A New Strained-Silicon Channel Trench-Gate Power MOSFET: Design and Analysis

Raghvendra S. Saxena and M. Jagadesh Kumar, Senior Member, IEEE

Abstract—In this brief, we propose a new trench power MOSFET with strained-Si channel that provides lower on-resistance than the conventional trench MOSFET. Using a 20% Ge mole fraction in the Si$_{1-x}$Ge$_x$ body with a compositionally graded Si$_{1-x}$Ge$_x$ buffer in the drift region enables us to create strain in the channel along with graded strain in the accumulation region. As a result, the proposed structure exhibits 40% enhancement in current drivability, 28% reduction in the on-resistance, and 72% improvement in peak transconductance at the cost of only 12% reduction in the breakdown voltage when compared to the conventional trench-gate MOSFET. Furthermore, the graded strained accumulation region supports the confinement of carriers near the trench sidewalls, improving the field distribution in the mesa structure useful for a better damage immunity during inductive switching.

Index Terms—Breakdown voltage, on-resistance, power MOSFET, Si$_{1-x}$Ge$_x$, strained Si, trench gate.

I. INTRODUCTION

A TRENCH-GATE MOSFET [1]−[15] is the most preferred power device for medium-to-low-voltage power applications. These are used extensively in control switching, dc−dc converters, automotive electronics, microprocessor power supplies, etc. In all these applications, low ON-state resistance is the prime requirement to reduce the conduction power loss and forward voltage drop. High drive current, low gate-to-drain capacitance, high transconductance, high breakdown voltage, and inductive switching capability are the other requirements in various applications of power MOSFETs [16]−[20]. Different techniques have been proposed for reducing the ON-state resistance and improving other performance parameters [5]−[13], [19]−[22]. Out of various components of the total resistance, the channel resistance is the biggest resistance contributor and needs to be suppressed without significantly affecting the other performance parameters. Among the techniques of reducing channel resistance, the use of Si$_{1-x}$Ge$_x$ channel has been reported to give up to 10% improvement in the on-resistance [8]. The strained-Si channel is also used to significantly improve current drivability and transconductance in lateral power MOSFETs [20], [21]. However, the same is not feasible in a conventional trench structure as the formation of strained-Si channel results in the elimination of the accumulation region, reducing its damage immunity for inductive load switching, which is also an essential requirement in some applications [9]. Therefore, the main objective of this brief is to propose an improved trench-gate MOSFET structure that offers lower on-resistance by allowing the formation of strained-Si channel and efficient confinement of the carriers near the trench sidewalls in the accumulation layer needed for improved inductive switching capability.

In this brief, we present the structure of the proposed device with its fabrication feasibility. By using 2-D numerical simulations performed with ATLAS device simulator [23], we present extensive analysis of the proposed device in contrast with the conventional device, showing that the proposed device exhibits improved drive current and transconductance and reduced ON-state resistance as compared to the conventional device.

II. DEVICE STRUCTURE AND PROPOSED FABRICATION PROCEDURE

Fig. 1 shows the cross-sectional view of the proposed device structure, termed here as strained-Si channel trench (SCT) MOSFET. As apparent from the figure, the SCT MOSFET uses P-type Si$_{0.8}$Ge$_{0.2}$ in the body and a compositionally graded N-type Si$_{1-x}$Ge$_x$ buffer layer ($x = 0.0$ at the Si drift region side and $x = 0.20$ at the body side) in the drift region. The Si$_{1-x}$Ge$_x$ buffer layer in the drift region serves three purposes. First, it allows the growth of a defect-free Si$_{0.8}$Ge$_{0.2}$ body that is required for the strained-Si channel formation. Second, it causes graded strain in Si accumulation layer that results in smoothing of the conduction band discontinuity between strained-Si channel and Si drift region, eliminating the problem of carrier transport due to conduction band discontinuity between these two
regions. The graded strain also provides carrier confinement in the accumulation region, resulting in the electric field relaxation in the mesa structure, which is good for inductive load switching [9].

The proposed fabrication procedure of the SCT structure is similar to the methods used to fabricate the conventional trench-gate MOSFET until some initial steps [4, 6, 8, 12, 14, 15]. We start with the N+ trench-gate MOSFET until some initial steps [4, 6, 8], which is similar to the methods used to fabricate the conventional switching [9].

In ATLAS device simulator, we have created the SCT device with various layers and doping concentrations as discussed earlier. We have first created the graded \(\text{Si}_{1-x} \text{Ge}_x \) buffer and the graded strained-Si layers in the drift region by using ten \(\text{Si}_{1-x} \text{Ge}_x \) layers of 50-nm thickness with different \(x \)-composition values changing from \(x = 0.0 \) at the bottom of the layer to \(x = 0.2 \) at the top of the layer in ten uniform steps. On the trench side of these \(\text{Si}_{1-x} \text{Ge}_x \) layers, we created ten corresponding 20-nm-wide layers of strained Si. For the realization of strained Si in the simulator, we have modified the energy band structure (electron affinity and energy bandgap) and low field mobility in each of these layers according to their respective strain as done in previous works [24]–[27]. Similarly, we have created the P-type \(\text{Si}_{0.8} \text{Ge}_{0.2} \) body and corresponding strained-Si layer in the channel region. The SCT MOSFET device has been simulated and analyzed for its energy band diagram, current–voltage characteristics, and breakdown performance. Since the contact resistance is a negligible contributor (usually less than 5%) of the total on-resistance, we have assumed the contact resistance to be negligible for both the devices. To the best of our knowledge, we do not know of a model of impact of temperature on the energy bands of strained silicon that can be used in device simulation for studying the thermal issues. Therefore, we have not carried out any studies on the thermal effects.

The simulation results as compared with those of the conventional device having similar geometry and doping parameters are discussed next.

III. RESULTS AND DISCUSSION

A. Effect of Energy Band Modifications

The strain in the channel and in the accumulation region causes modifications in the energy band structure. The simulated energy band structure is calculated along the cut lines A, B...

Fig. 2. Proposed fabrication process steps for SCT device.
Fig. 3. Energy band diagram of SCT and the conventional devices. (a) The conduction band and valence band edges along cut line A showing Fermi level shifting. (b) Conduction band edge of the proposed SCT device along cut line C in comparison with the device having abrupt transition between channel and drift region.

(both in transverse direction to the current flow), and C (along the current flow) as shown in Fig. 1. Fig. 3(a) shows the comparison of energy band structures of the proposed SCT device and the conventional device in the channel along cut line A for typical bias condition of $V_{GS} = 5$ V and $V_{DS} = 0.1$ V. The negative valence band offset causes the Fermi level to shift toward the conduction band contributing more electrons in the channel for the same gate bias, resulting in a threshold voltage shift. Our simulations indicate a shift in threshold voltage from 2.1 V in conventional device to 1.5 V in the proposed SCT device. The use of graded strained Si in accumulation region removes the abruptness in the conduction band discontinuity from the carrier transport path between the strained channel and the unstrained drift region, as shown in Fig. 3(b), showing the conduction band energy (plotted along the cut line C) for the proposed device along with that of the one having no strain in the accumulation region. It is also evident that by using graded strained-Si layer, the potential barrier of about 0.11 eV due to abrupt discontinuity has been reduced to a gradually increasing barrier of 0.06 eV in the proposed device supporting the smooth transition of the energy bands and, hence, the carrier transport.

The conduction band discontinuity due to heterostructure formation from channel to body region helps the carrier confinement in the channel, as shown in Fig. 4(a), that shows the comparison of carrier concentration profiles for SCT and conventional devices for the same gate overdrive voltage of 5 V along the cut line A. The carriers are also confined in the gradually strained accumulation region, and this confinement reduces as we go deeper in y-direction. Fig. 4(b) shows the carrier profile typically at 0.3-μm-deep cut line B from the body in the x-direction to show the carrier confinement in the accumulation region.

B. Current–Voltage Characteristics

The output characteristics (I_{DS}–V_{DS}) for the SCT device and the conventional device are shown in Fig. 5(a), depicting the higher drive current in the SCT device as compared to the
conventional device for all bias conditions. The transfer characteristics \(I_{DS}-V_{GS}\) for these devices are shown in Fig. 5(b) for small \(V_{DS}\) (0.1–0.5 V) which is the usual operating condition of an ON-state power MOSFET [16], [28]. The ON-state resistance of the device is the ratio of applied \(V_{DS}\) to the resulting \(I_{DS}\) in the linear region of operation, and it varies with the applied \(V_{GS}\) [16]. The ON-state resistance evaluated at \(V_{DS} = 1\) V, as a function of gate voltage for the SCT device in contrast to the conventional device, is shown in Fig. 5(c). As expected, the SCT device shows lower on-resistance as compared to the conventional device. The figure also shows the percentage improvement in the on-resistance of the device. As the gate voltage increases, the high transverse electric field tends to reduce the mobility in the channel for both the SCT and conventional devices. Therefore, beyond a certain gate voltage, the strain-induced mobility enhancement factor (that is responsible for current enhancement in the SCT device) reduces, resulting in lesser improvement in the drive current and ON-state resistance as compared to the conventional device. However, at a gate voltage of 5 V, we observe from Fig. 5(c) that the reduction in on-resistance is approximately 28% as compared to the conventional trench MOSFET. This is an acceptable improvement since the on-resistance of MOSFETs approximately depends on the 2.5th power of breakdown voltage reduction, in general.

Furthermore, the proposed SCT device shows an excellent peak transconductance \(g_m\). This occurs due to the potential well formation in the channel of SCT device. The resulting carrier confinement causes more number of carriers to respond to the small signal voltage applied at the gate as compared to the conventional device. As a result, we get larger \(g_m\) at lower gate overdrive voltages and about 72% improvement in peak \(g_m\) in the SCT device as compared to the conventional device as shown in Fig. 5(d), making it better for amplification purpose.

C. Drain Breakdown Voltage

At breakdown condition, a significant current starts flowing between drain and source by avalanche multiplication process [16]. Practically, the breakdown voltage is reported as the drain-to-source voltage at which \(I_{DS}\) crosses a certain limit in the

Fig. 5. Device terminal characteristics comparing the conventional and the SCT devices. (a) Output characteristics. (b) Transfer characteristics. (c) ON-state resistance as function of gate voltage (first Y-axis) with \(V_{DS} = 1.0\) V and percentage reduction in ON-state resistance (second Y-axis) as compared to the conventional device. (d) Transconductance of the SCT and the conventional devices as functions of gate voltage.
off condition, i.e., with the gate tied to the source. The lower breakdown voltage of the SCT device, as shown in Fig. 6. Here, we have found a 12% reduction in the breakdown voltage compared to the conventional device, as shown in Fig. 6. Here, we have selected the breakdown limit of drain current to be 10 PA/μm.

Thus, in the SCT device, we get better performance as compared to the conventional device in terms of large currents, low on-state resistance, and high transconductance with a small degradation in breakdown voltage.

IV. CONCLUSION

Using 2-D numerical simulations, we have demonstrated that strain can be introduced in the channel of a trench-gate power MOSFET by using a Si_{1-x}Ge_x body, leading to improvements in the device performance. The use of 20% Ge mole fraction in the body with a graded Si_{1-x}Ge_x composition in the drift region results in the strained-Si channel and graded strained accumulation region, giving quantifiable benchmarks of drive current improvement of 40%, the ON-state resistance reduction of 28%, and the peak transconductance improvement of 72% as compared to the conventional trench-gate MOSFET device. The demonstrated improvement in the performance of trench-gate power MOSFET using strained-silicon channel is expected to provide the incentive for experimental verification [29].

REFERENCES

Raghvendra S. Saxena received the B.E. degree in electronics and communication engineering from G. B. Pant Engineering College, Pauri-Garhwal, UP, India, in 1997 and the M.Tech. degree in microelectronics from the Indian Institute of Technology, Bombay, India, in 2003. He is currently working toward the Ph.D. degree in the Department of Electrical Engineering, Indian Institute of Technology, New Delhi, India.

Since 1998, he has been working in SSPL as a Scientist, where he worked on design, modeling, and characterization of infrared detectors and their readout circuits. His current fields of interest are in power electronic devices, nanoscale VLSI devices, and infrared detectors. He has published about ten papers in various journals and conference proceedings.

Mr. Saxena is a member of the Institution of Electronics and Telecommunication Engineers, India.

M. Jagadesh Kumar (M’95–SM’99) was born in Mamidala, Andhra Pradesh, India. He received the M.S. and Ph.D. degrees in electrical engineering from the Indian Institute of Technology, Madras, India.

From 1991 to 1994, he performed postdoctoral research in modeling and processing of high-speed bipolar transistors with the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada. While with the University of Waterloo, he also did a research on amorphous silicon TFTs. From July 1994 to December 1995, he was initially with the Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, India, and then joined the Department of Electrical Engineering, Indian Institute of Technology, New Delhi, India, where he became an Associate Professor in July 1997 and a Full Professor in January 2005. His research interests include nanoelectronic devices, modeling and simulation for nanoscale applications, integrated-circuit technology, and power semiconductor devices. He has published extensively in the above areas with three book chapters and more than 120 publications in refereed journals and conferences. His teaching has often been rated as outstanding by the Faculty Appraisal Committee, IIT Delhi.

Dr. Kumar is a Fellow of the Indian National Academy of Engineering and the Institution of Electronics and Telecommunication Engineers, India. He is an IEEE Distinguished Lecturer of Electron Devices Society. He is also a member of the EDS Publications Committee and EDS Educational Activities Committee. He is an Editor of the IEEE TRANSACTIONS ON ELECTRON DEVICES and Editor-in-Chief of IETE Technical Review. He is also on the editorial board of Journal of Computational Electronics, Recent Patents on Nanotechnology, Recent Patents on Electrical Engineering, Journal of Low Power Electronics, and Journal of Nanoscience and Nanotechnology. He has reviewed extensively for different international journals. He was a recipient of the 29th IETE Ram Lal Wadhwa Gold Medal for distinguished contribution in the field of semiconductor device design and modeling. He was also the first recipient of ISA-VSI TechnoMentor Award given by the India Semiconductor Association to recognize a distinguished Indian academician or researcher for playing a significant role as a Mentor and Researcher. He is a recipient of 2008 IBM Faculty Award.