The appendix to “Does stronger protection of intellectual property stimulate innovation?”

Kausik Gangopadhyay* and Debasis Mondal†

January 7, 2012

In this paper, we derive the various expressions posited in Gangopadhyay and Mondal (2012).

A Derivation of Equation (7)

We shall derive equation (7). The no-arbitrage condition in equation (6) can be written as $q \frac{\pi _M}{v} = \rho + qg$. In this formulation, we make use of the fact that $\frac{v}{v} = -g$ and $r = \rho$. Using the expressions of profit, $\pi _M = \frac{1-\alpha}{\alpha} wx_M$, and value of a firm, $v = \frac{a}{n_M + \lambda n_C}$, in equation (6), we obtain:

$$q \frac{1 - \alpha}{a\alpha} x_M (n_M + \lambda n_C) = \rho + qg.$$

Next, we replace n_C in terms of n_M as $n_C = \frac{1-q}{q} n_M$, we have:

$$q \frac{1 - \alpha}{a\alpha} n_M x_M \left(1 + \frac{1-q}{q} \lambda \right) = \rho + qg.$$

Rearranging the terms of this equation, we obtain equation (7).

B Proof of Proposition 1

We differentiate equation (9) with respect to q to get

$$\frac{dq}{dq} = \frac{dN}{dq} D - \frac{dD}{dq} N \frac{D}{D^2}.$$

Clearly $\frac{dD}{dq} > 0$ since $\alpha^{-\epsilon} > 1$. We, now, find out the condition for which $\frac{dN}{dq} \leq 0$ and $N > 0$. Differentiating the expression of N with respect to q, we get

$$\frac{dN}{dq} = \frac{\rho}{q^2} \frac{aa\alpha}{1-\alpha} - \frac{\lambda - \alpha^{-\epsilon}}{(q + \alpha^{-\epsilon}(1-q))^2}.$$

We assume that λ is sufficiently large so that

*Indian Institute of Management Kozhikode, IMK Campus P.O., Kozikode 673570, India, email: kausik.gangopadhyay@gmail.com

†Corresponding Author. Department of Humanities and Social Sciences, Indian Institute of Technology Delhi, MS607, Hauz Khas, New Delhi 110016, India, tel: +91-11-26596089, fax: +91-11-26596509, email: debasis36@yahoo.com
\[\lambda > \alpha^{-\varepsilon}. \] \hfill (A-1)

Then \(\frac{dN}{dq} < 0 \) if
\[q > \frac{\alpha^{-\varepsilon}}{\alpha^{-\varepsilon} - 1 + \sqrt{(1-\alpha)L/(a\rho \alpha)} (\lambda - \alpha^{-\varepsilon})} \quad (\equiv q^*). \] \hfill (A-2)

In inequality (A-2), the right hand side has to be less than unity as \(q \) can not be greater than unity. This puts a restriction on \(q^* \), namely \(q^* < 1 \), i.e.,
\[(1-\alpha)L/a > \frac{\alpha \rho}{\lambda - \alpha^{-\varepsilon}}. \] \hfill (A-3)

Finally, it is easy to verify that \(\frac{d^2N}{dq^2} < 0 \) for all values of \(q \) as long as \(\lambda > \alpha^{-\varepsilon} \) is satisfied. Then \(N \) has a global maximum at \(q = q^* \). The argument for this goes as follows: \(N \) approaches to negative infinity when \(q \to 0 \). Also at \(q = 1 \), \(N \) takes the value \(N = L - \frac{a\rho}{1-\alpha} \). This value of \(N \) is positive if \((1-\alpha)L/a > \rho \alpha \). This inequality and the inequality (A-3) are both satisfied, if the following is satisfied:
\[(1-\alpha)L/a > \max\{\frac{\alpha \rho}{\lambda - \alpha^{-\varepsilon}}; \alpha \rho\}. \] \hfill (A-4)

(A-4) is a sufficient condition for positivity of \(N \) at \(q = q^* \). (A-4) and (A-1), when satisfied jointly, yields \(\frac{dN}{dq} < 0 \) for \(q \in (q^*, 1) \). Since \(N \) attains its maximum at \(q = q^* \) and \(N \) is positive at \(q = 1 \), we must have \(N > 0 \) for all values of \(q \in [q^*, 1] \). This ensures that \(g > 0 \) for \(q \in [q^*, 1] \).

C Inverted ‘U’ Shape

The expression for \(\frac{dg}{dq} \) approaches positive infinity for \(q \to 0 \) as \(\lim_{q \to 0} \frac{dN}{dq} = +\infty \) and \(\frac{dD}{dq} \) is positive and finite for all \(q \). Also \(\frac{dg}{dq} < 0 \) at \(q = q^* \) as \(\frac{dN}{dq} = 0 \) at that point. Then, by intermediate value theorem, there must exist a \(0 < \bar{q} < q^* \) such that \(\frac{dg}{dq} = 0 \) at \(q = \bar{q} \). Also it is easy to check that
\[\frac{d^2g}{dq^2} = \frac{(\frac{d^2N}{dq^2}) D - \left(\frac{dD}{dq}\right) N}{D^2} < 0; \forall q, \]

since \(\frac{d^2N}{dq^2} < 0 \) and \(\frac{dD}{dq^2} > 0 \) for all values of \(q \in (0, 1) \). Note that \(\frac{d^2N}{dq^2} < 0 \) requires the assumption that \(\lambda > \alpha^{-\varepsilon} \). We assume that this is always fulfilled. Also we are only focusing on the values of \(g \) such that \(g > 0 \). Then \(N \) must be positive which requires that \(q \) must not be too close to zero. This guarantees an inverse ‘U’ shape relationship between \(g \) and \(q \) when \(g > 0 \). Thus, \(g \) must attain the maximum at \(q = \bar{q} \) and this maximum value must be positive. The Latter is guaranteed from the fact that \(g \) is positive at \(q = q^* \). Therefore, the maximum value of \(g \) must be positive too.

D Model without Scale Effect

We introduce population growth, \(\gamma \), in this model. Then population at time \(t \), \(L(t) \) is given by \(L_0 \cdot e^{-\gamma t} \). Discounted lifetime utility of a representative individual in a household can be written as \(W = \int_{\tau}^{\infty} e^{-(\rho-\gamma)(\tau-t)} \log(U(\tau)) d\tau \), where the static utility has the same functional form as in section 2 in Gangopadhyay and Mondal (2012). The intertemporal budget constraint is \(A(t) = w(t) + r(t)A(t) - \gamma A(t) - e(t) \). Here, \(e(t) \) denotes the instantaneous expenditure of the
representative consumer. We need to assume that $\rho > \gamma$. Consumer’s optimization exercise gives the standard Euler’s equation $\frac{\psi_t}{n(t)} = r(t) - \rho$; and normalizing the expenditure to unity, we obtain $r(t) = \rho$. We use the knowledge spillover term in the R&D sector as

$$K(n_M, n_C) = (n_M + \lambda n_C)^\phi$$ \hspace{1cm} (A-5)$$

where $0 < \phi < 1$. As in the model in the text, the instantaneous profit of a monopoly firm is given by π_M. But equation (5) is now modified to be $C = \frac{a}{(n_M + \lambda n_C)^\phi}w$. Since free entry condition with ongoing R&D implies that $C = v$, we must have $\frac{v}{v} = -\phi g$ in the steady state. With this, equation (6) in the text can be in reformulated as $q\frac{\pi_M}{C} = \rho + \phi gg$. Using the expressions of π_M and v, this can be written as $q \frac{1-\rho}{(n_M + \lambda n_C)^\phi}w = \rho + \phi gg$; and with some reformulation, we arrive at the following form:

$$n_M x_M = \frac{a \alpha}{1 - \alpha} (\rho + \phi gg) \frac{n^{1-\phi}}{(q + \lambda(1-q))^\phi}.$$ \hspace{1cm} (A-6)$$

From the labour market equilibrium condition, we get the following expression of ongoing R&D implies that C by π where $0 < \phi < 1$.

$$n_M x_M = \frac{L - L_R}{1 + \frac{1-q}{q} \alpha^{-\epsilon}} = \frac{L - a n g^{1-\phi}(q + \lambda(1-q))^{-\phi}}{1 + \frac{1-q}{q} \alpha^{-\epsilon}}.$$ \hspace{1cm} (A-7)$$

Using equations (A-6) and (A-7) and rearranging further one gets the following relationship:

$$\frac{L}{a n^{1-\phi}} = \frac{\alpha}{1 - \alpha} (\rho + \phi gg) \frac{1 + \frac{1-q}{q} \alpha^{-\epsilon}}{(q + \lambda(1-q))^\phi} + \frac{g}{(q + \lambda(1-q))^\phi}.$$ \hspace{1cm} (A-8)$$

We must have $g = \frac{2}{\phi}$ to ensure that the sectoral allocation of labour remain constant along the balanced growth path. This uniquely solves for the rate of innovation. Then, we plug in the value of g in equation (A-8) to have an expression for $\frac{L}{n^{1-\phi}}$. We define a new variable δ such that $\delta = \frac{L}{n^{1-\phi}}$. One interpretation of δ is that it is an inverse measure of the ‘R&D difficulty index’. In the steady state, δ is constant. Equation (A-8) can now be written as

$$a \delta = \frac{\alpha}{1 - \alpha} (\rho + \phi gg) \frac{1 + \frac{1-q}{q} \alpha^{-\epsilon}}{(q + \lambda(1-q))^\phi} + \frac{g}{(q + \lambda(1-q))^\phi}.$$ \hspace{1cm} (A-9)$$

From equation (A-9), if an increase in q increases δ then the rate of innovation has to decline temporarily. To show that this possibility can arise, define a new variable $Z(q)$ such that $Z(q) = \frac{1 + \frac{1-q}{q} \alpha^{-\epsilon}}{(q + \lambda(1-q))^\phi}$. Then, to have $\frac{dZ(q)}{dq} \geq 0$ is a sufficient condition for $a \delta = \frac{L}{n^{1-\phi}}$. The latter holds true if q is sufficiently large and some other regularity conditions are satisfied. The proof goes as follows:

Proof:
To prove that $Z'(.) > 0$ (or, $Z'(.) \geq 0$) we differentiate log ($Z(q)$) w.r.t. q to get

$$\frac{Z'(.)}{Z(.)} = \frac{(\lambda-1)\phi}{\alpha^{-\epsilon}} - \frac{1}{q} \frac{q + \lambda(1-q)}{q + \alpha^{-\epsilon}(1-q)}.$$ So $Z'(.) \geq 0$ if $\frac{1}{q} \frac{q + \lambda(1-q)}{q + \alpha^{-\epsilon}(1-q)} \leq \frac{(\lambda-1)\phi}{\alpha^{-\epsilon}}$. But the left hand side of this last inequality is a decreasing function of q if $\lambda \geq \alpha^{-\epsilon}$. This curve is asymptotic to the vertical axis when q approaches zero and reaches to the value unity at $q = 1$. The right hand side of this inequality is a constant with value greater than unity if $\lambda > 1 + \frac{\alpha^{-\epsilon}}{\phi}$. Then there exists a unique solution to the equation $\frac{1}{q} \frac{q + \lambda(1-q)}{q + \alpha^{-\epsilon}(1-q)} = \frac{(\lambda-1)\phi}{\alpha^{-\epsilon}}$ at $q = q^*$. For all $q \geq q^*$, we must have $Z'(.) \geq 0$.

So, under the following two conditions:

(i) $q \geq q^*$ (where q^* solves the equation $\frac{1}{q} \frac{q + \lambda(1-q)}{q + \alpha^{-\epsilon}(1-q)} = \frac{(\lambda-1)\phi}{\alpha^{-\epsilon}}$)
(ii) $\lambda > 1 + \frac{\alpha^{-\epsilon}}{\phi}$,

we get the desired result that an increase in the strength of IPR protection may temporarily decrease the rate of innovation and permanently increase δ.

1We drop the time subscript from now on.
References