. Let � > k. For 1 ≤ x ≤ a − 1, m(bx) = min
{
bx, m(bx′) + cy′

}
, where

(x′, y′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
(x mod (a− �)) − r + a− �, q − � x

a−�� + 1
)

if 0 ≤ x mod (a− �) ≤ r − 1;(
(x mod (a− �)) − r, q − � x

a−��
)

if r ≤ x mod (a− �) < a− �.

Proof. For 1 ≤ x ≤ a − 1, write x = � x
a−��(a − �) + x mod (a− �). If x mod (a− �) ≤

r − 1, the first local minimum after (x, 0) is achieved after q − � x � + 1 steps, and if 
a−�
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x mod (a− �) > r, that local minimum is achieved after q − � x
a−�� steps. Thus the first 

local minimum after the initial (x, 0) is at (x′, y′), with x′ and y′ as given in the result. 
But now the remaining local minima are clearly those that can be achieved by starting 
at (x′, 0) but incrementing each y-coordinate by y′. �
Lemma 8. Let � > k. For 1 ≤ x ≤ a − 1,

m(bx) = m
(
b(x mod �)

)
+ c

⌊
x
�

⌋
.

Proof. The proof is along similar lines to that in Lemma 7, but is easier and gives a 
neater result. For 1 ≤ x ≤ a − 1, write x = �x

� �� + x mod �. Starting with the initial 
(x, 0), the v-values decrease in each of the first �x

� � steps, leading up to 
(
x mod �, �x

� �
)
. 

Since the remaining local minima are again those that can be achieved by starting at 
(x mod �, 0) but incrementing each y-coordinate by �x

� �, it follows that

m(bx) = min
{
bx,m

(
b(x mod �)

)
+ c

⌊
x
�

⌋}
.

Moreover,

m
(
b(x mod �)

)
+ c

⌊
x
�

⌋
≤ b(x mod �) + c

⌊
x
�

⌋
≤ bx

the second inequality since bx −
{
b(x mod �) +c 

⌊
x
�

⌋ }
= (b� −c) 

⌊
x
�

⌋
≥ 0. This completes 

the proof. �
3.4. Formulae for the cases � > k, br < cq and � > k, b(� − r) < c(q + 1)

Lemma 7 gives explicit formulae for g(a, b, c) in the case br < cq, and Lemma 8 for 
the parallel case b(� − r) < c(q + 1). These are easily derived because it turns out that 
m(bx) = bx for all x precisely when the above stated inequalities hold. In particular, one 
can derive a simple symmetric formula for g(a, b, c) when a | (b + c) from these results.

Theorem 3. If � > k and br < cq, then

g(a, b, c) + a =

⎧⎨
⎩
b
{
(λ + 1)(a− �) + r − 1

}
if λ ≥ c(q−1)−br

b(a−�)+c ;

b(a− �− 1) + c(q − λ− 1) if λ ≤ c(q−1)−br
b(a−�)+c ,

where λ :=
⌊

cq−br
b(a−�)+c

⌋
.

Proof. Let (x0, y0), (x′
0, y

′
0) be consecutive local minima. From Lemma 5 we see that 

v(x′
0, y

′
0) −v(x0, y0) = b(a − � −r) + c(q+1) or cq− br, both of which are positive. Hence 

m(bx) = bx for 1 ≤ x < a − �, and so m(bx) = min{bx, bx′ + cy′} for 1 ≤ x ≤ a − 1 and 
x′, y′ as given by Lemma 7.
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Fix x, 1 ≤ x ≤ a − 1, and write � x
a−�� = m and x mod (a− �) = s in Lemma 7. Set 

ε = 0 or 1 according as s ≥ r or s < r. From Lemma 7, m(bx) = bx if and only if

b{(m− ε)(a− �) + r} ≤ c{q − (m− ε)} ⇔ (m− ε){b(a− �) + c}
≤ cq − br ⇔ m ≤ λ + ε.

Thus for fixed s, 0 ≤ s < a − �,

max
m

m(bx) = max
{
b
(
(λ + ε)(a− �) + s

)
, b
(
ε(a− �) + s− r

)
+ c(q − λ− 1)

}
.

A little simplification shows that
{
b
(
ε(a− �) + s− r

)
+ c(q − λ− 1)

}
−

{
b
(
(λ + ε)(a− �) + s

)}
= c(q − 1) − br − λ

{
b(a− �) + c

}
,

and this is independent of s and ε. Since b
{
λ(a −�) +a −� −1

}
< b

{
(λ +1)(a −�) +r−1

}
, 

it follows that

max
0≤x≤a−1

m(bx) =

⎧⎨
⎩
b
{
(λ + 1)(a− �) + r − 1

}
if λ ≥ c(q−1)−br

b(a−�)+c ;

b(a− �− 1) + c(q − λ− 1) if λ ≤ c(q−1)−br
b(a−�)+c .

To complete the proof, we note that b
{
(λ +1)(a − �) + r−1

}
= b(a − � −1) + c(q−λ −1)

if and only if λ
(
b(a − �) + c

)
= c(q − 1) − br. �

Example 1. We compute g(113, 127, 157) by using Theorem 3. We have k = 1, � = 100, 
q = 8, r = 9, λ = 0, and c(q − 1) < br. By the first case, g(113, 127, 157) = (127 · 21) −
113 = 2554.

Corollary 1. (Brauer & Shockley [4]). If a | (b + c), then

g(a, b, c) + a =
{
b� ac

b+c� if � ac
b+c� ≥

(a−1)c
b+c ;

c� ab
b+c� if � ac

b+c� ≤
(a−1)c
b+c .

Proof. Observe that gcd(b +c, b) = 1 = gcd(b +c, c) since gcd(b, c) = 1. Hence (b +c) � ab, 
(b + c) � ac, and so � ab

b+c� + � ac
b+c� = a − 1. Now a | (b + c) if and only � = a − 1, and the 

result follows as a direct consequence of Theorem 3. �
Remark 3. Corollary 1 also admits a direct proof; see [30]. Since a | (b + c) implies 
a − � = 1, the only two local minima in the class (bx) are at (x, 0) and (0, a − x). Thus, 
m(bx) equals bx if x ≤ ac

b+c and c(a −x) if x ≥ ac
b+c . Hence g(a, b, c) = max

{
b� ac

b+c�, c(a −
� ac
b+c�)

}
−a. The result now follows from the observation � ab

b+c� +� ac
b+c� = a −1 and b +c

divides neither ab nor ac.



378 A. Tripathi / Journal of Number Theory 170 (2017) 368–389
Theorem 3 applies in the case � > k and br < cq. Exact formula for g(a, b, c) in the 
parallel case � > k and b(� − r) < c(q + 1) given in Theorem 4 requires a similar, and 
somewhat easier, argument. There are several instances where exactly one of br < cq, 
b(� − r) < c(q + 1) holds under � > k. The two theorems together therefore enlarge 
the scope of the results, and the simplicity of the formulae given by each of these two 
theorems makes this an even more attractive proposition.

Theorem 4. Suppose � > k and b(� − r) < c(q + 1). Then

g(a, b, c) + a =
{
b(�− 1) + c(q − 1) if 0 ≤ r < �− k;
b(r − 1) + cq if �− k ≤ r < �.

Proof. Let (x0, y0), (x′
0, y

′
0) be consecutive local minima. From Lemma 6 we see that 

v(x′
0, y

′
0) − v(x0, y0) = br + cq or c(q + 1) − b(� − r), both of which are positive. Hence 

m(bx) = bx for 1 ≤ x < �, so that by Lemma 8, for 1 ≤ x ≤ a − 1 we now have

m(bx) = b(x mod �) + c
⌊
x
�

⌋
.

Therefore

max
1≤x≤a−1

m(bx) = max
{
b(r − 1) + cq, b(�− 1) + c(q − 1)

}
.

To complete the proof, note that b(r−1) +cq ≥ b(� −1) +c(q−1) if and only if c ≥ b(� −r)
if and only if k ≥ � − r. �
Example 2. We compute g(113, 127, 182) by using Theorem 4. We have k = 1, � = 13, 
q = 8, and r = 9. By the first case, g(113, 127, 182) = (127 · 12) + (182 · 7) − 113 = 2685.

Corollary 2. (Selmer [24]). If h is a positive integer and gcd(a, d) = 1, then

g(a, ha + d, ha + 2d) = ha�a−2
2 � + (h− 1)a + d(a− 1).

Proof. If a is even, by Theorem 2,

g(a, ha + d, ha + 2d) = 2 · g
(
ha + d, a

2 , h
a
2 + d

)
+ (ha + d)

= 2 · g
(
a
2 , h

a
2 + d

)
+ (ha + d),

since ha + d ∈ Γ
(
{a

2 , h
a
2 + d}

)
. Now

2 · g
(
a
2 , h

a
2 + d

)
+ (ha + d) = a

(
ha

2 + d
)
− a− (ha + 2d) + (ha + d)

= a
2 (ha− 2) + d(a− 1),

as desired.
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If a is odd, the result follows directly from Theorem 4 with k = 1, � = 2, q = a−1
2 , 

r = 1. �
Remark 4. Corollary 2 is a special case of the following result of Selmer:

g(a, ha + d, . . . , ha + kd) = ha�a−2
k � + (h− 1)a + d(a− 1)

if h is any positive integer and gcd(a, d) = 1. This result was also given by Tripathi [31], 
and generalizes a result of Roberts [20] about the Frobenius number for arithmetic pro-
gressions.

Corollary 3. (Einstein, Lichtblau, Strzebonski & Wagon [8]). For any positive integer a,

g(a, a + 1, a + 4) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
4 (a2 + 8a− 4) if a ≡ 0 (mod 4);
1
4 (a2 + 7a− 8) if a ≡ 1 (mod 4);
1
4 (a2 + 6a− 12) if a ≡ 2 (mod 4);
1
4 (a2 + 5a− 4) if a ≡ 3 (mod 4).

Proof. If a ≡ 0 (mod 4), by Theorem 2,

g(a, a + 1, a + 4) = 4 · g
(
a
4 ,

a
4 + 1, a + 1

)
+ 3(a + 1) = 4 · g

(
a
4 ,

a
4 + 1

)
+ 3(a + 1)

= 1
4 (a2 + 8a− 4).

Note that the second equality holds because a +1 ∈ Γ
(
a
4 , 

a
4 +1

)
and recall that g(m, n) =

mn −m − n when gcd(m, n) = 1.
Suppose a ≡ 1 (mod 4). Observe that the result holds for a = 1. If a ≡ 2 (mod 3), by 

Theorem 2 and the first case of Corollary 1,

g(a, a + 1, a + 4) = 3 · g
(
a+1
3 , a+1

3 + 1, a
)

+ 2a

= 1
4(a + 4)(a− 1) + a− 1 = 1

4(a2 + 7a− 8).

If a �≡ 2 (mod 3), the variables are pairwise coprime and � = 4, k = 1, q = a−1
4 and r = 1

if a > 1. Thus b(� − r) < c(q + 1) holds, and from the first part of Theorem 4,

g(a, a + 1, a + 4) = 3(a + 1) + 1
4 (a + 4)(a− 5) − a = 1

4 (a2 + 7a− 8).

Suppose a ≡ 2 (mod 4). If a ≡ 2 (mod 3), by Theorem 2 and the first case of Corol-
lary 1,

g(a, a + 1, a + 4) = 3 · g
(
a+1
3 , a+1

3 + 1, a
)

+ 2a

= 1(a + 4)(a− 2) + a− 1 = 1(a2 + 6a− 12).
4 4
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If a �≡ 2 (mod 3), by Theorem 2,

g(a, a + 1, a + 4) = 2 · g
(
a
2 ,

a
2 + 2, a + 1

)
+ (a + 1) ≡ 2 · g(b, b + 2, 2b + 1),

where b = a
2 ≡ 1 (mod 2) and b �≡ 1 (mod 3). Then b, b + 2, 2b + 1 are pairwise coprime 

and � = b+1
2 , k = 1, q = 1 and r = b−1

2 . Thus b(� − r) < c(q + 1) holds, and from the 
second part of Theorem 4,

g(b, b + 2, 2b + 1) = 1
2 (b2 + b− 4), g(a, a + 1, a + 4) = 1

4 (a2 + 6a− 12).

Suppose a ≡ 3 (mod 4). If a ≡ 2 (mod 3), by Theorem 2 and the second case of 
Corollary 1,

g(a, a + 1, a + 4) = 3 · g
(
a+1
3 , a+1

3 + 1, a
)

+ 2a = 1
4a(a + 1) + a− 1

= 1
4 (a2 + 5a− 4).

If a �≡ 2 (mod 3), the variables are pairwise coprime and � = 4, k = 1, q = a−3
4 and 

r = 3. Thus b(� − r) < c(q + 1) holds, and from the second part of Theorem 4,

g(a, a + 1, a + 4) = 2(a + 1) + 1
4 (a + 4)(a− 3) − a = 1

4 (a2 + 5a− 4). �
Remark 5. Einstein et al. [8] remarked that the result in Corollary 3 followed from a more 
general result of Rødseth [22]. They also treated the general case g(a, a +1, a +4, . . . , a +
k2) by using a geometric algorithm, and conjectured that this Frobenius number is of the 
form 1

k2 (a2 + αa) − β for some integers α, β which depend on k and the residue class of 
a modulo k2. Kan et al. [14] gave an exact formula for g(a, a + 1, a + d) when 2 ≤ d ≤ 5
and a > d(d − 4) + 1, and also an upper bound for general d, although no proofs were 
given.

3.5. The cases � > k, br > cq and � > k, b(� − r) > c(q + 1)

Theorem 3 covers the case br < cq and Theorem 4 the parallel case b(� −r) < c(q+1), 
both under the assumption � > k. The assumption that gcd(b, c) = 1 implies br �= cq

and b(� − r) �= c(q + 1) since r < a − � < a < c and � − r < � < a < c. So it remains to 
consider the remaining subcases for � > k, namely, the case br > cq and the parallel case 
b(� − r) > c(q + 1). These turn out to be far more challenging since there exist x < a − �

for which m(bx) < bx, and in the parallel case, x < � for which m(bx) < bx. We now 
further extend Lemma 7 and the parallel Lemma 8.

Lemma 9. If � > k and br > cq, then

max
0≤x≤a−1

m(bx) = max
{

max
0≤x≤(a−�−1) mod r

m(bx) + cq, max
(a−�) mod r≤x≤r−1

m(bx)
}

+ cq
⌊
a−�−1⌋ .
r
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Proof. For 1 ≤ x ≤ a − 1, write � x
a−�� = m and x mod (a− �) = s. From the proof of 

Theorem 3 we have m(bx) = m(bx′) + cy′ if m ≥ 1, since br > cq implies λ < 0, where 
x′, y′ are as in Lemma 7. Hence by Lemma 7,

max
0≤x≤a−1

m(bx) = max
m≥1

{
max

0≤s≤a−�−r−1
m(bs) + c(q −m),

max
a−�−r≤s≤a−1

m(bs) + c(q −m + 1)
}

= max
{

max
0≤x≤a−�−r−1

m(bx) + c(q − 1),

max
a−�−r≤x≤a−�−1

m(bx) + cq

}
.

Now suppose that 0 ≤ x ≤ a − � − 1. By Lemma 5, successive local minima starting 
at (x, 0) are obtained by repeatedly applying the step (x, y) → (x − r, y + q) as long as 
the x-value remains greater than or equal to r. Each such step results in lowering the 
v-value since br > cq. So, to each x, 0 ≤ x ≤ a − � − r − 1, there corresponds an x′

with a − � − r ≤ x′ ≤ a − � − 1 and m(bx′) > m(bx). If mr is the unique multiple of r
satisfying a − � − r ≤ mr ≤ a − � − 1, then m − 1 such steps can be applied for those 
x < mr and m such steps for x ≥ mr in this interval. Hence

max
0≤x≤a−1

m(bx) = max
a−�−r≤x≤a−�−1

m(bx) + cq

= max
{

max
0≤x≤(a−�−1) mod r

m(bx) + cq, max
(a−�) mod r≤x≤r−1

m(bx)
}

+ cq
⌊
a−�−1

r

⌋
. �

Lemma 10. If � > k and b(� − r) > c(q + 1), then

max
0≤x≤a−1

m(bx) =

max
{

max
0≤x≤(r−1) mod (�−r)

m(bx) + c(q + 1), max
r mod (�−r)≤x≤�−r−1

m(bx)
}

+ c
{

(q + 1)
⌊
�−1
�−r

⌋
− 2

}
.

The proof of Lemma 10 follows along similar lines to that given for Lemma 9, using 
Lemmas 6 and 8, and is therefore omitted. Lemmas 9 and 10 reduce the problem of 
determining g(a, b, c) to comparing m(bx) only for x < r (respectively, only for x < � −r) 
when br > cq (respectively, b(� − r) > c(q + 1)). The assumptions imply that there exist 
x < r (respectively, x < � − r) such that m(bx) < bx, and in fact, sometimes with 
m(bx) = cy for some y ≥ 1. This in turn implies either m

(
bx) = m

(
b(x − 1)

)
+ b or

m
(
bx) = cy for some y ≥ 1. Therefore the following definition is crucial to the remaining 

cases.
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Definition 3. Let � > k and br > cq. We define the set X by

X :=
{
x : c | m(bx), 0 < x ≤ r

}
.

Remark 6. If br > cq, note that m(br) = cq since the only two local minima in the class 
(br) are at (r, 0) and (0, q). Hence r ∈ X. Note also that x̂ := minX = min{x : m(bx) �=
bx}. For if x = min{x : m(bx) �= bx}, then m(bx) = bx0 + cy0 for some y0 ≥ 1. Hence 
bx0 < bx0+cy0 < bx, and so that x0 < x. But then cy0 ∈

(
b(x−x0)

)
and cy0 < b(x−x0), 

so that m
(
b(x− x0)

)
< b(x− x0). Thus x ∈ X, and hence x̂ = x.

Definition 4. Set A := br − cq, B := b(a − � − r) + c(q + 1), and

Λ :=
⌊

r
a−�−r

⌋
, Δ :=

⌊
A
B

⌋
, Λ′ :=

⌊
a−�−r

r

⌋
, Δ′ :=

⌊
B
A

⌋
.

Lemma 11. Let � > k and br > cq. Then

X =
{
r
(⌊

(a−�−r)t
r

⌋
+ 1

)
− (a− �− r)t : 0 ≤ t ≤ μ′

}
=

{
r − (a− �− r)t mod r : 0 ≤ t ≤ μ′

}
,

where μ′ is the largest nonnegative integer m such that �mB
A � = �m(a−�−r)

r �.
Let u ≡ a − � (mod r). If μ′ < � r

u�, then

X =
{
r − ut : 0 ≤ t ≤ μ′}.

In particular, if Λ > Δ or Δ′ > Λ′, then

X =
{
r − (a− �− r)t : 0 ≤ t ≤ Δ

}
.

Proof. Recall from Lemma 5 that to go from one local minimum to the next, we use 
(x, y) → (x + a − � − r, y + q + 1) when 0 ≤ x ≤ r − 1 and (x, y) → (x − r, y + q) when 
r ≤ x ≤ a − � − 1. For convenience, we call the first an ↑-step and the second a ↓-step. 
Note that an ↑-step results in an increase in the v-value by b(a − � − r) + c(q + 1) = B

and a ↓-step a decrease in the v-value by br − cq = A.
Observe that r ∈ X by Remark 6. Now suppose r �= x ∈ X. Then m(bx) = cy for 

some y ≥ 1. Since (x, 0) and (0, y) are both local minimum in the class (bx), we can 
reach (0, y) from (x, 0) by a sequence of t1 ↓-steps and t2 ↑-steps for some t1 ≥ 1 and 
t2 ≥ 1. Hence x = rt1 − (a − � − r)t2, y = qt1 +(q+1)t2, and so the inequality 0 < x < r

reduces to r
a−�−r (t1 −1) < t2 < r

a−�−r t1. Therefore every element x ∈ X, x < r, is of the 
form rt1 − (a − � − r)t2 for some positive integers t1, t2 satisfying the inequality given 
above. We claim that in addition, x ∈ X if and only if t2 ≤ μ′, where μ′ is the largest 
nonnegative integer m such that �mB � = �m(a−�−r)�.
A r
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Let x ∈ X, so that x = rt1 − (a − � − r)t2, where t1, t2 are positive integers 
with r

a−�−r (t1 − 1) < t2 < r
a−�−r t1. Then v(x, 0) = bx > cy = v(0, y), with 

y = qt1 + (q + 1)t2, and this reduces to At1 > Bt2. Suppose first that 1 ≤ t2 ≤ μ′, 
and consider any local minimum (x′, y′) in the class (bx). Suppose we reach (0, y)
from (x′, y′) in s1 ↓-steps and s2 ↑-steps. Then x′ = rs1 − (a − � − r)s2 > 0, so 
that s1 ≥ � (a−�−r)s2

r � = �Bs2
A � since s2 ≤ t2 ≤ μ′. But then v(x′, y′) − v(0, y) =

As1 − Bs2 = A(s1 − Bs2
A ) > 0. Thus m(bx) = cy whenever t2 ≤ μ′ and 0 < x < r. 

Now suppose that t2 > μ′. Then t1 ≤ � (a−�−r)t2
r � + 1 ≤ �Bt2

A � < Bt2
A , so that 

v(x, 0) < v(0, y). Since x = r −
(
(a − � − r)t2 − r(t1 − 1)

)
, the inequality can be 

replaced by the condition x = r − (a − � − r)t2 mod r. This completes the result in the 
general case.

If μ′ ≤ � r
u�, then (a − � − r)t ≡ ut (mod r) and 0 ≤ ut < r for 0 ≤ t ≤ μ′. Hence 

X = {r − ut : 0 ≤ t ≤ μ′}.
To complete the proof, we first show that μ′ = Δ if Λ > Δ or Δ′ > Λ′. Observe 

that �ΔB
A � = 0. Hence �mB

A � = 0 = �m(a−�−r)
r � for 0 ≤ m ≤ Δ, since BA > a−�−r

r > 0. 
If Λ > Δ, then � (Δ+1)B

A � = 1 and � (Δ+1)(a−�−r)
r � ≤ �Λ(a−�−r)

r � = 0. If Δ′ > Λ′, then 
μ′ = 0 by definition. In either case, μ′ = Δ since Δ′ > Λ′ implies Δ′ > 0 which in turn 
implies Δ = 0.

Finally, we show that μ′ = Δ < � r
u� if Λ > Δ or Δ′ > Λ′. If Λ > Δ, then Λ′ = 0 (since 

Λ > 0), so that u = (a − � − r) − Λ′r = a − � − r and μ′ = Δ < Λ = � r
a−�−r � = � r

u�. 
If Δ′ > Λ′, then u = (a − � − r) − Λ′r ≤ r since a−�−r

r < Λ′ + 1. Hence μ′ = Δ = 0 <
� r
u�.
Hence, in either case X = {r − (a − � − r)t : 0 ≤ t ≤ Δ}. This completes the result in 

the special case. �
Remark 7. If u = 0, then r | a − �. If r = 1, the condition br > cq is not met. 
If r > 1, choose a prime divisor p of r. Then p divides a − �, hence a and c, so 
that gcd(a, c) > 1, violating our assumption. Hence u �= 0 under the given assump-
tions.

Remark 8. The equation μ′ = � r
u� is never possible. From Lemma 11, the given condition 

implies both Λ = Δ and Λ′ = Δ′ must hold. Therefore neither r
a−�−r nor BA is an integer, 

so that exactly one of the equal pairs must equal 0. Observe that �m(a−�−r)
r � = 0 if and 

only if m ≤ Λ, whereas �mB
A � = 0 if and only if m ≤ Δ. Since Λ = Δ, it follows that 

μ′ ≥ Λ.
If Λ′ = Δ′ = 0, then u = a − � − r, so that � r

u� = Λ. But μ′ ≥ Λ + 1, since 

�m(a−�−r)
r � = �mB

A � = 1 when m = Λ + 1 = Δ + 1.
If Λ = Δ = 0, write B

A = Δ′ + {B
A} and a−�−r

r = Λ′ + {a−�−r
r } = Δ′ + u

r , where 
{x} denotes the fractional part of x. Since μ′ + 1 is the smallest positive integer m for 
which �m(a−�−r)

r � < �mB
A � holds, we must have (μ′ + 1)ur < 1 ≤ (μ′ + 1){B

A}. Hence 
� r
u� ≥ μ′ + 1.
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3.6. Formulae for the cases � > k, br > cq and � > k, b(� − r) > c(q + 1)

Theorem 5. Let � > k and br > cq. Let u ≡ a − � (mod r), and let μ′ be the largest 
nonnegative integer m such that �mB

A � = �m(a−�−r)
r �.

(a) If μ′ < � r
u�,

g(a, b, c) + a

= max
{
b
(
r − μ′u− 1

)
, b(u− 1) + c

(
μ′(q + 1) +

(
� (a−�−r)μ′

r � + 1
)
q
)}

+ cq�a−�−1
r �.

In particular, if Λ > Δ

g(a, b, c) + a

= max
{
b
(
r − Δ(a− �− r) − 1, b(a− �− r − 1) + c

(
Δ(q + 1) + q

))}
+ cq,

and if Δ′ > Λ′

g(a, b, c) + a = max
{
b(r − 1), b

(
(a− �− 1) mod r

)
+ cq

}
+ cq�a−�−1

r �.

(b) Let μ′ > � r
u�. Let X = {xi : 0 ≤ i ≤ μ′}, where

xi = r
(
� (a−�−r)i

r � + 1
)
− (a− �− r)i.

Set yi = q
(
� (a−�−r)i

r � + 1
)

+ (q + 1)i for 0 ≤ i ≤ μ′. Let d1 = � r
u�u − r, and 

d2 = x̂ = minX. Let pi be the largest positive integer such that xpi
+ di ∈ X for 

i = 1, 2. Then

g(a, b, c) + a = max
{
b
(
d1 − 1

)
+ cyp1 , b

(
d2 − 1

)
+ cyp2

}
+ cq

⌊
a−�−1

r

⌋
.

Proof. (a) If μ′ < � r
u�, then X = {r − ui : 0 ≤ i ≤ μ′} by Lemma 11. For 0 ≤ i ≤ μ′, 

let xi = r − ui = r
(
� (a−�−r)i

r � + 1
)
− (a − � − r)i and m(bxi) = cyi. Since we 

require i ↑-steps and � (a−�−r)i
r � + 1 ↓-steps to arrive at (0, yi) from (xi, 0), we have 

yi = (q + 1)i + q
(
� (a−�−r)i

r � + 1
)
.

If x < x̂ = minX, then m(bx) = bx by Definition 3 and Remark 6. Any x /∈ X, 
x̂ < x < r is of the form xi + x′ with 1 ≤ i ≤ μ′ and 0 < x′ < u. The sequence of 
local minimum starting with (x, 0) consisting of i ↑-steps and yi ↓-steps leads to the 
local minimum (x′, yi). Now x′ ≤ u − 1 ≤ x̂− 1 = r − μ′u − 1, since μ′ + 1 ≤ r

u . So 
the sequence of local minimum after (x′, yi) results in numbers larger than v(x′, yi), 
which therefore equals m(bx). By Lemma 9,
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g(a, b, c) + a = max
{

max
0≤x≤u−1

m(bx) + cq, max
u≤x≤r−1

m(bx)
}

+ cq�a−�−1
r �

= max {v(x̂− 1, 0),v(u− 1, yμ′)} + cq
⌊
a−�−1

r

⌋
= max

{
b
(
r − μ′u− 1

)
, b(u− 1) + c

(
μ′(q + 1)

+
(
� (a−�−r)μ′

r � + 1
)
q
)}

+ cq�a−�−1
r �.

From Lemma 11, we know that Δ = μ′ < � r
u� when Λ > Δ or when Δ′ > Λ′. If 

Λ > Δ, then u = a − � − r and �a−�−1
r � = 1. If Δ′ > Λ′, then Δ = 0 (since Δ′ > 0). 

The result now follows from the general case.
(b) Suppose μ′ > � r

u�. Note that this implies that the elements in X do not have a 
fixed common difference. In fact, the difference between consecutive integers in X is 
either d1 = � r

u�u − r or d2 = x̂, with d1 < d2 as we indirectly show in the following 
argument. Note also that the assumption also implies both Λ = Δ and Λ′ = Δ′; the 
converse is not true, as Examples 4 and 5 demonstrate.
Recall that m(bx) = bx for all x < x̂ = minX by Remark 6, and m(bx) = cy for x ∈ X

by Definition 3. For x /∈ X, x > x̂, choose the largest element xj ∈ X such that xj < x

and write x = xj + x′; this is possible because μ′ �= 0. Let m(bxj) = cyj . Applying 
the sequence of ↑-steps and ↓-steps that lead (xj, 0) to (0, yj) must then lead (x, 0)
to (x′, yj) through local minima, since otherwise the same sequence would lead some 
(x̃, 0) to (0, ỹ) with xj < x̃ < x, with the conclusion that m(bx̃) = cỹ contradicting 
the definition of xj ∈ X. Therefore m(bx) = m(bxj) + b(x − xj) = b(x − xj) + cyj . 
By Lemma 9

max
0≤x≤a−1

m(bx) = max
{

max
0≤x≤(a−�−1) mod r

x∈X

m
(
b(x− 1)

)
+ cq,

max
(a−�) mod r≤x≤r−1

x∈X

m
(
b(x− 1)

)}

+ cq
⌊
a−�−1

r

⌋
.

Write X = {x0, . . . , xμ′}, where xi = r
(
� (a−�−r)i

r � + 1
)
− (a − � − r)i. Note that 

m(bxi) = cyi where yi = q
(
� (a−�−r)i

r � +1
)
+(q+1)i. Observe that if we arrange the 

elements in X in increasing order, starting with x̂ = xj and ending with r = x0, the 
difference between consecutive elements is always one of two integers, d1 = � r

u�u − r

and d2 = x̂. Now choose the largest positive integers p1, p2 such that xpi
+ di ∈ X

for i = 1, 2; clearly one of p1, p2 is μ′. Hence the maximum above is reduced to 
choosing the larger of the values m(bx) corresponding to x1 = xp1 + d1 − 1 and 
x2 = xp2 + d2 − 1. Therefore
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g(a, b, c) + a = max
{
m
(
bx1

)
,m

(
bx2

)}
+ cq

⌊
a−�−1

r

⌋
.

This completes the proof. �
Example 3. We compute g(100, 101, 159) by using Theorem 5 (a). We have k = 1, � =
59, q = 2, r = 18, a − � − r = 23, Λ = Δ = 0 and Λ′ = Δ′ = 1. We also have 
A = 1500, B = 2800, μ′ = 1, u = 5, and � r

u� = 3. By the general case, g(100, 101, 159) =
max{v(12, 0), v(4, 7)} +v(0, 4) −100 = v(4, 11) −100 = (101 ·4) +(159 ·11) −100 = 2053.

Example 4. We compute g(133, 172, 199) by using Theorem 5 (a). We have k = 1, � = 104, 
q = 4, r = 17, a − � − r = 12, Λ = 1, Δ = 0 and Λ′ = 0, Δ′ = 1. So both special 
cases apply, and each gives g(133, 172, 199) = max{v(16, 0), v(11, 4)} + v(0, 4) − 133 =
v(16, 4) − 133 = (172 · 16) + (199 · 4) − 133 = 3415.

Example 5. We compute g(100, 101, 139) by using Theorem 5 (b). We have k = 1, � = 39, 
q = 1, r = 39, a − � − r = 22, Λ = Δ = 1 and Λ′ = Δ′ = 0. We also have A = 3800, 
B = 2500, μ′ = 4, u = 22, and � r

u� = 1. Again X = {12, 17, 29, 34, 39}, d1 = 5, 
d2 = 12, p1 = 4, p2 = 1, xp1 = 29, yp1 = 11, xp2 = 17, yp2 = 3. Hence g(100, 101, 137) =
max{v(4, 11), v(11, 3)} +v(0, 1) −100 = v(4, 12) −100 = (101 ·4) +(139 ·12) −100 = 1972.

To describe the parallel case, when � > k and b(� −r) > c(q+1), it is natural to define 
the set X somewhat differently:

X :=
{
x : c | m(bx), 0 < x ≤ �− r

}
.

These naturally give rise to remarks analogous to those in Remark 6 and the following 
definition.

Definition 5. Set A := b(� − r) − c(q + 1), B := br + cq, and

Λ :=
⌊
�−r
r

⌋
, Δ :=

⌊
A
B

⌋
, Λ′ :=

⌊
r

�−r

⌋
, Δ′ :=

⌊
B
A

⌋
.

Lemma 12. Let � > k and b(� − r) > c(q + 1). Then

X =
{

(�− r)
(⌊

rt
�−r

⌋
+ 1

)
− rt : 0 ≤ t ≤ μ′

}
=

{
(�− r) −

(
rt mod (�− r)

)
: 0 ≤ t ≤ μ′

}
,

where μ′ is the largest nonnegative integer m such that �mB
A

� = � mr
�−r �.

Let u ≡ r (mod � − r). If μ′ ≤ � �−r
u �, then

X =
{
(�− r) − ut : 0 ≤ t ≤ μ′}.
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In particular, if Λ > Δ or Δ′
> Λ′, then

X =
{
�− r(t + 1) : 0 ≤ t ≤ Δ

}
.

The proof of Lemma 12 follows on lines similar to the one for Lemma 11. We use Lemma 6
to go from one local minimum to the next, and call (x, y) → (x + r, y + q) (when 
0 ≤ x < � − r) an ↑-step and (x, y) →

(
x − (� − r), y + q + 1

)
(when � − r ≤ x < �) a 

↓-step. Note that an ↑-step results in an increase in the v-value by br + cq = B and a 
↓-step in a decrease in the v-value by b(� − r) − c(q + 1) = A. We omit the details of the 
proof.

Remark 9. If u = 0, then (� − r) | r. If � − r = 1, the condition b(� − r) > c(q + 1) is not 
met. If � − r > 1, choose a prime divisor p of � − r. Then p divides r, hence �, a and c, so 
that gcd(a, c) > 1, violating our assumption. Hence u �= 0 under the given assumptions.

Remark 10. The equation μ′ = � �−r
u � is possible. For example, a = 137, b = 251, c = 256

give � = 108, q = 1, r = 29, � − r = 79, u = 29, A = 19317, B = 7535, so that 
μ′ = 2 = � �−r

u �.

Theorem 6. Let � > k and b(� − r) > c(q + 1). Let u ≡ r (mod � − r), and let μ′ be the 
largest nonnegative integer m such that �mB

A
� = � mr

�−r �.

(a) If μ′ ≤ � �−r
u �,

g(a, b, c) + a

= max
{
b
(
�− r − μ′u− 1

)
, b(u− 1) + c

(
μ′q +

(
� rμ′

�−r � + 1
)
(q + 1)

)}
+ c

(
(q + 1)� �−1

�−r � − 2
)
.

In particular, if Λ > Δ

g(a, b, c) + a = max
{
b(r − 1) + cq(Δ + 2), b

(
�− (Δ + 1)r − 1

)
+ c(q − 1)

}
,

and if Δ′
> Λ′

g(a, b, c) + a = max
{
b
(
r − 1 mod (�− r)

)
+ c(q + 1), b(�− r − 1)

}
+ c

(
(q + 1)� �−1

�−r � − 2
)
.

(b) Let μ′ > � �−r
u �. Let X = {xi : 0 ≤ i ≤ μ′}, where

xi = (�− r)
(
� ri � + 1

)
− ri.
�−r
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Set yi =
(
q + 1

)(
� ri
�−r � + 1

)
+ qi for 0 ≤ i ≤ μ′. Let u = r (mod � − r), d1 =

� �−r
u �u− (� − r), and d2 = x̂ = minX. Let pi be the largest positive integer such that 

xpi
+ di ∈ X for i = 1, 2. Then

g(a, b, c) + a = max
{
b
(
d1 − 1

)
+ cyp1 , b

(
d2 − 1

)
+ cyp2

}
+ c

{
(q + 1)

⌊
�−1
�−r

⌋
− 2

}
.

The proof of Theorem 6 follows on lines analogous to those for Theorem 5. The ↑-step 
(x, y) → (x +r, y+q) replaces the ↑-step (x, y) → (x +a −� −r, y+q+1), and results in an 
increase in the v-value by B instead of B. Similarly the ↓-step (x, y) → (x −� +r, y+q+1)
replaces the ↓-step (x, y) → (x − r, y + q), and results in a decrease in the v-value by A
instead of A. The definitions of Definition 4 as well as the result of Lemma 11 carry over 
to analogous one given by Definition 3 and Lemma 12. One of the sets X, X is contained 
in the other; in particular, they have the same smallest element. We omit the details of 
the proof.

Example 6. We compute g(100, 101, 139) by using Theorem 6 (a). We have k = 1, � = 39, 
q = 2, r = 22, � − r = 17, Λ = Δ = 0 and Λ′ = Δ′ = 1. We also have A = 1300, 
B = 2500, μ′ = 1, u = 5, and � �−r

u � = 3. By the general case, g(100, 101, 139) =
max{v(11, 0), v(4, 8)} +v(0, 4) −100 = v(4, 12) −100 = (101 ·4) +(139 ·12) −100 = 1972.

Example 7. We compute g(110, 151, 201) by using Theorem 6 (a). We have k = 1, � = 21, 
q = 5, r = 5, � − r = 16, Λ = 3, Δ = 0, and Λ′ = 0, Δ′ = 1. So both special cases 
apply, and each gives g(110, 151, 201) = max{v(4, 10), v(15, 4)} −110 = v(15, 4) −110 =
(151 · 15) + (201 · 4) − 110 = 2959.

Example 8. We compute g(110, 151, 211) by using Theorem 6 (b). We have k = 1, � = 91, 
q = 1, r = 19, � − r = 72, Λ = Δ = 3 and Λ′ = Δ′ = 0. We also have A = 10450, 
B = 3080, μ′ = 6, u = 19, and � �−r

u � = 3. Again X = {15, 30, 34, 49, 53, 68, 72}, d1 = 4, 
d2 = 15, p1 = 6, p2 = 3, xp1 = 30, yp1 = 10, xp2 = 15, yp2 = 5. Hence g(110, 151, 211) =
max{v(3, 10), v(14, 5)} +v(0, 0) −110 = v(14, 5) −110 = (151 ·14) +(211 ·5) −110 = 3059.
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