Ring with Involution Introduced by a New Product

R.K. Sharma* and Basudeb Dhara

Department of Mathematics, Indian Institute of Technology Kharagpur
Kharagpur-721302, India

1. Introduction

Let \(R \) be any associative ring with involution. The new product \(\circ \) is introduced in \(R \).

\[r \circ s = rs + s^r \quad \forall r, s \in R. \]

This product is not associative. We shall say \(U \) as a left-\(\circ \)-ideal of \(R \) if

(i) \(U \) is a additive subgroup and

(ii) \(r \circ u \in U \quad \forall r \in R, u \in U. \)

Then every ideal of \(R \) is also a left-\(\circ \)-ideal, but the converse is not true always. Obviously left-\(\circ \)-ideals satisfy the property that intersection of any two left-\(\circ \)-ideals is a left-\(\circ \)-ideal. We denote \(S = \{ x \in R | x^r = x \} \) and \(K = \{ x \in R | x^r = -x \} \) for symmetric and skewsymmetric elements of \(R \). If \(R \) is a simple ring of characteristic not 2, \(2R \) is an ideal of \(R \) and so must be \(R \). Hence the relation \(2r = (r + r) + (r - r) \) gives \(R = S + K, S \cap K = 0. \) The commutators of \(R \) are defined by \([x, y] = xy - yx \) for all \(x, y \in R \). The centre of \(R \) is denoted by \(Z(R) \) or simply by \(Z. \)

2. Examples

Obviously \(R \) and 0 are two trivial left-\(\circ \)-ideals of \(R \). We search for others.

Example 2.1 \(S \) and \(K \) are both left-\(\circ \)-ideals of \(R \).

\[(x \circ y)^r = (xy + yx^r)^r = y^r x^r + xy^r = x \circ y^r \]

Therefore for any \(y \in S, \quad (x \circ y)^r = x \circ y \) i.e., \(x \circ y \in S \) i.e., \(R \circ S \subseteq S. \) Since \(S \) is additive subgroup, \(S \) is a left-\(\circ \)-ideal of \(R \). Similar manner we can show that \(K \) is also a left-\(\circ \)-ideal of \(R. \)

*E-mail address: rksharma@maths.iitkgp.ernet.in
Example 2.2 Let \(L = \{ x \in R | R \circ x = 0 \} \). As \(L \) is additive subgroup, from definition of \(L \), it is left-o-ideal of \(R \).

For \(x, y \in L \) and \(r \in R \), \(r \circ x = 0 \) gives \(rx = -xr^* \), and \(r \circ y = 0 \) gives \(ry = -yr^* \). Now \(rxy = (rxy) = (-x^*y)x = -x(r^*y) = -x(-yr^*) = xyr \) that is \([r, xy] = 0 \) \(\forall x, y \in L \) and \(r \in R \). This implies \(L^2 \subseteq Z \).

Let \(R \) be a prime ring and \(x, y \in R \). Then \(rs \circ x = 0 \) gives

\[
rsx + xsr^* = 0.
\]

By using the property \(rx = -xr^*, \forall x \in L, r \in R \), equation (1) reduces to \((rs + sr)x = 0 \). Again putting \(r = rt, t \in R \) we get \([r, s]tx = 0 \) i.e., \([R, R]RL = 0 \). Since \(R \) is prime ring, either \(R \) is commutative or \(L = Z \).

Example 2.3 If we denote \(R \circ R \) the additive subgroup generated by all \(ri \circ si; ri, si \in R \), then \(R \circ R \) is a left-o-ideal. Similarly \(R \circ (R \circ R), R \circ (R \circ (R \circ R)), \ldots \) are all left-o-ideals of \(R \).

Example 2.4 \(L = \{ x \in R | R \circ x \in Z(R) \} \) is a left-o-ideal of \(R \).

3 Some Theorems

Theorem 3.1 Let \(R \) be a prime ring. If \(a \in R \) commutes with all \(x \circ y; x, y \in R \) then \([a, x](x \circ y) = 0 \) and \(a \in Z \).

Proof. \([a, x \circ y] = 0 \) gives \(a(xy + yx^*) = (xy + yx^*)a \). Now putting \(y = xy \) we get \(a(xxy + yx^*) = (xxy + yx^*)a \) i.e., \([a, x][x \circ y] = 0 \). Again we put \(y = ya \). Then

\[
0 = [a, x](xya + yax^*)
= [a, x](xya + yax^*) - [a, x]y(x^*a - ax^*)
= [a, x]y[a, x^*] = [a, x]RL[a, x^*].
\]

Since \(R \) is prime ring, either \(a \) commutes with \(x \) or \(x^* \) \(\forall x \in R \). We set \(T_1 = \{ x \in R | [a, x] = 0 \} \) and \(T_2 = \{ x \in R | [a, x^*] = 0 \} \). Then \(T_1 \) and \(T_2 \) are subring of \(R \) and \(T_1 \cup T_2 = R \). Since a group can not be union of two subgroups, therefore either \(T_1 = R \) or \(T_2 = R \). In both cases \(a \in Z \).

Theorem 3.2 Let \(R \) be a prime ring. If \(a \circ (x \circ y) = 0 \) \(\forall x, y \in R \) then \(a \in Z \).

Proof. Putting \(y = xy \) in the given condition we get \(a \circ (x \circ xy) = 0 \) which reduces to \([a, x](xy) = 0 \). Hence by Theorem 3.1, it follows the theorem.

Theorem 3.3 If \(L \) is a left-o-ideal of \(R \) such that \(L^2 = L \) then \(L \) should be a Lie ideal of \(R \).
Proof. Since L is left-ideal of R, $r \circ y, r^* \circ x \in L \ \forall x, y \in L, r \in R$.
Again as $L^2 = L$ therefore $(r \circ y)x = y(r^* \circ x) = [r, yx] \in L, \ \forall x, y \in L, r \in R$.
Therefore $[R, L^2] \subseteq L$. Since $L^2 = L, [R, L] \subseteq L$ and theorem is proved.

Now by theorem 3.3 and [2, Theorem 1.2], the following corollary is straight forward.

Corollary 3.4 Let R be a simple ring of characteristic $\neq 2$. If L is a left-ideal such that $L^2 = L$ then either $L = R$ or $L \subseteq Z$.

Theorem 3.5 Let R be a prime ring with involution. $L \neq 0$ is a subring as well as left-ideal of R then L contains an ideal generated by all $y \circ x - 2yx$, for all $r, y \in L$, otherwise L will be commutative with trivial involution on L.
Proof. For all $x, y \in L$ and $r \in R$,

$$(y \circ x - 2xy)r^* = ry \circ x - r \circ yx \in L.$$

Therefore

$$r(y \circ x - 2xy)s^* = (r \circ (y \circ x - 2xy))s^* - (y \circ x - 2xy)r^*.$$

Thus L contain an ideal $< y \circ x - 2yx >x, \forall \ y \in L$.

Now assume that $y \circ x - 2xy = 0$ i.e., $xy^* = yx \ \forall x, y \in L$. Now putting $y = zy, z \in L$, we get $x(zy)^* = (zy)x$ which gives $[y, z]x = 0xy \ \forall x, y, z \in L$. Since L is left-ideal, we put $x = r \circ x, r \in R$. Then it gives $[y, z](r \circ x) = 0$ which implies $[y, z]x = 0 \ \forall x, y, z \in L, r \in R$. Now since R is prime ring, either $L = 0$ or L is commutative.

If L is commutative we get from $xy^* = yx$ by putting $x = r^* \circ x, r \in R$, $xr(y - y^*) = 0 \ \forall x, y \in L$ and $r \in R$.
Again by using primeness of R, we get $y = y^* \ \forall y \in L$. It follows the theorem.

Theorem 3.6 Let R be a ring with involution and L is its a left-ideal.
Then L contains ideals generated by all $x \circ y - y^* \circ x, x, y \in L$ and $[r, y] + [y^*, x], x, y \in L$; otherwise every elements of L will be normal.

Proof. The identity

$$(x \circ y - y^* \circ x)r = r^* \circ y + r \circ x = r^* \circ (y \circ x).$$
Therefore,
\[R(x \circ y - y' \circ x) \leq L, \quad \forall x, y \in L. \]
Thus
\[r(x \circ y - y' \circ x) = r \circ (x \circ y - y' \circ x) - (x \circ y - y' \circ x)r' \leq L. \]

Finally,
\[s(x \circ y - y' \circ x)r = s \circ (x \circ y - y' \circ x)r + (x \circ y - y' \circ x)rs' \leq L. \]

Therefore, \(R(x \circ y - y' \circ x) \leq L, \quad \forall x, y \in L. \) From here we can write \(R((x \circ y - y' \circ x) + (y' \circ x - x' \circ y)) \leq L \) which gives \(R((x' \circ y) + (y' \circ x)) \leq L, \quad \forall x, y \in L. \)

\[x \circ y - y' \circ x = 0 \quad \text{and} \quad [x', y] + [y', x] = 0 \]
both cases give \(xx' = x'x \) i.e., every elements of \(L \) is normal.

Theorem 3.7 Let \(R \) be a simple ring. Then \(S \) and \(K \) do not contain any left-\(o \)-ideals of \(R \) except themselves.

Proof. Let \(L \) is any left-\(o \)-ideal of \(R \). Therefore \(L \) is a Jordan ideal of \(S \). Now from [2, Theorem 2.6], we get \(L \not\leq S \).

Now let us prove that \(L \not\subseteq K \).

If possible let \(L \subseteq K \). We have the identity
\[s \circ (r \circ x) - (sr') \circ x = sxr + r'xs' \leq L, \quad \forall x \in L, \quad s, r \in R. \]

Since \(R \) is simple, \(RxR = R \) for \(0 \neq x \in L \). Therefore for any \(y \in R, \quad y = \sum s, \quad \text{Then} \quad y'' = \sum r_i x_j x_i = -\sum r_i x_j x_i. \]
Thus \(y - y'' = \sum (s, x_j + x_j x_i) \leq L. \) Since \(y - y'' \) covers \(K \) as \(y \) runs over \(R \) we get \(L = K \). Hence theorem is established.

Now let us generate a chain of left-\(o \)-ideals in \(R \). Let \(U \) be a left-\(o \)-ideal in \(R \). Then
\[T(U) = \{ x \in R | R \circ x \subseteq U \} \]
is also a left-\(o \)-ideal of \(R \) and then \(T^2(U), T^3(U), \ldots \) so.

Therefore \(R \circ U \subseteq U \subseteq T(U) \subseteq T^2(U) \subseteq T^3(U) \subseteq \ldots \)
If \(U \) is maximal left-\(o \)-ideal of \(R \) then either \(T(U) = R \) or \(U = T(U) \).

Theorem 3.8 Let \(R \) be a prime ring. If \(S \subseteq T(S) \) or \(K \subseteq T(K) \) then \(R \) is commutative.

Proof. First of all let us prove a Lemma below.

Lemma 3.9 If \(R \) is a prime ring and \(0 \neq a \in R \) satisfies the condition \(R \circ a = 0 \) then \(R \) is commutative.

Proof. \(R \circ a = 0 \) gives \(xa + ax' = 0 \) \(\forall x \in R. \) Now put \(x = xy, y \in R \) then we get \(xy + yx' = 0 \) which gives \((xy + yx)a = 0. \) Now again
\[-a(a) + yra = 0 \text{ which implies } x(-yra) + yra = 0 \text{, i.e., } x(0) + 1 \cdot yra = 0. \text{ Since } R \text{ is prime and } a \neq 0, \text{ it follows that } x = 0 \text{.} \]

Therefore, \(R \) is commutative since \(xy = yx \) for all \(x, y \in R \).

Theorem 3.8: If \(R \) is a ring with an involution, then \(R \) is commutative.

Proof: Let \(a, b \in R \). We need to show that \(ab = ba \). Choose \(x \in R \) such that \(a = x^{-1}a \).

Then \(ab = x^{-1}a = x^{-1}b \cdot x^{-1}a = x^{-1}(ba) \cdot x^{-1}a = x^{-1}b \cdot x^{-1}a \cdot x^{-1}a = x^{-1}b \cdot x^{-1}a \cdot x^{-1}a = b \cdot x^{-1}a \cdot x^{-1}a = b \cdot x^{-1}a \cdot x^{-1}a = b \cdot x^{-1}a \).

Hence, \(ab = ba \), and \(R \) is commutative.

Thus, we have shown that if \(R \) is a ring with an involution, then \(R \) is commutative.

References:

Notice that the text contains mathematical expressions and theorems related to ring theory. The proofs and theorems are presented in a clear and logical manner, ensuring that the reader can follow the progression of ideas and conclusions.