Units in finite loop algebras of RA2 loops

Swati Sidana∗ and R. K. Sharma†

Department of Mathematics
Indian Institute of Technology Delhi, New Delhi, India
∗swatisidana@gmail.com
†rksharmaiitd@gmail.com

Communicated by N. Gilbert
Received December 2, 2014
Revised September 1, 2015
Published October 26, 2015

Let $F[L]$ be the loop algebra of a loop L over a field F. In this paper, we characterize the structure of the unit loop of $F[L]$ modulo its Jacobson radical when $L = M(D_{2m}, 2)$ is an RA2 loop obtained from the dihedral group of order $2m$, m is an odd number and F is a finite field of characteristic 2. The structure of $1 + J(F[L])$ is also determined.

Keywords: Loop algebra; RA2 loop, Zorn’s algebra; unit loop; general linear loop.

AMS Subject Classification: 20N05, 17D05

1. Introduction

Let R be an associative and commutative ring with unity $1 \neq 0$. A loop ring $R[L]$ of a loop L can be constructed precisely in the same manner as the group ring $R[G]$ is constructed from a group G. If $R = F$, a field, then we call $F[L]$ a loop algebra. A ring is said to be an alternative ring if it satisfies

the left alternative identity: $x(xy) = x^2y$

and

the right alternative identity: $(yx)x = yx^2$.

A loop L whose loop ring $R[L]$ over some commutative, associative ring R with unity and of characteristic different from 2 is alternative, but not associative is called a Ring Alternative (RA) loop. An RA2 loop is a loop whose loop ring is alternative only when the characteristic of R is 2. The problem of determining the structure of the unit group of a group ring is of much interest for many authors. But a few are trying to characterize the structure of the unit loop of a loop ring and in fact the units in finite loop algebras.
In 1992, Goodaire [3] determined the loop of units in the integral alternative loop rings of the six smallest order loops. In 1993, Jespers and Leal [5] studied the unit loop \(U(M(Q_8, 2)) \), where \(M(Q_8, 2) \) denotes the Moufang Loop obtained from \(Q_8 \), the quaternion group of order 8. The semisimple loop algebras of \(RA \) loops have been studied by Ferraz, Goodaire and Milles [2]. The structure of the unit loops of finite loop algebras of \(RA \) loops of order 32, 64 and in general of seven non-isomorphic classes of indecomposable \(RA \) loops have been determined by authors in [8–10]. But the problem of characterizing the structure of the unit loops of loop algebras of \(RA \) loops over finite fields is still open. Chein and Goodaire [1] proved that if \(G = D_{2m}, \) a dihedral group of order \(2m \), then the loop \(M(G, 2) \) is an \(RA \) loop. In this paper, we determine the structure of the unit loop of \(F[L]/J(F[L]) \), when \(L = M(D_{2m}, 2) \), \(m \) odd number and \(F \) is a finite field of characteristic 2.

We begin by establishing some notations. \(M(G, *, g_0) \) denotes the Moufang loop obtained from the non-abelian group \(G, g_0 \in Z(G) \), the center of group \(G \), and * the involution on \(G \). Throughout the paper, \(F = F_{2^n} \) is a finite field containing \(2^n \) elements. Also, we use the following notations:

- \(J(F[L]) \) : Jacobson radical of an alternative loop algebra \(F[L] \)
- \(C_m \) : cyclic group of order \(m \)
- \(F^* \) : \(F \setminus \{0\} \)
- \(F_{q^k} \) : field extension of \(F \) of degree \(k \)
- \(\Phi_m(x) \) : \(m \)th cyclotomic polynomial
- \(\phi(n) \) : Euler’s phi function

The following is the main result of this paper.

Theorem 1.1. Let \(q = 2^n, L = M(D_{2m}, 2) \) be \(RA \) loop, and \(F[L] \) be its loop algebra. Then

\[
U(F[L]/J(F[L])) \cong F^* \times \bigotimes_{d | m, d > 1} (GLL(2, F_{q^{k_d}})) \Phi_{k_d}^{(2n)},
\]

where

\[
e_d = \begin{cases} k_d/2 & \text{if } k_d \text{ is even and } q^{k_d/2} \equiv -1 \pmod{d}, \\ k_d & \text{otherwise.} \end{cases}
\]

Here \(k_d \) is the order of \(2^n \) modulo \(d \) and \(1 + J(F[L]) \cong C_2^{2n} \), an elementary abelian \(2 \)-group of order \(2^{2n} \).

2. Some Preliminaries

In this section, we discuss few results which will be useful in our work.

Zorn’s vector matrix algebra is an eight-dimensional non-associative algebra and is a generalization of matrix algebra over a ring. For any commutative and associative ring \(R \) (with unity), let \(R^3 \) denote the set of ordered triples over \(R \) and
consider the set of 2×2 matrices of the form $\begin{bmatrix} a & x \\ y & b \end{bmatrix}$, $a, b \in R$ and $x, y \in R^3$ with usual addition and the multiplication defined by

$$
\begin{bmatrix} a & x \\ y & b \end{bmatrix} \begin{bmatrix} c & z \\ w & d \end{bmatrix} = \begin{bmatrix} ac + x \cdot w & az + dx - y \times w \\ cy + bw + x \times z & bd + y \cdot z \end{bmatrix},
$$

where \cdot and \times denote the dot and cross products respectively in R^3. By this construction, we obtain an alternative algebra called Zorn’s vector matrix algebra denoted by $\mathfrak{Z}(R)$. There is a multiplicative determinant function in $\mathfrak{Z}(R)$, $\det: \mathfrak{Z}(R) \to R$ defined as

$$
\det \left(\begin{bmatrix} a & x \\ y & b \end{bmatrix} \right) = ab - x \cdot y.
$$

The loop of invertible elements, $\text{GLL}(2, R) = \{ A \in \mathfrak{Z}(R) | \det A \text{ is a unit in } R \}$, is a Moufang loop called the general linear loop. For more details, we refer the reader to [4, 13].

For an alternative ring A, an element $a \in A$ is said to be quasi-regular if there exists an element $b \in A$, called the quasi-inverse of a, such that $a + b = ab = ba$. An ideal is said to be quasi-regular if all its elements are quasi-regular. The Jacobson radical $J(A)$ of an alternative ring A is defined as the largest quasi-regular ideal of A.

Vojtěchovský [11] gave the presentation of Moufang loops of the type $M(G, 2)$ with G a finite two generated group, as follows.

Theorem 2.1 ([11, Theorem 3.1]). Let $G = \langle x, y | R \rangle$ be a presentation for a finite group G, where R is a set of relations in generators x, y. Then $M(G, 2)$ is presented by

$$
\langle x, y, u | R, u^2 = (xu)^2 = (yu)^2 = (xy \cdot u)^2 = e \rangle,
$$

where e is the neutral element of G.

To prove the main theorem, we need the following lemmas.

Lemma 2.2. Let $X = \begin{bmatrix} a & (0, u, 0) \\ (0, v, 0) & b \end{bmatrix}$ be an element in $\text{GLL}(2, R)$ and $A = \begin{bmatrix} c & (0, 0, 0) \\ (0, 0, 0) & d \end{bmatrix} \in \mathfrak{Z}(R)$. Then

1. $(XA)^{-1}X = X(A^{-1}X)$; that is, XAX^{-1} is unambiguous.
2. If $A' = \begin{bmatrix} a & (0, 0, 0) \\ (0, v, 0) & f \end{bmatrix}$, then $X(AA')^{-1}X = (XAX^{-1})(XAX^{-1})$.

Proof. Let $X = \begin{bmatrix} a & (0, u, 0) \\ (0, v, 0) & b \end{bmatrix}$. Therefore, $X^{-1} = \frac{1}{ab + uv} \begin{bmatrix} b & (0, u, 0) \\ (0, v, 0) & a \end{bmatrix}$, where $0 \neq ab + uv \in F$.

1. A simple calculation yields the result.
Lemma 2.3 ([7, Lemma 3.1]). Let \(q = 2^n \), \(\gcd(q,d) = 1 \), \(\zeta \) be a primitive \(d \)th root of unity over \(F \) and let the order of \(q \) modulo \(d \) be \(k_d \). Then \(\zeta \) and \(\zeta^{-1} \) are conjugates over \(F \) if and only if \(k_d \) is even and \(q^{k_d/2} \equiv -1 \pmod{d} \). Further,

\[
[F(\zeta + \zeta^{-1}) : F] \equiv \begin{cases}
\frac{k_d}{2} & \text{if } k_d \text{ is even and } q^{k_d/2} \equiv -1 \pmod{d}, \\
k_d & \text{otherwise.}
\end{cases}
\]

3. Proof of the Main Theorem

Proof of the Main Theorem. From [6, Theorem 2.47(ii)], it is known that the \(r \)th cyclotomic polynomial can be factorized as a product of irreducible polynomials over the field \(F \). So we can write, \(\Phi_r(x) = f_{r,1}(x)f_{r,2}(x)\ldots f_{r,t_r}(x) \), where \(f_{r,1}(x), f_{r,2}(x), \ldots, f_{r,t_r}(x) \) are irreducible polynomials over \(F \) each of degree \(k_r \) and \(t_r = \frac{\phi(r)}{r} \).

For each divisor \(d(>1) \) of \(m \), assume that

\[
A_d = \begin{cases}
\frac{t_d}{2} & \text{if } k_d \text{ is even and } q^{k_d/2} \equiv -1 \pmod{d}, \\
t_d & \text{otherwise,}
\end{cases}
\]

and \(\lambda_{d,i} \) is a root of the irreducible factor \(f_{d,i}(x) \) over \(F \) for each \(i, 1 \leq i \leq t_d \).

Let \(D_{2m} \) be presented as \((a,b) \mid a^m = b^2 = 1, ba = a^{-1}b \).

For \(d \mid m, d > 1 \) and \(1 \leq i \leq t_d \), let

\[
S_{d,i} : D_{2m} \to \text{GL}(2, F(\lambda_{d,i} + \lambda_{d,i}^{-1}))
\]
Units in finite loop algebras of RA loops

be the group homomorphism given by the assignment

\[a \mapsto \begin{bmatrix} 0 & 1 \\ 1 & \lambda_{d,i} + \lambda_{d,i}^{-1} \end{bmatrix}, \]
\[b \mapsto \begin{bmatrix} 1 & 0 \\ \lambda_{d,i} + \lambda_{d,i}^{-1} & 1 \end{bmatrix}. \]

From [12, Sec. 2.3], the following assignment gives the matrix representation of
\(L = M(D_{2m}, 2) \). Now

\[T_{d,i} : L \rightarrow \text{GL}(2, F(\lambda_{d,i} + \lambda_{d,i}^{-1})) \]
defined by

\[a \mapsto \begin{bmatrix} 0 & (0, 1, 0) \\ (0, 1, 0) & \lambda_{d,i} + \lambda_{d,i}^{-1} \end{bmatrix}, \]
\[b \mapsto \begin{bmatrix} 1 & (0, 0, 0) \\ (0, \lambda_{d,i} + \lambda_{d,i}^{-1}, 0) & 1 \end{bmatrix} \]

and

\[u \mapsto \begin{bmatrix} 0 & (0, 0, 1) \\ (0, 0, 1) & 0 \end{bmatrix} \]

is a well-defined loop homomorphism.

If we take \(X_{d,i} = \begin{bmatrix} 1 \\ (0, \lambda_{d,i}, 0) \end{bmatrix} \), then \(T_{d,i}(a) = X_{d,i} \tilde{E}_{d,i} X_{d,i}^{-1} \), where \(\tilde{E}_{d,i} = \begin{bmatrix} \lambda_{d,i} & (0, 0, 0) \\ (0, \lambda_{d,i} + \lambda_{d,i}^{-1}) & 1 \end{bmatrix} \) and \(X_{d,i} \tilde{E}_{d,i} X_{d,i}^{-1} \) is unambiguous by Lemma 2.2.

By the same lemma, using induction, we get that

\[(X_{d,i} \tilde{E}_{d,i} X_{d,i}^{-1})^r = X_{d,i}(\tilde{E}_{d,i})^r X_{d,i}^{-1} \]
for every \(r \in \mathbb{N} \).

Therefore, for all \(1 \leq r \leq m - 1 \),

\[T_{d,i}(a^r) = T_{d,i}(a)^r = X_{d,i}(\tilde{E}_{d,i})^r X_{d,i}^{-1} \]
\[= \frac{1}{\lambda_{d,i} + \lambda_{d,i}^{-1}} \begin{bmatrix} \lambda_{d,i}^{-1} + \lambda_{d,i}^{-r+1} & (0, \lambda_{d,i} + \lambda_{d,i}^{-r+1}, 0) \\ (0, \lambda_{d,i} + \lambda_{d,i}^{-r+1}, 0) & \lambda_{d,i}^{-1} + \lambda_{d,i}^{-r+1} \end{bmatrix}, \]
\[T_{d,i}(a^r b) = T_{d,i}(a^r) T_{d,i}(b) \]
\[= \frac{1}{\lambda_{d,i} + \lambda_{d,i}^{-1}} \begin{bmatrix} \lambda_{d,i}^{-1} + \lambda_{d,i}^{-r+1} & (0, \lambda_{d,i} + \lambda_{d,i}^{-r+1}, 0) \\ (0, \lambda_{d,i} + \lambda_{d,i}^{-r+1}, 0) & \lambda_{d,i}^{-1} + \lambda_{d,i}^{-r+1} \end{bmatrix} \]
1650026-5
\[T_{d,i}(a^ru) = T_{d,i}(a^r)T_{d,i}(u) \]
\[= \frac{1}{\lambda_{d,i} + \lambda_{d,i}^{-1}} \times \begin{bmatrix} 0 & (\lambda_{d,i}^{-r} + \lambda_{d,i}^{-r+1}) \\ (\lambda_{d,i}^{r} + \lambda_{d,i}^{-r}, 0, \lambda_{d,i}^{r+1} + \lambda_{d,i}^{-r-1}) & 0 \end{bmatrix}, \]
and
\[T_{d,i}(a^rb - u) \]
\[= T_{d,i}(a^rb)T_{d,i}(u) \]
\[= \frac{1}{\lambda_{d,i} + \lambda_{d,i}^{-1}} \times \begin{bmatrix} 0 & (\lambda_{d,i}^{r+2} + \lambda_{d,i}^{-r-2}, 0, \lambda_{d,i}^{r+1} + \lambda_{d,i}^{-r-1}) \\ (\lambda_{d,i}^{r} + \lambda_{d,i}^{-r}, 0, \lambda_{d,i}^{r+1} + \lambda_{d,i}^{-r-1}) & 0 \end{bmatrix}. \]

Let
\[T_0 : L \rightarrow F^* \]
defined by
\[a \mapsto 1, \quad b \mapsto 1, \quad u \mapsto 1 \]
be the loop homomorphism.

If \(k_d \) is even, then define \(T = \prod_{d|m} T_d \), where \(T_d = \prod_{i=1}^{t_d} T_{d,i} \).

If \(k_d \) is odd, then \(\lambda_{d,i} \) and \(\lambda_{d,i}^{-1} \) are roots of different irreducible factors of \(\Phi_d(x) \).

Without loss of generality, we can choose that \(\lambda_{d,i}^{r+1} = \lambda_{d,i}^{-1} \) for all \(1 \leq i \leq \frac{t_d}{2} \).

For this case, define \(T = \prod_{d|m} T_d \), where \(T_d = \prod_{i=1}^{t_d} T_{d,i} \).

Therefore
\[T : L \rightarrow F^* \times \bigotimes_{d|d,m} GLL(F(\lambda_{d,i} + \lambda_{d,i}^{-1})) \]
is a loop homomorphism.

Let
\[T_{d,i}^* : F[L] \rightarrow \mathfrak{g}(F(\lambda_{d,i} + \lambda_{d,i}^{-1})) \]
be the loop algebra homomorphism obtained by extending \(T_{d,i} \) linearly over \(F \). Then
\[T^* : F[L] \rightarrow F \bigoplus \bigoplus_{d|m} \mathfrak{g}(F(\lambda_{d,i} + \lambda_{d,i}^{-1})) \]
is defined as

\[T^* := T_0^* \oplus \bigoplus_{d, m = 1}^{A_d} T_{d, i}^*, \]

To determine the kernel of \(T^* \), consider

\[Z = \sum_{j=0}^{m-1} \alpha_j a^j + \sum_{j=0}^{m-1} \beta_j a^j b + \sum_{j=0}^{m-1} \gamma_j a^j u + \sum_{j=0}^{m-1} \delta_j a^j bu \in \ker T^*, \]

where

\[G_1(x) = \sum_{j=0}^{m-1} \alpha_j x^j, \quad G_2(x) = \sum_{j=0}^{m-1} \beta_j x^j, \]

\[G_3(x) = \sum_{j=0}^{m-1} \gamma_j x^j, \quad G_4(x) = \sum_{j=0}^{m-1} \delta_j x^j \in F[x]. \]

Thus

\[T_0^*(Z) = \sum_{j=0}^{m-1} \alpha_j + \sum_{j=0}^{m-1} \beta_j + \sum_{j=0}^{m-1} \gamma_j + \sum_{j=0}^{m-1} \delta_j. \]

For \(d \mid m, d > 1 \) and \(1 \leq i \leq A_d \),

\[T_{d, i}^* \left(\sum_{j=0}^{m-1} \alpha_j a^j \right) \]

\[= \frac{1}{\lambda_{d, i} + \lambda_{d, i}^{-1}} \left[\lambda_{d, i} G_1(\lambda_{d, i}) + \lambda_{d, i}^{-1} G_1(\lambda_{d, i}^{-1}) \right] \]

\[\begin{bmatrix} 0, & G_1(\lambda_{d, i}) + G_1(\lambda_{d, i}^{-1}), & 0 \end{bmatrix}, \]

\[T_{d, i}^* \left(\sum_{j=0}^{m-1} \beta_j a^j b \right) \]

\[= \frac{1}{\lambda_{d, i} + \lambda_{d, i}^{-1}} \left[\lambda_{d, i} G_2(\lambda_{d, i}) + \lambda_{d, i}^{-1} G_2(\lambda_{d, i}^{-1}) \right] \]

\[\begin{bmatrix} 0, & G_2(\lambda_{d, i}) + G_2(\lambda_{d, i}^{-1}), & 0 \end{bmatrix}, \]

\[T_{d, i}^* \left(\sum_{j=0}^{m-1} \gamma_j a^j u \right) \]

\[= \frac{1}{\lambda_{d, i} + \lambda_{d, i}^{-1}} \left[\lambda_{d, i} G_3(\lambda_{d, i}) + \lambda_{d, i}^{-1} G_3(\lambda_{d, i}^{-1}) \right] \]

\[\begin{bmatrix} 0, & G_3(\lambda_{d, i}) + G_3(\lambda_{d, i}^{-1}), & 0, \end{bmatrix} \]

\[\lambda_{d, i} G_3(\lambda_{d, i}) + \lambda_{d, i}^{-1} G_3(\lambda_{d, i}^{-1}) \]

\[\lambda_{d, i} G_3(\lambda_{d, i}) + \lambda_{d, i}^{-1} G_3(\lambda_{d, i}^{-1}) \].
S. Sidana & R. K. Sharma

and

\[T_{d,i}^* \left(\sum_{j=0}^{m-1} \delta_j a_j b_j \right) \]

\[= \frac{1}{\lambda_{d,i} + \lambda_{d,i}^{-1}} \begin{bmatrix}
0 & (\lambda_{d,i}^2 G_d(\lambda_{d,i}) + \lambda_{d,i}^{-2} G_d(\lambda_{d,i}^{-1}), 0, \\
\lambda_{d,i} G_d(\lambda_{d,i}) + \lambda_{d,i}^{-1} G_d(\lambda_{d,i}^{-1}), 0, \\
\lambda_{d,i} G_d(\lambda_{d,i}) + \lambda_{d,i}^{-1} G_d(\lambda_{d,i}^{-1})
\end{bmatrix}. \]

Therefore \(T^*(Z) = 0 \) implies that

\[\sum_{j=0}^{m-1} \alpha_j + \sum_{j=0}^{m-1} \beta_j + \sum_{j=0}^{m-1} \gamma_j + \sum_{j=0}^{m-1} \delta_j = 0 \quad (1) \]

and for \(d \mid m, d > 1 \) and \(1 \leq i \leq A_d \), we get

\[\lambda_{d,i}^{-1} G_1(\lambda_{d,i}) + \lambda_{d,i} G_1(\lambda_{d,i}^{-1}) + \lambda_{d,i} G_2(\lambda_{d,i}) + \lambda_{d,i}^{-1} G_2(\lambda_{d,i}^{-1}) = 0, \]

\[G_1(\lambda_{d,i}) + G_1(\lambda_{d,i}^{-1}) + G_2(\lambda_{d,i}) + G_2(\lambda_{d,i}^{-1}) = 0, \]

\[G_1(\lambda_{d,i}) + G_2(\lambda_{d,i}^{-1}) + \lambda_{d,i}^2 G_2(\lambda_{d,i}) + \lambda_{d,i}^{-2} G_2(\lambda_{d,i}^{-1}) = 0, \]

\[\lambda_{d,i} G_1(\lambda_{d,i}) + \lambda_{d,i}^{-1} G_1(\lambda_{d,i}^{-1}) + \lambda_{d,i} G_2(\lambda_{d,i}) + \lambda_{d,i}^{-1} G_2(\lambda_{d,i}^{-1}) = 0, \]

\[G_2(\lambda_{d,i}) + G_2(\lambda_{d,i}^{-1}) + G_1(\lambda_{d,i}) + G_1(\lambda_{d,i}^{-1}) = 0, \]

\[G_3(\lambda_{d,i}) + G_3(\lambda_{d,i}^{-1}) + \lambda_{d,i} G_3(\lambda_{d,i}) + \lambda_{d,i}^{-1} G_3(\lambda_{d,i}^{-1}) = 0, \]

\[\lambda_{d,i} G_3(\lambda_{d,i}) + \lambda_{d,i}^{-1} G_3(\lambda_{d,i}^{-1}) + \lambda_{d,i} G_4(\lambda_{d,i}) + \lambda_{d,i}^{-1} G_4(\lambda_{d,i}^{-1}) = 0. \]

The set of Eqs. (2) imply that

\[G_1(\lambda_{d,i}) = G_1(\lambda_{d,i}^{-1}) = G_2(\lambda_{d,i}) = G_2(\lambda_{d,i}^{-1}) = 0 \]

for \(d \mid m, d > 1 \) and \(1 \leq i \leq A_d \), because the determinant of the matrix

\[
\begin{bmatrix}
\lambda_{d,i}^{-1} & \lambda_{d,i} & \lambda_{d,i}^{-1} & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & \lambda_{d,i}^2 & \lambda_{d,i}^{-2} \\
\lambda_{d,i} & \lambda_{d,i}^{-1} & \lambda_{d,i} & \lambda_{d,i}^{-1}
\end{bmatrix}
\]

is equal to \((\lambda_{d,i} - \lambda_{d,i}^{-1})^4\) which is non-zero as \(m \) is odd.

Similarly, the set of Eqs. (3) imply that

\[G_3(\lambda_{d,i}) = G_3(\lambda_{d,i}^{-1}) = G_4(\lambda_{d,i}) = G_4(\lambda_{d,i}^{-1}) = 0. \]

Thus \(\lambda_{d,i} \) and \(\lambda_{d,i}^{-1} \) are roots of \(G_l(x) \) for all \(l = 1, 2, 3, 4 \), for all \(d \mid m, d > 1 \) and \(1 \leq i \leq A_d \). So for all \(d \mid m, d > 1 \), every irreducible factor \(\Phi_d(x) \) divides \(G_l(x) \)
for all \(l = 1, 2, 3, 4 \). Since all factors of \(\Phi_d(x) \) are relatively co-prime, therefore, \(1 + x + x^2 + \cdots + x^{m-1} \) divides \(G_l(x) \) for all \(l = 1, 2, 3, 4 \).

Hence
\[
\alpha_r = \alpha, \quad \beta_r = \beta, \quad \gamma_r = \gamma \quad \text{and} \quad \delta_r = \delta \quad \text{for all} \quad 0 \leq r \leq m - 1.
\]

Equation (1) implies
\[
\text{dim}(J) = \delta
\]

so that \(\text{dim}(F_{\lambda_d}) \leq \delta \leq 1 \).

Thus \(\ker T^* = Ff_1 + Ff_2 + Ff_3 \).

Since the characteristic of \(F \) is 2, therefore \(f_1^2 = 0, f_2^2 = 0 \) and \(f_3^2 = 0 \). Also for \(1 \leq i, j \leq 3, f_i \) and \(f_j \) commute as
\[
f_if_j = \sum_{i=0}^{m-1} a^i + \sum_{t=0}^{m-1} a^t b + \sum_{t=0}^{m-1} a^t u + \sum_{t=0}^{m-1} a^t bu.
\]

It follows that every element of \(\ker T^* \) is nilpotent element of nilpotency index 2.

Consequently, every element is quasiregular with quasi-inverse as itself. Thus \(\ker T^* \) is a quasiregular ideal of \(F[L] \), which implies that \(\ker T^* \subseteq J(F[L]) \).

We claim that the dimension of \(F \oplus (\bigoplus_{d|m} \bigoplus_{i=1} A_d \bigoplus_{i=1} 3(F(\lambda_{d,i} + \lambda_{d,i}^{-1}))) \) over \(F \) is
\[
4m - 3.
\]

By Lemma 2.3, we find that for all \(i, 1 \leq i \leq A_d \),
\[
[F(\lambda_{d,i} + \lambda_{d,i}^{-1}) : F] = \begin{cases}
\phi(d) / t_d & \text{if } k_d \text{ is even and } q^{k_d/2} \equiv -1 \pmod{d}, \\
8\phi(d) / t_d & \text{otherwise},
\end{cases}
\]

so that \(\dim_F(\bigoplus_{i=1} A_d \bigoplus_{i=1} 3(F(\lambda_{d,i} + \lambda_{d,i}^{-1}))) = 4\phi(d) \).

Thus
\[
\dim_F \left(F \oplus \bigoplus_{d|m} \bigoplus_{i=1} A_d \bigoplus_{i=1} 3(F(\lambda_{d,i} + \lambda_{d,i}^{-1})) \right) = 1 + 4 \sum_{d|m} \phi(d) = 1 + 4(m - 1) = 4m - 3.
\]

This implies that \(T^* \) is onto and hence \(J(F[L]) \subseteq \ker T^* \).
Thus
\[
F[L]/J(F[L]) \cong F \oplus \bigoplus_{d \mid m}^{A_d} 3(F(\lambda_d, i + \lambda_d^{-1}))
\]

\[
= \begin{cases}
F \oplus \bigoplus_{d \mid m}^{A_d} 3(F(k_d/2))^{\frac{\phi(d)}{2}} & \text{if } k_d \text{ is even and } q^{k_d/2} \equiv -1 \pmod{d} \\
F \oplus \bigoplus_{d \mid m}^{A_d} 3(F(k_d))^{\frac{\phi(d)}{2}} & \text{otherwise}
\end{cases}
\]

\[
\cong F \oplus \bigoplus_{d \mid m}^{A_d} 3(F(e_d))^{\frac{\phi(d)}{2}}
\]

where
\[
e_d = \begin{cases}
k_d/2 & \text{if } k_d \text{ is even and } q^{k_d/2} \equiv -1 \pmod{d}, \\
k_d & \text{otherwise.}
\end{cases}
\]

Consider \(V_1 = 1 + J(F[L])\). An element \(h\) of \(V_1\) is of the form \(h = 1 + a_1f_1 + a_2f_2 + a_3f_3\), where \(a_i \in F\). Also \(f_i\) and \(f_j\) commute for all \(1 \leq i, j \leq 3\). This implies that \(V_1\) is a commutative loop.

Note that
\[
(f_if_j)f_k = f_i(f_jf_k) = 0 \quad \text{for all } i, j, k = 1, 2, 3.
\]

Thus \(V_1\) is an abelian group. Further observe that \(h^2 = 1\) for all \(h \in V_1\), and hence \(V_1 \cong (C_2 \times C_2 \times C_2)^n\). \(\square\)

References

