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a b s t r a c t

We present a fluid queue model driven by two independent finite state birth–death
processeswith the objective to study the buffer occupancy distribution in any intermediate
node in a communication network. In a communication network, at any node, the arrival
and service of the packets are with variable rates. Tomodel this scenario we develop a fluid
queuewith an infinite capacity buffer which receives fluid at variable rate and also releases
fluid at variable rates. Because of variable inflowandoutflow rates of the fluid, the proposed
fluid queue is driven by the current states of two independent finite state birth–death
processes evolving in the background which on merging give rise to a continuous time
Markov chain which is not a birth–death process. Using the fluid queue model, we obtain
the steady-state distribution of the buffer occupancy at any intermediate node during
packet transmission in a communication network. As a special case, we consider a wireless
network based on the IEEE 802.11 standard. We present the buffer occupancy distribution
at any intermediate node in closed form with a numerical illustration. Along with buffer
occupancy distribution, we also obtain various performance measures such as expected
buffer content, average throughput, server utilization and mean delay which are relevant
to packet transmission in such a communication network. Finally, we present numerical
results to illustrate the feasibility of the proposed model. The results are in accordance
with the expected behavior of these performance measures.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In communication networks, information (in the form of data packets) generated by a source node are delivered to their
destination by routing them via a multiplexer, a switch, an information processor, or in general, a sequence of intermediate
nodes. The information arriving at the intermediate node is buffered for service (transmission), the server typically being a
communication channel or processing unit. In high-speed networks, the traffic is very bursty in nature. This bursty nature
of the traffic in high-speed networks requires an understanding of steady-state behavior of the system. The steady-state
analysis of the buffer content is useful in studying congestion in high-speed networks [1].

In this paper, we use a fluid queuemodeling approach to study the buffer occupancy distribution in high-speed networks.
Fluid models are a natural choice for problems involving continuous flow. For certain queueing systems where the flow
consists of discrete entities, and the behavior of individuals is not important to identify the performance analysis, fluid
queue models are useful as approximate models. In high capacity communication networks, the concept of fluid is based
on the assumption that most important dynamics depend not on how individual packets are processed, but rather on how
aggregates of packets are processed [2]. The applicability of these ideas is based on the fact that the packet size is a very
small fraction of typical buffer capacities in the network. Hence, this modeling approach of fluid queues treats the real
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information flow as a continuous stream rather than considering its discrete nature. Typically, the fluid represents the
information stored in a buffer and waiting for transmission in a network. In the fluid queue models, the arrival and service
processes are modulated by a random external environment, and the object of interest is to study the behavior of the buffer
level in the long run.

Fluid queues have been widely used in the performance evaluation of high-speed communication networks [3]. Most
of the classical research on stochastic fluid models in the area of telecommunications is based on the work of Anick, Mitra
and Sondhi [4,5]. Stochastic fluid models for queues have been extensively studied in [6]. van Doorn and Scheinhardt have
analyzed the steady-state behavior of fluid queues which are driven by an infinite-state birth–death process (BDP) [7,8].
Guillemin and Fabrice have discussed the stationary distribution of a fluid queue driven by a finite state Markov chain [9].
In [10], Lenin and Parthasarathy have studied numerically the behavior of fluid buffer driven by truncated BDP with general
birth and death rates. A majority of the works aimed in obtaining the buffer occupancy distribution have considered
Markovmodulated fluid queueswherein the rate of information arriving and leaving the switching component ismodulated
according to the current state of an underlying Markov process. In [11–13], the authors have used the analogous nature of
Quasi BDPs with fluid queues, and the matrix analytic approach of Quasi BDPs to obtain the steady-state distribution of the
buffer level.

With the fluid queue approach for communication networks, the actual flow of information in a large number of small
data packets is modeled as fluid. Following the same approach, we model the flow of information from one node to another
via any intermediate node in a network. The objective is to obtain the steady-state distribution of the buffer content at
any intermediate node which can give important information on the congestion in the network. The stored information at
any intermediate node forms the fluid buffer. The information that arrives at any intermediate node has randomly varying
arrival rates which depends on the feedback from other intermediate nodes. The service rates (packet transmission rates)
are dependent on the transmission rates of the communication channel. Hence, to model this scenario, we consider a fluid
queue which is driven by two different finite state BDPs. We consider an infinite capacity buffer in which the inflow is
determined by one BDP and the outflow is determined by another BDP. Note that the two BDPs are independent of each
other. We then merge the two background BDPs to form a continuous time Markov chain (CTMC). As a consequence, the
considered fluid queue is driven by a single background CTMC (which is a not a BDP). This is a step ahead of the existing
literature as in most of the literature on fluid queues, the net inflow rate of fluid into the buffer is determined by a single
background BDP [8,10,14–18].

Fluid queue models of this type find applications in communication networks based on the IEEE 802.11 standard. In this
paper, we obtain the steady-state distribution of the buffer content at any intermediate node in such a network. In addition
to this, we also obtain performancemeasures like expected buffer content, average throughput, server utilization andmean
delay relevant to any communication network.

The rest of the paper is organized as follows. Section 2 gives a description of the fluid model. Section 3 presents the
application based analysis of the fluid queue model giving the steady-state distribution of the buffer occupancy and various
performance measures. Section 4 gives the numerical illustration for the proposed model. Finally, Section 5 concludes the
paper with some observations.

2. Model description

We consider a Markov modulated fluid queue with infinite buffer capacity. We assume that the buffer is building up and
getting depleted with variable rates. To model the variable rate of inflow into the buffer, the inflow rate is determined by a
BDP {X̃(t), t ≥ 0} with finite state space {1, 2, . . . ,N}. Let λ̃i, i = 1, 2, . . . ,N − 1 be the birth rates and µ̃i, i = 2, 3, . . . ,N
be the death rates of this BDP. When X̃(t) is in some state i, i ∈ {1, 2, . . . ,N}, then the inflow rate into the fluid buffer is
given by c̃i, which can take any real value. When the buffer level reaches zero and the inflow rate at that time is negative,
then the buffer level remains at zero until the inflow rate becomes positive.

Tomodel the variable rate of outflow from the buffer, the outflow rate is determined by the states of another independent
BDP {Ỹ (t), t ≥ 0} with M states, 1, 2, 3, . . . ,M . Let α̃i, i = 1, 2, . . . ,M − 1 be the birth rates and β̃i, i = 2, 3, . . . ,M be
the death rates of this BDP. When Ỹ (t) is in some state i, i ∈ {1, 2, 3, . . . ,M}, then the outflow rate from the fluid buffer is
given by h̃i, i = {1, 2, . . . ,M}.

By combining the above mentioned independent BDPs, we obtain a CTMC with finite number of states. We denote this
CTMC by {Z̃(t), t ≥ 0} with state space S = {(1, 1), (1, 2), . . . , (1,M), (2, 1), (2, 2), . . . , (2,M), . . . , (N, 1), (N, 2), . . . ,
(N,M)}. This CTMC hasNM states. Hence, we have a fluid queue driven by a CTMC (which is a not a BDP). In the next section,
we present the analysis of this fluid queue in the context of a practical application.

3. Application based model analysis

The IEEE 802.11 wireless LAN (WLAN) is the most widely usedWLAN standard nowadays [19]. Hence, we have modeled
the flowof information fromone node to another (via any intermediate node) in a network based on the IEEE 802.11 protocol
using this fluid queue approach. The information is buffered at the intermediate node for servicewhere the server typically is
a communication channel. The rate at which the information arrives at an intermediate node fluctuates randomly [20]. This
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Fig. 1. State transition diagram of the background CTMC Y (t).

fluctuation arises because sources do not maintain a constant data rate as it is dynamically regulated based on the feedback
from other intermediate nodes. As a consequence, the inflow rates of fluid to the buffer is not constant and depends on the
current state of a BDP evolving in the background. Let us assume that the inflow rate is determined by the BDP {X(t), t ≥ 0}
with finite state space {1, 2, . . . ,N}. Let λi, i = 1, 2, . . . ,N − 1 be the birth rates and µi, i = 2, 3, . . . ,N be the death rates
of this BDP. When X(t) is in some state i, i ∈ {1, 2, . . . ,N}, then the inflow rate into the fluid buffer is given by ci, which can
take any real value.

The release rate of fluid from the buffer depends on the transmission rate of the serving communication channel. The
IEEE 802.11 WLAN standard supports multiple transmission rates that can maximize the system throughput in the face of
adverse conditions. The IEEE 802.11b physical layer (PHY) specifies four different data rates, 1, 2, 5.5, and 11Mbps [21]. In the
currentWLAN fields, different auto rate control algorithms have been proposed to specify how to change the rates according
to channel conditions. But the ARF (Auto Rate Fallback) scheme [22] is the most popular auto rate control algorithm in IEEE
802.11b based WLAN products today. In the ARF scheme, ideally, users connect at the full 11 Mbps rate initially. But the
transmission rate is downgraded to the next lower rate when the transmission continually fails and as a result the ACK
(acknowledgement) from the receiver is consecutively missed. The transmission rate is upgraded back to the next higher
rate if either the next consecutive transmissions are successful or some amount of time has passed. Based on the multiple
transmission rates of communication channels and the ARF algorithm, let us assume that the outflow rate from the buffer
is determined by the current state of another independent BDP {Y (t), t ≥ 0} with four states, 1, 2, 3, 4 evolving in the
background. These four states represent the four different transmission rates supported by the IEEE 802.11 b protocol. The
ith state of the process represents the current transmission rate of the communication channel. Let αi, i = 1, 2, 3 be the
birth rates and βi, i = 2, 3, 4 be the death rates of this BDP. When Y (t) is in some state i, i ∈ {1, 2, 3, 4}, the outflow rate
from the fluid buffer is given by hi. Note that h1 > h2 > h3 > h4. The transitions of {Y (t), t ≥ 0} from one state to another
represent the switching of the transmission rates from one step higher to one step lower or vice versa according to the ARF
scheme.

As discussed in Section 2, on combining the BDPs X(t) and Y (t), we obtain a CTMC {Z(t), t ≥ 0} with state space
S = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), . . . , (N, 1), (N, 2), (N, 3), (N, 4)}. This CTMC has 4N states.
The state transition diagram for this process {Z(t), t ≥ 0} is shown in Fig. 1. Note that, in this CTMC, we have assumed that
diagonal transitions are not feasible in a small time interval. Whenever, Z(t) = (i, j), i ∈ {1, 2, . . . ,N}, j ∈ {1, 2, 3, 4}, the
outflow rate from the buffer is hj. The considered fluid model driven by the underlying CTMC with four different outflow
rates and state dependent inflow rates is shown in Fig. 2.

3.1. Buffer occupancy distribution

In this section, we obtain the steady-state distribution of the buffer occupancy. First, we describe the background
stochastic process and follow it up with the description of the governing equation for the fluid model. Let

pi,j(t) = Pr [The state of the CTMC {Z(t), t ≥ 0} is (i, j) at the time t]; i = 1, 2, . . . ,N, j = 1, 2, t ≥ 0.

For simplification, we enumerate the state (i, j) under a single index. Let q1(t), q2(t), . . . , q4N−1(t), q4N(t) be the 4N state
probabilities of the CTMC {Z(t), t ≥ 0} which are given by:

q4n+i(t) = pn+1,i(t), n = 0, 1, . . . ,N − 1, i = 1, 2, 3, 4.

Hence, corresponding to the new indexing of the states of {Z(t), t ≥ 0}, we define a new CTMC, {K(t), t ≥ 0} with finite
state space S = {1, 2, . . . , 4N}. The state transition diagram for this process {K(t), t ≥ 0} is shown in Fig. 3.
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Fig. 2. Buffer Diagram for the fluid model.

Fig. 3. State transition diagram of the CTMC K(t).

As a consequence, the buffer content of the considered fluid queue is now determined by the CTMC {K(t), t ≥ 0}. The
infinitesimal generator of the CTMC {K(t), t ≥ 0} is given by

Q =



λ1 − α1 α1 0 0 λ1 · · ·

β2 −α2 − β2 − λ1 α2 0 0 · · ·

0 β3 −α3 − β3 − λ1 α3 0 · · ·

0 0 β4 −β4 − λ1 0 · · ·

µ2 0 0 0 −α1 − µ2 − λ2 · · ·

...
...

...
...

...
. . .

 . (1)

The buffer content at any time t is denoted by C(t) and we assume that C(0) = 0. Hence, we now have a bi-dimensional
stochastic process {C(t), K(t), t ≥ 0}. The net flow rate into the buffer, denoted by ri, is given by

For n = 0, 1, 2, . . . ,N − 1; j = n + 1

ri =


cj − h1, i = 4n + 1
cj − h2, i = 4n + 2
cj − h3, i = 4n + 3
cj − h4, i = 4n + 4.

(2)

We have the following differential equation [8]:

dC(t)
dt

=


rK(t), C(t) > 0
0, C(t) = 0 and rK(t) < 0.

This implies that whenever the CTMC {K(t), t ≥ 0} is in state i, i ∈ S, the corresponding net flow rate is ri. Also each ri must
be either positive or negative with at least one ri > 0 as otherwise the buffer will remain empty forever.

The buffer occupancy distribution is defined as

Fi(t, x) = Pr{K(t) = i, C(t) ≤ x}; t ≥ 0, x ≥ 0, i ∈ S (3)
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where Fi(t, x) is the probability that the background Markov process {K(t), t ≥ 0} is in some state i and the buffer content
is less then or equal to some quantity x. The distribution of the buffer occupancy is a mixed distribution with a positive mass
at x = 0, given as

Fi(t, x) =

0; for x < 0, t ≥ 0, i ∈ S
Pr{K(t) = i, C(t) = 0}; for x = 0, t ≥ 0, i ∈ S
Pr{K(t) = i, C(t) ≤ x}; for x > 0, t ≥ 0, i ∈ S.

(4)

In the long run, as t → ∞ and x → ∞,

4N−
i=0

Fi(t, x) = 1. (5)

The governing differential equation for the fluid queue is given by [17]

∂Fi(t, x)
∂t

= −ri
∂Fi(t, x)

∂x
+

−
j∈S

Fj(t, x)Q (j, i), i ∈ S (6)

where Fi(t, x) is defined in Eq. (3) and Q is given in Eq. (1).
In the next subsection, we obtain the steady-state distribution for the buffer occupancy.

3.2. Steady-state distribution of the buffer occupancy

We define the steady-state distribution (in the long run as t → ∞) as

Fi(x) = lim
t→∞

Fi(t, x) (7)

where Fi(t, x) is defined in Eq. (3). For the steady-state solution to exist, we need a stability condition. For the fluid queue,
this stability condition is that as t → ∞, the stationary net flow rate should be negative, that is

4N−
i=1

qi ri < 0. (8)

Now, using (7), in the long run as t → ∞, Eq. (6) becomes

0 = −ri
dFi(x)
dx

+

−
j∈S

Fj(x)Q (j, i), i ∈ S. (9)

Let F⃗(x) be column vector formed by the 4N stationary probabilities and is given by

F⃗(x) = (F1(x), F2(x), . . . , F4N(x))T

and let R be the diagonal matrix given by

R = diag(r1, r2, . . . , r4N).

Hence, the Eq. (9) in matrix form is given by

d
dx

F⃗(x) = R−1Q T F⃗(x). (10)

In order to obtain the steady-state distribution of the buffer occupancy, we need to solve Eq. (10), for which we use the
following results.

3.3. Some preliminary results

Lemma 1 (Steady-state solution of {K (t), t ≥ 0}). Let qi, i = 1, 2, . . . , 4N be the steady-state probabilities of the CTMC
{K(t), t ≥ 0} with state space S = {1, 2, . . . , 4N}. In steady-state, the net inflow rate to any state is equal to the net outflow
rate from that state.

Note that for numerical simplification, we have assumed that

λi = λ, for i = 1, 2, . . . ,N − 1
µi = µ, for i = 2, . . . ,N
αi = α, for i = 1, 2, 3
βi = β, for i = 2, 3, 4.
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Hence, the steady-state balance equations of the CTMC {K(t), t ≥ 0} are given as:
For states 1, 2, 3 and 4:

(λ + α)q1 − βq2 − µq5 = 0
−αq1 + (α + β + λ)q2 − βq3 − µq6 = 0
−αq2 + (α + β + λ)q3 − βq4 − µq7 = 0
−αq3 + (β + λ)q4 − µq8 = 0.

For i = {1, 2, . . . ,N − 2}:

For states (5, 9, 13, . . . , 4N − 7):
−λq4i−3 + (α + λ + µ)q4i+1 − βq4i+2 − µq4i+5 = 0

For states (6, 10, 14, . . . , 4N − 6):
−λq4i−2 − αq4i+1 + (α + β + λ + µ)q4i+2 − βq4i+3 − µq4i+6 = 0

For states (7, 11, 15 . . . , 4N − 5):
−λq4i−1 − αq4i+2 + (α + β + λ + µ)q4i+3 − βq4i+4 − µq4i+7 = 0

For states (8, 12, 16, . . . , 4N − 4):
−λq4i − αq4i+3 + (β + λ + µ)q4i+4 − µq4i+8 = 0

and,
For states 4N − 3, 4N − 2, 4N − 1 and 4N:

−λq4N−7 + (α + µ)q4N−3 − βq4N−2 = 0
−λq4N−6 − αq4N−3 + (α + β + µ)q4N−2 − βq4N−1 = 0
−λq4N−5 − αq4N−2 + (α + β + µ)q4N−1 − βq4N = 0
−λq4N−4 − αq4N−1 + (β + µ)q4N = 0.

From above equations, we get

q5 =
(λ + α)q1 − βq2

µ

q6 =
−αq1 + (α + β + λ)q2 − βq3

µ

q7 =
−αq2 + (α + β + λ)q3 − βq4

µ

q8 =
−αq3 + (β + λ)q4

µ
.

Similarly, for i = {2, . . . ,N − 2}

q4i+1 =
−λq4i−3 + (α + λ + µ)q4i+1 − βq4i+2

µ

q4i+2 =
−λq4i−2 − αq4i+1 + (α + β + λ + µ)q4i+2 − βq4i+3

µ

q4i+3 =
−λq4i−1 − αq4i+2 + (α + β + λ + µ)q4i+3 − βq4i+4

µ

q4i+4 =
−λq4i − αq4i+3 + (β + λ + µ)q4i+4

µ
.

From above equations, it can be observed that all the q′

is, 5 ≤ i ≤ 4N , can be written in terms of q1, q2, q3 and q4 by the back
substitution method. Hence, once we have the values of q1, q2, q3 and q4, we can obtain all the other q′

is, 5 ≤ i ≤ 4N .
And to get the values of q1, q2, q3 and q4, we have the following conditions:

4N−
i=1

qi = 1. (11)

In addition, from the states of different outflow rates of the four state BDP {Z(t), t ≥ 0}, we have
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α

N−1−
i=0

q4i+1 = β

N−1−
i=0

q4i+2

(α + β)

N−1−
i=0

q4i+2 = α

N−1−
i=0

q4i+1 + β

N−1−
i=0

q4i+3

(α + β)

N−1−
i=0

q4i+3 = α

N−1−
i=0

q4i+2 + β

N−1−
i=0

q4i+4

α

N−1−
i=0

q4i+3 = β

N−1−
i=0

q4i+4


. (12)

Using the Eqs. (11) and (12), q1, q2, q3 and q4 can be obtained.

Lemma 2. The following results hold for the matrix R−1Q T where R is given by Eq. (2) and Q is given by Eq. (1)

1. The matrix has 4N real eigen values.
2. One of the eigen values is zero.
3. The number of negative eigen values is equal to the number of states of K(t) with positive net flow.

Refer [5,20] for the proof.

Theorem 1. The steady-state distribution of buffer occupancy is given by

F⃗(x) = q⃗ +

d+−
j=1

kjezjxΦj

where F⃗ = (F1, F2, . . . , F4N)T and q⃗ is the column vector of steady-state probabilities of the CTMC {K(t), t ≥ 0} model. That is,
q⃗ = (q1, q2, . . . , q4N)T and z1, z2, . . . , z4N are the 4N eigen values of R−1Q T with respective eigen vectors Φ1, Φ2, . . . , Φ4N . d+

is the number of states of the CTMC {K(t), t ≥ 0} with positive net flow rate and k′

js are some constants.

Proof. Using Lemma 2 for the matrix R−1Q T , the solution of the system of differential equations given by Eq. (10) is

F⃗(x) =

4N−
i=1

kiezixΦi. (13)

As F⃗(x) is a vector of probabilities and its components are bounded, therefore the coefficients corresponding to the negative
eigen values must be zero. Also, in order to solve Eq. (10), we need a stability condition and the boundary conditions. The
stability condition is that the stationary net flow rate should be negative which is given in Eq. (8). The stability condition
assures the existence of the stationary probabilities. And the boundary conditions are given by:

Fi(0) = 0, for state i with positive flow
Fi(∞) = qi, ∀ i. �

By Lemma 2, the number of negative eigen values is equal to the number of states with positive net flow. Let the number
of states with positive net flow be d+. Define z1, z2, . . . , zd+

as the d+ negative eigen values with its respective eigen vectors
Φ1, Φ2, . . . , Φd+

. Also, by Lemma 2, z0 = 0 is a eigen value of R−1 Q T . Hence, Eq. (13) can be written as:

F⃗(x) = k0Φ0 +

d+−
j=1

kjezjxΦj.

By the boundary condition, as x → ∞, for i = 1, 2, . . . , 4N ,

qi = Fi(∞) = k0 Φ
(i)
0

which implies,

F⃗(x) = q⃗ +

d+−
j=1

kjezjxΦj. (14)

Hence the theorem.
To find the numerical solutions, we need to determine:

q⃗, k1, k2, . . . , kd+
, z1, z2, . . . , zd+

, Φ1, Φ2, . . . , Φd+
.
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In order to find the constants k1, k2, . . . , kd+
, the boundary condition is used with x = 0 for state i with positive net flow:

0 = qi +
d+−
j=1

kjΦ
(i)
j .

This is a linear system in k1, k2, . . . , kd+
with d+ equations that can be represented by the knownquantities q⃗, z1, z2, . . . , zd+

and Φ1, Φ2, . . . , Φd+.

3.4. Performance measures

In this section, we define various performancemeasures related to the packet transmission in a network, such as average
throughput, server utilization, expected buffer content and mean delay. We give the formulation for these measures in
context of the fluid queue model.

1. Average throughput: For a communication network, system throughput is defined as the number of data packets
transmitted per unit time. In other words, it can be defined as the number of packets departing from the system per
unit time. Hence, the system throughput is defined as

Throughput = Service rate × Probability that the system is non empty.

From the state transition diagram of {Z(t), t ≥ 0} as shown in Fig. 3, it can be observed that we have four rows with
service rates (which is equivalent to the release rates) h1, h2, h3 and h4, respectively. Hence, the system throughput can
be given by

Throughput = h1 × Pr[K(t) = 4i + 1; C(t) > 0] + h2 × Pr[K(t) = 4i + 2; C(t) > 0]
+ h3 × Pr[K(t) = 4i + 3; C(t) > 0] + h4 × Pr[K(t) = 4i + 4; C(t) > 0];
as t → ∞, for i = 0, 1, . . . ,N − 1.

Now, from Eqs. (4) and (5), as t → ∞ and x → ∞,

Pr{K(∞) = i, C(∞) > 0} = Pr[K(∞) = i, C(∞) < ∞] − Pr[K(∞) = i, C(∞) ≤ 0]
= Fi(∞) − Fi(0).

Hence, the throughput is given by

Throughput = h1 ×

N−1−
i=0

[F4i+1(∞) − F4i+1(0)] + h2 ×

N−1−
i=0

[F4i+2(∞) − F4i+2(0)]

+ h3 ×

N−1−
i=0

[F4i+3(∞) − F4i+3(0)] + h4 ×

N−1−
i=0

[F4i+4(∞) − F4i+4(0)]. (15)

2. Server utilization: It is defined as the fraction of time the server is busy. In other words, it can be defined as the probability
that the system is non-empty. For the fluid queuemodel, it can be defined as the probability that the buffer is non empty.
This can be obtained as:

Utilization = Probability that buffer is non empty.

From Eqs. (4) and (5), this is given as

Utilization = 1 −

4N−
i=1

Fi(0). (16)

3. Expected buffer content: It is defined as the average buffer content in the long run. Now, if there is a non-negative real
valued random variable, say T , and expectation of T , E(T ) < ∞, then

E(T ) =

∫
∞

0
{1 − F(t)}dt.

Using the above formula for expectation, the expected buffer content (X) can be given as

E(X) =

∫
∞

0


1 −

4N−
i=1

Fi(x)


dx. (17)
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Table 1
List of parameters.

Rates Meaning Value

λ Arrival rate of X(t) 0.02–0.06
µ Departure rate of X(t) 0.06–0.09
α Forward rate of Y (t) 0.03–0.05
β Backward rate of Y (t) 0.03–0.05

ci Inflow rate of fluid into the buffer when X(t) is in state i
c1 = 1.5 Mbps, c2 = 2.75 Mbps,
c3 = 3 Mbps, c4 = 4.5 Mbps,
c5 = 5 Mbps, c6 = 6.5 Mbps

hj Outflow rate of fluid into the buffer when Y (t) is in state j h1 = 11 Mbps, h2 = 5.5 Mbps,
h3 = 2 Mbps, h4 = 1 Mbps

4. Mean delay: It is defined as the average time taken for the packet transmission. It includes the waiting time when the
packet is in the buffer and the packet transmission time. Now, [23,24] implies that Little’s law hold good for fluid queues
also. Hence, using Little’s law, average delay for our model can be obtained as:

Mean delay =
Expected buffer content

Mean inflow rate
. (18)

In this fluid model, the inflow rate depends on the states of the background CTMC {K(t), t ≥ 0}. Hence, we get the
conditional mean delay given that the CTMC {K(t), t ≥ 0} is in some state i. The mean delay is then given by

Mean delay = [Expected buffer content | Background CTMC
{K(t), t ≥ 0} is in states corresponding to rate ci]Pr[Background CTMC {K(t), t ≥ 0} is
in states corresponding to rate ci]/ci

which is equal to

=

N−
i=1




∞

0


4i∑
j=i

qj −
4i∑
j=i

Fj(x)


dx ×

4i∑
j=i

qj

ci

 . (19)

4. Numerical illustrations and observations

In this section, we present the numerical results obtained for the steady-state distribution of the buffer occupancy. Along
with this, we also present the numerical results for average throughput, server utilization, expected buffer content and
mean delay. For the purpose of numerical illustration, we have taken the number of states, 4N = 24. The values of other
parameters are given in Table 1. The parameter values are chosen only for the purpose of numerical illustration of the closed
form results.

First we present the steady-state distribution of the buffer occupancy. The steady-state distribution of buffer occupancy
is defined as

F(x) = Pr[buffer content C(t) ≤ x].

Hence, we have

F(x) =

4N−
i=1

Fi(x)

where Fi(x), i ∈ S are obtained by using Theorem 1.
Fig. 4 shows the variation of F(x) with the buffer content x, where x is varied from 0 to 10000. It can be seen from the

graph that F(x) → 1 as x → ∞. Also, there is a positive mass at x = 0 because it may happen that when the background
Markov process is in some state i at some time point t ≥ 0, the buffer content is zero, i.e., x = 0. Hence, this shows that the
buffer occupancy has mixed distribution.

Next, we obtain the performance measures mentioned in Section 3.4 using the definitions given in the same section.
Fig. 5 shows the variation of average throughput with the channel switching rates α and β . It can be seen from the graph
that the throughput increases with an increase in the rate α and decrease in the rate β .

Fig. 6 shows the variation of server utilization with the arrival rate λ of the background BDP {X(t), t ≥ 0}. For this graph,
other parameters are fixed as µ = 0.07, α = 0.04 and β = 0.03. As expected, it can be seen from the graph that utilization
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Fig. 4. Cumulative distribution function of buffer occupancy.

Fig. 5. Average throughput vs channel switching rates.

Fig. 6. Server utilization vs arrival rate λ.

increases with an increase in the arrival rate. This is so because as more arrivals take place, the buffer content will also
increase, making the server more busy.

Fig. 7 shows the variation of expected buffer content with the arrival rate λ of the background BDP {X(t), t ≥ 0}. For
this graph also, other parameters are fixed as µ = 0.07, α = 0.04 and β = 0.03. The graph shows that the expected buffer
content increases with an increase in the arrival rate, as predicted. This is because as more arrivals take place, the expected
buffer content also increases.
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Fig. 7. Expected buffer content vs arrival rate λ.

Fig. 8. Mean delay vs rates λ and µ.

Fig. 8 shows the variation of mean delay with the rates λ and µ. For this graph, other parameters are fixed as α = 0.04
and β = 0.03. As foreseeable, the graph shows that delay increases with an increase in the arrival rate λ and a decrease in
the service rateµ, and vice versa. This is because if the arrival rate is more and the service rate is less, the delay will bemore.

Note that we have modeled only two aspects of the IEEE 802.11 protocol, i.e., variable arrival rate of information, and
variable service rate based on different transmission rates of communication channel in our paper. Aswe have not taken into
consideration the other important aspects of the protocol, we have not validated out results with the performancemeasures
of the communication networks.

5. Conclusion and future work

In this paper, we develop a fluid queue model driven by two independent finite state BDPs. Most of the work done in
the area of fluid queues involve a single BDP as the background Markov process in which the net flow rate of fluid into
the buffer depends on the states of a single background BDP. We, on the other hand, present a fluid queue driven by two
independent background BDPs in which the inflow rate is dependent on one BDP and the outflow rate is dependent on
another independent BDP. The two background BDPs on merging give rise to a CTMC, which is a not a BDP. The goal of
the paper is to study the steady-state buffer occupancy at any intermediate node in a communication network where the
packets arrive with variable rate and is serviced with variable rate. As a special case, we consider a wireless network based
on the IEEE 802.11 standard. Using the fluid queue model, we obtain the steady-state distribution of the buffer content at
any intermediate node which gives information about congestion in such a network. We also obtain certain performance
measures related to the packet transmission in a network, such as average throughput, server utilization, expected buffer
content andmean delay at the fluid queue level. The results are in accordance with the expected behavior of thesemeasures
in a network.
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The bursty nature of the traffic carried in high-speed networks requires an understanding of steady-state as well as
transient behavior of the system. Where steady-state analysis is useful to study the congestion in networks, the transient
analysis is of critical value in understanding the dynamical behavior of the system to control the congestion. Hence, as future
work, we are planning to obtain transient distribution of the buffer content using the fluid queue approach.
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