A Note on Structure of F_2^n with respect to Trace of its Elements

R. K. Sharma, Wagish Shukla, S. Ramasamy

Abstract-- A structure of F_2^n is depicted. A relation (Equivalence relation) on the positions of $g(1:n-1)=(\text{Tr}(\beta), \text{Tr}(\beta^2), \text{Tr}(\beta^3), \ldots, \text{Tr}(\beta^{n-1}))$ is defined and a formula is derived to find the number of classes of length i for a given i with $1 \leq i \leq n-1$ where m is the largest positive integer such that $2^m \leq n$ and it is used to find the cardinal number of the set of binary trace sequences of the type $g(1:n-1)$ of length $n-1$. Two new results on traces of the elements of a polynomial basis of F_2^n over F_2 are proved.

I. Introduction

Irreducible polynomial: A polynomial $p(x)$ in $F[x]$ is said to be irreducible over the field F if $p(x)$ has positive degree and $p(x) = f(x)g(x)$ with $f(x)$, $g(x)$ $\in F[x]$ implies that either $f(x)$ or $g(x)$ is a constant polynomial.

Trace: Let $K=F_2$ and $F=F_2^n$. For β in F, the trace $\text{Tr}_{F/K}(\beta)$ of β is defined as $\text{Tr}_{F/K}(\beta) = \beta + \beta^q + \beta^{q^2} + \cdots + \beta^{q^{n-1}}$. The trace of a monic irreducible polynomial $f(x)$ is the coefficient of x^n in f. If $f(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_0$ then the trace of $f(x)$ is c_0.

Polynomial basis: If α is a root of an irreducible polynomial then $\{1, \alpha, \alpha^2, \alpha^3, \ldots, \alpha^{n-1}\}$ is called a polynomial basis of F_2^n over F_2 with respect to α.

Primitive element: Generator of the cyclic group F_q^* is called a primitive element of F_q.

II. Structure of F_2^n with respect to traces of its Elements

The following array gives a structure of the non-zero elements of F_2^n in terms of their traces over F_2^n. For any fixed primitive element α of F_2^n, consider the following array.

$$
\begin{array}{cccccccccccc}
\alpha & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 & \alpha^7 & \alpha^8 & \alpha^9 & \alpha^{10} & \alpha^{11} & \alpha^{12} & \alpha^{13} & \alpha^{14} \\
\alpha^{15} & \ldots \\
\end{array}
$$

Fig. 1: Distribution of elements of F_2^n.

Every i^{th} row has 2^{i-1} elements for $1 \leq i \leq n$. New columns introduced in every i^{th} row have $n-i+1$ elements (including $n-i$ elements below them) for $1 \leq i \leq n$. The above array contains all the 2^n-1 non-zero elements of F_2^n with all elements in each column having the same trace.

This concept can be extended to any finite field of odd characteristic as well. The following theorem shows that trace-one and trace-zero elements are equally distributed in F_2^n.

A. Theorem

Number of trace 1 elements is equal to number of trace 0 elements in F_2^n over F_2^n.

Proof:

Let N_0 and N_1 denote the number of trace 0 and 1 elements respectively.

Every element of F_2^n satisfies either

$$
\begin{align*}
x + x^2 + x^{2^2} + \cdots + x^{2^{n-1}} &= 0 \quad (1) \\
x + x^2 + x^{2^2} + \cdots + x^{2^{n-1}} &= 1 \quad (2)
\end{align*}
$$

but not both. (1) has at most 2^{n-1} roots in F_2^n and so $N_0 \leq 2^{n-1}$.

Similarly, $N_1 \leq 2^{n-1}$.

Since $\text{Tr}: F_2^n \rightarrow F_2$ is an onto function, both 0 and 1 have pre-images in F_2^n and so

$$
N_0 + N_1 = 2^n \quad \text{................. (3)}
$$

Therefore, $N_0 = 2^{n-1}$ and $N_1 = 2^{n-1}$.

B. Theorem [2]

If α and β are non-zero elements of F_q then $N_\alpha(n, q) = N_\beta(n, q)$ where $N_\alpha(n, q)$ denotes the number of monic irreducible polynomials over F_q of degree n, having trace α.

Notation: Let $\vec{a}(1: j) = (a_1, a_2, a_3, \ldots, a_j)$ denote any binary sequence of length j beginning with position 1 and ending with position j. For any element β in F_2^n, let $\beta', \beta^2', \ldots, \beta^{n-1}'$ and $\text{Tr}(\beta), \text{Tr}(\beta^2), \ldots, \text{Tr}(\beta^{n-1})$ respectively denote the sequence and binary trace sequence of β of length $n-1$.

Equivalence class: Let $i, j \in N$. ‘i’ is said to be related to ‘j’ (or β is related to β') if $j = 2^k \times i$ for some integer k.

R.K.Sharma, Wagish Shukla, and S.Ramasamy are with the Department of Mathematics, IIT Delhi, New Delhi-110016, India.
This is an equivalence relation. (Elements in) i^{th} and j^{th} positions of a binary sequence are in the same class iff $j = 2^k \times i$ for some integer k and hence the elements in the same class have the same trace.

Length of a class Let $\{1:n\} = (a_1, a_2, a_3, \ldots a_n)$ be any binary trace sequence of length n. Then l is called length of a class beginning with position $2i - 1$ for $i \geq 1$ if l is the largest positive integer such that $(2i-1)2^{l-1} \leq n$.

Since the positions in the same class always have the same trace value, each class can be considered as a single position for the purpose of calculation of total number of binary trace sequences.

Notation For any set X, let $|X|$ denote its cardinal number. Let $X(m)$ denote the set of classes of length i in $\{1:n\}$ if $n = 2^m$. Let $X(m')$ denote the set of classes of length i in $\{1:n\}$ if $n = 2^m + 1$. Let $|X(m)|$ and $|X(m')|$ denote the total number of classes in $\{1,n-1\}$ and $\{2^m + 1, 1\}$ respectively.

C. Theorem

If $n = 2^m$ for some positive integer m, the total number of $(n-1)$-binary trace sequences of all the elements of F_2^n is $2^{n/2}$.

Proof

For any suffix k of a_k with $1 \leq k \leq n$, let $X_{k}(m)$ denote equivalence class of length i containing the position k.

Since $|X_{m}(m)| + |X_{m+1}(m)| = 1$, total number of classes is

$$|X_{m}(m)| + |X_{m+1}(m)| + \ldots + |X_{n-3}(m)| + |X_{n-2}(m)| + |X_{n-1}(m)| + |X_{n}(m)| + |X_{n+1}(m)|$$

$$= 2^{m-2} + 2^{m-3} + 2^{m-4} + 2^{m-5} + \ldots + 2^{m-1} + 2^1 + 2^0 + 1$$

$$= 2^{m-1} - 1$$

Therefore, total number of $(n-1)$-binary trace sequences is $2^{n/2}$.

D. Theorem

$$|X(m)| = |X(m')|$$

Proof

From the proof of the above theorem(2.3), it is seen that

$$|X_{m}(m)| = |X_{m}(m')|$$

for $i = 1$ to $m-1$.

$$|X_{m}(m)| = 1$$ and $$|X_{m+1}(m)| = 0$$

$$|X_{m}(m')| = 0$$ and $$|X_{m+1}(m')| = 1$$

$$|X(m)| = |X_{m}(m)| + |X_{m+1}(m)|$$

$$|X_{m}(m')| + |X_{m+1}(m')|$$

since $|X_{m}(m)| + |X_{m+1}(m)| = |X_{m+1}(m')| + |X_{m}(m')|$

$$= |X(m')|$$

This completes the proof of the theorem.

When $2^n + 1 \leq n \leq 2^{n+1}$, let $n = n_0 + R$ where $n_0 = 2^n$.

Let $X(m), X'$ and X'' denote the set of all classes of length i and let $X(m), X'$ and X'' denote the set of all classes in $[1, 2^m-1], [1, 2^m + R-1]$ and $[1, 2n-1]$ respectively.

For a real number $s \geq 0$, let $[s]$ denote the integral part of the real number s.

E. Theorem

(i) For $1 \leq i \leq m - 1$, $|X_i'| = |X_i(m)| + [(R + 1)/2] - [(R + 1)/2] + 1$ for $1 \leq R \leq 2^m$.

(ii) For $m \leq i \leq m + 1$, $|X_i'| = |X_i(m')| + [(R + 1)/2] - [(R + 1)/2] + 1$ for $1 \leq R \leq 2^m$.

Proof

Since for every step of 2^i with $1 \leq i \leq m - 1$ in R beginning with $2^m + 1$, an equivalence class of length i will be increased in the total of $|X_i(m)|$ for X' and for every step of 2^i beginning with $2^m + 2^i$, an equivalence class of length i will be reduced from $X_i(m)$ for X'', the result (i) follows. Result (ii) can be proved by similar argument with $|X_i(m')|$ in place of $|X_i(m)|$.

III. TRACES AND COEFFICIENTS OF IRREDUCIBLE POLYNOMIALS

A. Some Preliminary Remarks [3]

Let $f(x) = x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + 1$ be an irreducible polynomial of degree n over F_2, and let α be a root of $f(x)$ in $F_2[x]/(f)$. The roots of $f(x)$ in F_2^n are precisely $x = \alpha^2$ for $0 \leq i \leq n-1$ and $f(x) = \Pi(x-x_i)$ where the product runs from $i = 0$ to $n-1$.

Let $s_k = \Sigma x_i^k$ where the sum runs through $i = 0$ to $n-1$ then $s_k = \text{Tr}(\alpha^k)$ for $0 \leq k \leq n-1$.

Omran Ahmadi and Alfred Menezes[3] have proved the following result:

B. Theorem [3]

Let $f(x) = x^n + x^{n-m(1)} + x^{n-m(2)} + \ldots + x^{n-m(l)} + 1$ be an irreducible polynomial over F_2 with $m(l) > m(l-1) > m(l-2) > \ldots > m(2) > m(1) > n/2$, and let α be a root of $f(x)$ in $F_2^n = F_2[x]/(f)$.

Then for $0 \leq k \leq n-1$, we have $s_k = n \bmod 2$ if $k = 0$ and let $\bmod 2$ if $k \in \{m(1), m(2), \ldots, m(l)\}$.

C. Our contributions on traces

1. Theorem

Let $f(x) = x^n + x^{n-m(1)} + x^{n-m(2)} + \ldots + x^{n-m(l)} + 1$ be an irreducible polynomial over F_2 with $m(0) = 0 < m(1) < \ldots < m(l)$. Theorem 2.3 has been proved by

Proof: The proof is by induction on \(k \).

By Newton\(\text{o}\)s formula,
\[s_k = s_{k-1}a_1 + s_{k-2}a_2 + \ldots + s_1a_{k-1} + ka_k \]

When \(k = 0 \),
\[s_k = 1 + \ldots + 1(n\text{ times}) \equiv n \mod 2 \]
When \(0 < k < m(1) \), \(s_k = 0 \) since \(a_u = 0 \) for all \(u < m(1) \).

When \(k = m(1) \),
\[s_k = s_{k-m(1)} \equiv 1 \mod 2 \]
When \(k < m(1) \), \(s_k = 0 \).

Take \(i = t = 1 \).

If \(k \) is not divisible by \(m(t-1) \), then
\[s_k = s_{k-m(t-1)} \equiv 1 \mod 2 \]

Now \(k \) can be either \(k = m(t) \) or \(m(t) < k < m(t+1) \).

Therefore, \(s_k \equiv 0 \mod 2 \) for all positive integers \(r < k \).

When \(k = m(t) \),
\[s_k = s_{k-m(t)} + s_{k-m(t-1)} + \ldots + s_1a_{k-m(t-1)} + ka_k \]

This implies that \(s_k = s_{k-m(t)} \equiv 1 \mod 2 \).

If \(k < m(t) \), then
\[s_{k-m(t)} = s_{k-m(t-1)} = \ldots = s_{k-m(1)} \]

Therefore, by induction hypothesis, \(s_{k-m(t)} \equiv 0 \) for all \(i < t \).

Therefore, \((4) \) becomes \(s_k = s_{k-m(t)} \).

Similarly, by the same argument, when \(k < m(t+1) \), \(s_k \equiv 0 \mod 2 \).

Proof of the theorem is complete.
REFERENCES

R.K.Sharma, Wagish Shukla, and S.Ramasamy are with the Department of Mathematics, IIT Delhi, New Delhi-110016, India