LIE SOLVABLE RINGS

R. K. SHARMA AND J. B. SRIVASTAVA

ABSTRACT. Let \(\mathcal{L}(R) \) denote the associated Lie ring of an associative ring \(R \) with identity \(1 \neq 0 \) under the Lie multiplication \([x, y] = xy - yx \) with \(x, y \in R \). Further, suppose that the Lie ring \(\mathcal{L}(R) \) is solvable of length \(n \). It has been proved that if 3 is invertible in \(R \), then the ideal \(J \) of \(R \) generated by all elements \([[x_1, x_2], [x_3, x_4]], x_1, x_2, x_3, x_4, x_5 \in R \), is nilpotent of index at most \(\frac{1}{3} \left(19 \cdot 10^{n-3} - 1 \right) \) for \(n \geq 3 \). Also, if 2 and 3 are both invertible in \(R \), then the ideal \(I \) of \(R \) generated by all elements \([x, y], x, y \in R \), is a nil ideal of \(R \). Some applications to Lie solvable group rings are also given.

Let \(R \) be any associative ring with identity \(1 \neq 0 \). We can induce the Lie structure on \(R \) by defining the Lie product \([x, y] = xy - yx \) for \(x, y \in R \). The Lie ring thus obtained is called the associated Lie ring of \(R \) and is denoted by \(\mathcal{L}(R) \). Jennings [1] proved that if \(\mathcal{L}(R) \) is nilpotent then the associative ideal of \(R \) generated by all elements \([[x, y], z], x, y, z \in R \), is a nilpotent ideal of \(R \) and the ideal generated by all \([x, y], x, y \in R \), is nil. In this paper we study the case when \(\mathcal{L}(R) \) is solvable.

1. Lie identities and Lie ideals. Let \(x_1, x_2, \ldots, x_n \in R \); then the left normed commutators are defined by \([x_1, x_2] = x_1x_2 - x_2x_1 \) and, inductively,

\[
[x_1, x_2, \ldots, x_n] = [[[x_1, x_2], [x_3, \ldots, x_{n-1}]], x_n].
\]

We shall repeatedly use the following well-known identities, which are easy to prove.

Lemma 1.1 For \(x, y, z \in R \), the following identities are true:
(i) \([x, y] = -[y, x] \).
(ii) \([x, y, z] + [y, z, x] + [z, x, y] = 0 \) (Jacobi identity).
(iii) \([xy, z] = x[y, z] + [x, z]y \).
(iv) \([x, yz] = y[x, z] + [x, y]z \).

For any two subsets \(A \) and \(B \) of \(R \), by \([A, B] \) we shall denote the additive subgroup of \(R \) generated by all elements \([a, b] \) with \(a \in A \) and \(b \in B \). A Lie ideal of \(R \) means an ideal of the Lie ring \(\mathcal{L}(R) \). Thus, \(U \) is a Lie ideal if \(U \) is an additive subgroup of \(R \) and \([a, b] \in U \) for \(a \in U \) and \(b \in R \). It is easy to see that \([U, V] \) is a Lie ideal if \(U \) and \(V \) are Lie ideals.

Received by the editors April 27, 1984.
1980 Mathematics Subject Classification. Primary 16A68.
Key words and phrases. Lie solvable ring, associated Lie ring.

©1985 American Mathematical Society
0002-9939/85 $1.00 + $.25 per page
Let U be any Lie ideal of R. In view of the identity $ur = [u, r] + ru$, $u \in U$, $r \in R$, the right and left ideals of R, generated by U, are identical. In particular, $RU = UR$ is the two-sided ideal generated by U. Also, U^n consists of finite sums of m-fold products $u_1 u_2 \cdots u_m$ with $u_1, u_2, \ldots, u_m \in U$. Therefore, $(UR)^n = U^nR$ for any Lie ideal U and for any positive integer n.

The derived chain of any Lie ideal V is given by

$$U = \delta^{(0)}(U) \supseteq \delta^{(1)}(U) \supseteq \delta^{(2)}(U) \supseteq \cdots \supseteq \delta^{(n)}(U) \supseteq \cdots$$

where $\delta^{(n+1)}(U) = [\delta^{(n)}(U), \delta^{(n)}(U)]$, $n \geq 0$. We say that $\mathcal{L}(R)$ is solvable of length n if $\delta^{(n)}(\mathcal{L}(R)) = (0)$, n least.

Further, the lower central chain of V is defined by

$$U = \gamma_1(U) \supseteq \gamma_2(U) \supseteq \gamma_3(U) \supseteq \cdots \supseteq \gamma_n(U) \supseteq \cdots$$

where $\gamma_{n+1}(U) = [\gamma_n(U), U]$, $n \geq 1$. The Lie ring $\mathcal{L}(R)$ is nilpotent of class n if $\gamma_{n+1}(\mathcal{L}(R)) = (0)$, n least.

We proceed with a sequence of lemmas needed for our further work. These lemmas are also of independent interest.

Lemma 1.2. Let U be a Lie ideal of R; then

(i) $[U^n, \mathcal{L}(R)] \subseteq [U, \mathcal{L}(R)] \subseteq U$.

(ii) $[\delta^{(1)}(U)R, \delta^{(1)}(\mathcal{L}(R))R] \subseteq U$.

Proof. (i) follows by induction on m and the identity $[u_1 u_2, r] = [u_1, u_2 r] + [u_2, u_1 r]$.

To prove (ii), for $u_1, u_2, u_3, u_4 \in U$ and $r, s \in R$, we have the identity

$$[[u_1, u_2 r], [u_3, u_4 s]] - [u_2 [u_1, r], u_4 [u_3, s]] - [u_2 [u_1, r], [u_3, u_4 s]] + [u_4 [u_3, s], [u_1, u_2 r]].$$

This can easily be obtained by expanding the first term on the right and using Lemma 1.1.

Now the right side belongs to U by (i). The lemma follows easily.

Lemma 1.3. Let U be a Lie ideal of R; then

(i) $(\delta^{(1)}(U))^2 \cdot \delta^{(1)}(\mathcal{L}(R)) \subseteq U + [\delta^{(1)}(U), \mathcal{L}(R)]R$, and

(ii) $(\delta^{(1)}(U))^2 \cdot \delta^{(2)}(\mathcal{L}(R)) \subseteq \delta^{(1)}(U) + [\delta^{(1)}(U), \mathcal{L}(R)]R$.

Proof. Let v_1, v_2 be two-fold commutators in the elements of U and let $r_1, r_2 \in R$. Expanding the first term on the right and using Lemma 1.1, we get the identity

$$v_1 v_2 [r_1, r_2] = [v_1 r_1, v_2 r_2] - [v_1, v_2 r_2] r_1 - v_1 [r_1, v_2] r_2.$$

By Lemma 1.2(ii), $[v_1 r_1, v_2 r_2] \subseteq U$, and the other two terms clearly belong to $[\delta^{(1)}(U), \mathcal{L}(R)]R$. This proves (i).

Now let w_1, w_2, w_3, w_4 be two-fold commutators in the elements of U, and let s_1, s_2 be two-fold commutators in the elements of $\mathcal{L}(R) = R$. Then the following identity can be obtained by using Lemma 1.1 and expanding the first term on the right:

$$w_1 w_2 w_3 w_4 [s_1, s_2] = [w_1 w_2 s_1, w_3 w_4 s_2] - w_1 w_2 w_3 [s_1, w_4] s_2 - w_1 w_2 [s_1, w_3] w_4 s_2 + w_1 w_2 w_3 w_4 [s_1, w_2] w_4 s_2.$$
The first term on the right, by (i), easily belongs to $\delta^{(1)}(U) + [\delta^{(1)}(U), \mathcal{L}(R)]R$, and all other terms on the right are clearly in $[\delta^{(1)}(U), \mathcal{L}(R)]R$ because it is a two-sided ideal. Thus we get (ii).

This leads to our next lemma. Let J denote the ideal of R generated by all elements $[[x_1, x_2], [x_3, x_4], x_5]$ with $x_1, \ldots, x_5 \in R$. Clearly,

$$J = [\delta^{(1)}(\mathcal{L}(R)), \delta^{(1)}(\mathcal{L}(R)), \mathcal{L}(R)]R = [\delta^{(2)}(\mathcal{L}(R)), \mathcal{L}(R)]R.$$

Lemma 1.4. For any Lie ideal U of R, we have

$$(\delta^{(1)}(U))^4 \cdot J \subseteq [\delta^{(1)}(U), \mathcal{L}(R)]R.$$

Proof. The left side is a finite sum of elements of the type $ab, c]r$, with $a \in (\delta^{(1)}(U))^4$, $b \in \delta^{(2)}(\mathcal{L}(R))$, $c \in \mathcal{L}(R)$, and $r \in R$. But

$$a[b, c] = [ab, c] - [a, c]b.$$

By Lemma 1.3(ii), $ab \in \delta^{(1)}(U) + [\delta^{(1)}(U), \mathcal{L}(R)]R$. Hence,

$$[ab, c] \in [\delta^{(1)}(U), \mathcal{L}(R)]R.$$

Also, by Lemma 1.2(i),

$$a[b, c]r \in [\delta^{(1)}(U), \mathcal{L}(R)]R \quad \text{and the lemma is proved.}$$

Lemma 1.5. For any Lie ideal U of R, we have

$$\delta^{(1)}(U)[\delta^{(1)}(U), \mathcal{L}(R)] \subseteq \gamma_3(U)R.$$

Proof. Let $u_1, u_2, u_3, u_4 \in U$ and $r \in R$. Then the following identity gives the result:

$$[u_1, u_2][u_3, u_4, r] = [[u_3, u_4], [u_1, u_2]r] - u_2[[u_3, u_4], [u_1, r]] - [[u_3, u_4], [u_1, u_2]]r - [u_3, u_4, u_2][u_1, r].$$

Corollary 1.6. Let U be a Lie ideal of R; then

(i) $[\delta^{(1)}(U), \mathcal{L}(R)]^2 \subseteq \gamma_3(U)R$, and

(ii) $J^2 \subseteq \gamma_3(\delta^{(1)}(\mathcal{L}(R)))R$.

Proof. (i) follows by Lemma 1.5 since $[\delta^{(1)}(U), \mathcal{L}(R)] \subseteq \delta^{(1)}(U)$.

(ii) follows from (i) if we put $U = \delta^{(1)}(\mathcal{L}(R))$ and observe that

$$J = [\delta^{(2)}(\mathcal{L}(R)), \mathcal{L}(R)]R = R[\delta^{(2)}(\mathcal{L}(R)), \mathcal{L}(R)].$$

The next lemma is crucial to our further work. Its proof also requires some computations.

Lemma 1.7. Let U be a Lie ideal of a ring R in which 3 is invertible. Then

$$\gamma_3(U)^2 \subseteq \delta^{(2)}(U)R.$$

Proof. It is enough to show that $[u_1, u_2, u_3]u_4, u_5, u_6] \in \delta^{(2)}(U)R$ for all $u_1, \ldots, u_6 \in U$. To do this, we proceed as follows. Let

$$a = [u_1, u_2, u_3][u_4, u_5, u_6] + [u_1, u_2, u_6][u_5, u_4, u_3].$$
Observe that the second term can be obtained from the first by interchanging \(u_5\) (the last entry of the first bracket) and \(u_6\) (the first entry of the second bracket). Expanding \([[u_4, u_6u_5, u_3], [u_1, u_2]]\) properly, we can easily get
\[
a = [[u_4, u_6u_5, u_3], [u_1, u_2]] + [[u_1, u_2, u_3], [u_6, u_4, u_3]]
- u_6[[u_4, u_5, u_3], [u_1, u_2]] - [[u_4, u_6, u_3], [u_1, u_2]]u_5
- [u_6, u_3][[u_4, u_5], [u_1, u_2]] - [[u_6, u_3], [u_1, u_2]][u_4, u_5]
- [u_4, u_6][[u_5, u_3], [u_1, u_2]] - [[u_4, u_6], [u_1, u_2]][u_5, u_3].
\]
Certainly, \(a \in \delta^{(2)}(U)R\).

In an exactly similar manner,
\[
b = [u_1, u_2, u_4][u_6, u_5, u_3] + [u_1, u_2, u_6][u_4, u_5, u_3] \in \delta^{(2)}(U)R.
\]

We now turn to the case when the last entry of the first bracket and the last entry of the second bracket are interchanged.

Expanding \([[u_6, u_4], [[u_1, u_2], u_3u_5]]\) and rearranging terms, we get
\[
c = [u_1, u_2, u_3][u_6, u_4, u_5] + [u_1, u_2, u_3][u_6, u_4, u_3]
- [u_6, u_4][[u_1, u_2, u_3], u_5] - [[u_6, u_4], [u_1, u_2, u_3]]u_5.
\]
This shows that \(c \in \delta^{(2)}(U)R\).

Arguments, as in the case of \(c\), will also give
\[
d = [u_1, u_2, u_3][u_6, u_5, u_4] + [u_1, u_2, u_4][u_6, u_5, u_3] \in \delta^{(2)}(U)R
\]
and
\[
e = [u_1, u_2, u_3][u_4, u_5, u_6] + [u_1, u_2, u_6][u_4, u_5, u_3] \in \delta^{(2)}(U)R.
\]
Finally, by using Lemma 1.1(ii) and rearranging terms, we get
\[
3[u_1, u_2, u_3][u_4, u_5, u_6] = a - b - c + d + 2e \in \delta^{(2)}(U)R.
\]
Since 3 is invertible in \(R\),
\[
[u_1, u_2, u_3][u_4, u_5, u_6] \in \delta^{(2)}(U)R.
\]
This completes the proof.

Corollary 1.8. If 3 is invertible in \(R\), then \(J^4 \subseteq \delta^{(3)}(\mathcal{L}(R))R\).

Proof. \(J^2 \subseteq \gamma_3(\delta^{(1)}(\mathcal{L}(R)))R\) by Corollary 1.6. Therefore,
\[
J^4 \subseteq (\gamma_3(\delta^{(1)}(\mathcal{L}(R))))^2R
\subseteq \delta^{(2)}(\delta^{(1)}(\mathcal{L}(R)))R \quad (\text{by Lemma 1.7})
= \delta^{(3)}(\mathcal{L}(R))R.
\]

The next lemma does not assume that 3 is invertible in \(R\) and has a much simpler proof than Lemma 1.7.

Lemma 1.9. Let \(U\) be a Lie ideal of \(R\) such that \(U\) is also a subring of \(R\); then
\((\gamma_3(U))^2 \subseteq \delta^{(2)}(U)R\).
PROOF. Expanding the first term on the right, we have

\[[u_1, u_2, u_3][u_4, u_5, u_6] = [[[u_4, u_5], [u_1, u_2]u_6, u_3]] \\
+ [[[u_1, u_2, u_3], [u_4, u_5]]u_6 + [u_1, u_2][u_6, u_3], [u_4, u_5]] \\
+ [[u_1, u_2], [u_4, u_5]][u_6, u_3] \]

for all \(u_1, \ldots, u_6 \in U \). Clearly the right side belongs to \(\delta^2(U)R \), as desired.

COROLLARY 1.10. For any ring \(R \), \((\gamma_3(\mathcal{L}(R)))^2 \subseteq \delta^2(\mathcal{L}(R))R \).

2. Main results. In this section we prove our main theorems.

THEOREM 2.1. Let \(R \) be a ring in which \(3 \) is invertible, and let its associated Lie ring \(\mathcal{L}(R) \) be solvable of length \(n \geq 3 \). Then the ideal \(J \) of \(R \), generated by all elements \([[x_1, x_2], [x_3, x_4], x_5] \) with \(x_1,\ldots,x_5 \) in \(R \), is nilpotent of index at most \(\frac{1}{3}(19 \cdot 10^{n-3} - 1) \).

PROOF. If \(\mathcal{L}(R) \) is solvable of length \(n = 3 \), then \(\delta^3(\mathcal{L}(R)) = (0) \). By Corollary 1.8, \(J^4 = (0) \). So the theorem is true for \(n = 3 \).

We assume that \(n \geq 4 \). Now for any Lie ideal \(U \) of \(R \), using Lemmas 1.4 and 1.5, we get

\[\delta^3(U)(\delta^4(U))^4J \subseteq \gamma_3(U)R. \]

Thus, by Lemma 1.7,

\[\left\{ (\delta^3(U))^5J \right\}^2 \subseteq (\gamma_3(U))^2R \subseteq \delta^2(U)R. \]

Putting \(U = \delta^{m-2}(\mathcal{L}(R)) \), we get

\[\left\{ (\delta^{m-1}(\mathcal{L}(R)))^5J \right\}^2 \subseteq \delta^m(\mathcal{L}(R))R \]

for all \(m \geq 4 \).

Thus, for \(m = 4 \), we have

\[\left\{ (\delta^3(\mathcal{L}(R)))^5J \right\}^2 \subseteq \delta^4(\mathcal{L}(R))R \]

and, using Corollary 1.8,

\[\left\{ (J^4)^5J \right\}^2 = J^{1 + 2 \cdot 10^2} \subseteq \delta^4(\mathcal{L}(R))R. \]

We claim that, by induction on \(m \),

\[J^{2(1 + 10 + 10^2 + \cdots + 10^{n-4} + 2 \cdot 10^{n-3})} \subseteq \delta^m(\mathcal{L}(R))R \]

for all \(m \geq 4 \).

Assume this is true for \(m \) and use \(((\delta^m(\mathcal{L}(R)))^5J)^2 \subseteq \delta^{m+1}(\mathcal{L}(R))R \) to prove it for \(m + 1 \). Thus,

\[J^N \subseteq \delta^n(\mathcal{L}(R))R = (0), \]

where

\[N = 2\left(1 + 10 + 10^2 + \cdots + 10^{n-4} + 2 \cdot 10^{n-3}\right) = \frac{1}{3}(19 \cdot 10^{n-3} - 1), \]

as desired.
Next, we prove that the ideal I of R, generated by all elements $[x, y], x, y \in R$, is a nil ideal if 2 and 3 are both invertible in R. First, we need the following

Lemma 2.2. Let R be a ring in which 2 is invertible. Then

(i) $[[x_1, x_2], [x_3, x_4]]^3 \in J$ for all $x_1, \ldots, x_4 \in R$,

(ii) $[x, y, z]^{10} \in J$ for all $x, y, z \in R$, and

(iii) $[x, y]^{21} \in J$ for all $x, y \in R$.

Proof. Expanding the first term on the right, we get

$$2[[x_1, x_2], [x_3, x_4]]^2 = [[x_1, x_2]^2, [x_3, x_4], [x_3, x_4]]$$

$$- [x_1, x_2][[x_1, x_2], [x_3, x_4], [x_3, x_4]]$$

$$- [[x_1, x_2], [x_3, x_4], [x_3, x_4]][x_1, x_2].$$

Thus,

$$2[[x_1, x_2], [x_3, x_4]]^2 = [[x_1, x_2]^2, [x_3, x_4], [x_3, x_4]] \pmod{J}.$$

Also,

$$2[[x_1, x_2]^2, [x_3, x_4], [x_3, x_4]] [[x_1, x_2], [x_3, x_4]]$$

$$= [[[x_1, x_2]^2, [x_3, x_4], [x_3, x_4]], [x_1, x_2], [x_3, x_4]]$$

$$+ [[[x_1, x_2]^2, [x_3, x_4], [x_3, x_4], [x_1, x_2], [x_3, x_4]]]$$

$$+ [[[x_1, x_2]^2, [x_3, x_4], [x_3, x_4], [x_1, x_2], [x_3, x_4]]$$

$$= 0 \pmod{J}.$$

Combining, we get $4[[x_1, x_2], [x_3, x_4]]^3 \in J$, and, since 2 is invertible, we get (i).

To prove (ii), observe the identity

$$[x, y, z]^2 = [[[x, y], [x, y]z, z]] + [[x, y, z], [x, y]]z,$$

and use (i), keeping in view that

$$r[[x_1, x_2], [x_3, x_4]] = [[x_1, x_2], [x_3, x_4]]r - [[x_1, x_2], [x_3, x_4], r].$$

Similarly, to prove (iii) it is enough to use (i) and see that

$$[x, y]^3 = [[[xy, y], [yx, x]] + [[[y, x], [xy, y]], x] + [[[xy, x], [x, y]]y.$$

Note that powers given in Lemma 2.2 are not the best possible; the purpose is served by proving that some power in each case belongs to J.

Theorem 2.3. Let R be a ring in which both 2 and 3 are invertible, and let I_0 be the ideal of R generated by all elements $[x, y, z], x, y, z \in R$. If the associated Lie ring $\mathcal{L}(R)$ is solvable, then I_0 is a nil ideal.

Proof. Clearly, $I_0 = \gamma_5(\mathcal{L}(R))R = R\gamma_5(\mathcal{L}(R))$. By Corollary 1.10, $I_0^2 = (\gamma_5(\mathcal{L}(R)))^2R \subseteq \delta(\mathcal{L}(R))R$. Now suppose $\mathcal{L}(R)$ is solvable of length n, so $\delta^{(n)}(\mathcal{L}(R)) = (0)$. If $n = 1, I_0 = (0)$. If $n = 2, I_0^2 = (0)$. So assume $n \geq 3$.

Let $\alpha \in I_0$; then $\alpha^2 \in I_0^2 \subseteq \delta^{(2)}(\mathcal{L}(R))R$ and, hence,
\[
\alpha^2 = \sum_{i=1}^{m} ([x_i, y_i], [u_i, v_i])r_i = \sum_{i=1}^{m} \alpha_ir_i,
\]
where $\alpha_i = ([x_i, y_i], [u_i, v_i])$ for $i = 1, 2, \ldots, m$. By Lemma 2.2(i) each $\alpha_i \in J$. Also, $[\alpha_i, r] \in J$ for every $r \in R$. Further, $\alpha_i\beta\alpha_i = \alpha_i^2\beta - \alpha_i[\alpha_i, \beta]$ for any $\beta \in R$. Thus,
\[
\alpha_i\beta\alpha_i = \alpha_i^2\beta \quad (\text{mod } J)
\]
and, similarly,
\[
\alpha_i\beta\alpha_i\theta\alpha_i = \alpha_i^2\beta\theta \quad (\text{mod } J) = 0 \quad (\text{mod } J)
\]
as $\alpha_i^2 \in J$.

The above arguments, applied to $(\alpha^2)^k = (\sum_{i=1}^{m} \alpha_ir_i)^k$ for $k \geq 2m + 1$, immediately give that $(\alpha^2)^k \in J$ for $k \geq 2m + 1$. But, by Theorem 2.1, J is nilpotent, hence $((\alpha^2)^k)^N = 0$ for suitable N. This proves that α is nilpotent for every $\alpha \in I_0$. That is, I_0 is a nil ideal.

In fact, we are able to obtain a much stronger result.

Theorem 2.4. Let R be a ring in which both 2 and 3 are invertible, and let I be the ideal of R generated by all elements $[x, y], x, y \in R$. If the associated Lie ring $\mathcal{L}(R)$ is solvable, then I is a nil ideal.

Proof. Let $\gamma_2(\mathcal{L}(R)) = \delta^{(1)}(\mathcal{L}(R))R$. Let $\mathcal{L}(R)$ be solvable of length n; then $\delta^{(n)}(\mathcal{L}(R)) = (0)$. Therefore, if $n = 1, I = (0)$.

Let $\alpha \in I$; then
\[
\alpha = \sum_{i=1}^{m} [x_i, y_i]r_i = \sum_{i=1}^{m} \alpha_ir_i,
\]
where $\alpha_i = [x_i, y_i]$. By Lemma 2.2(iii), $\alpha_i^{21} = [x_i, y_i]^{21}$ always belongs to J.

Now,
\[
[x, y]r[x, y] = [x, y]^2r - [x, y][x, y, r] \equiv [x, y]^2r \quad (\text{mod } I_0).
\]
If we take $\alpha^k = (\sum_{i=1}^{m} \alpha_ir_i)^k$ for $k \geq 20m + 1$, then α^k will be a finite sum of k-fold products of elements from $\{\alpha_1r_1, \alpha_2r_2, \ldots, \alpha_mr_m\}$, and in each k-fold product some α_i will be repeated at least 21 times. Collecting repeatedly these factors, by the above process, the k-fold products will be congruent to $\alpha_i^{21}r \mod I_0$. Since $\alpha_i^{21} \in J$, this implies that $\alpha^k = \lambda + \mu$ with $\lambda \in J$ and $\mu \in I_0$. But, by Theorem 2.3, I_0 is a nil ideal, so $\mu' = 0$ for some l. This gives $(\alpha^k)' = \alpha_i^{2l} \in J$. Now use the nilpotency of J to get $(\alpha^{k})^N = 0$. Thus, α is nilpotent and I is a nil ideal.

3. Applications to group rings. Lie solvable group rings were studied by Passi, Passman and Sehgal in [2]. Let $K[G]$ denote the group ring of the group G over the field K with $\text{Char } K = p \geq 0, p \neq 2$. If $p > 0$ we say that a group G is p-Abelian if the commutator subgroup G' is a finite p-group. For convenience, 0-Abelian will mean Abelian. It was proved in [2] that if $\text{Char } K = p \neq 2$, then the associated Lie algebra $\mathcal{L}(K[G])$ of $K[G]$ is solvable if and only if G is p-Abelian. Using Theorem 2.4 we get an alternative proof in characteristic 0 as follows.
Suppose $\text{Char } K = 0$ and $\mathcal{L}(K[G])$ is solvable. Then, by Theorem 2.4, $I = \gamma_2(\mathcal{L}(K[G])) \cdot K[G]$ is a nil ideal of $K[G]$. So, by [3, Theorem 2.3.4, p. 47], $I = (0)$. This gives $\gamma_2(\mathcal{L}(K[G])) = (0)$, i.e., $K[G]$ is commutative. Hence, G is Abelian. Thus, $\mathcal{L}(K[G])$ is solvable if and only if G is Abelian.

Also in $\text{Char } K = p > 0$, $p \neq 2, 3$, we have an advantage. Suppose $\mathcal{L}(K[G])$ is solvable. Then $I = [K[G], K[G]]K[G] = \omega(K[G']) \cdot K[G]$ is a nil ideal of $K[G]$ by Theorem 2.4. Hence, $\omega(K[G']) \cdot K[G]$ is contained in the Jacobson radical $J(K[G])$ of $K[G]$. By [3, Lemma 10.1.13, p. 415], G' is a p-group. Also, $\mathcal{L}(K[G])$ is solvable implies $K[G]$ satisfies a polynomial identity. By [3, Theorem 5.2.14, p. 189], $[G : \Delta(G)] < \infty$ and $\Delta(G)$ is finite, where $\Delta(G)$ is the FC-subgroup of G. Now $G'/G' \cap \Delta(G)$ is a finite p-group, $G' \cap \Delta(G)/\Delta(G)$ is Abelian, and $\Delta(G)$ is a finite p-group implies G', hence G, is solvable. Thus, G' is a locally finite p-group, since it is a solvable p-group. Also, as in [2], if it is proved that G is an FC-group, then G is p-Abelian by the above argument. Perhaps our results lead to a different motivation.

REFERENCES

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY, NEW DELHI 110016, INDIA