The purpose of Mathematical Reports is to provide quick publication of short papers summarizing completed research. Typescripts will be photo-reproduced and papers are limited at most, to six typed pages. Detailed instructions for typing will be found inside the last page.

An issue should appear every two or three months. Authors should check their typescripts carefully since no proofs will be provided. On acceptance of a paper, a page charge at the rate of $15 per page will be requested. Of each paper 50 free reprints will be furnished by the journal.

Subscriptions at the rate of $15 per annum, and all page charges, should be sent to the Editorial Office (1). Those coming from outside Canada and the United States should utilize International Money Orders.

A paper, written in English or French, should be sent either to one of the Fellows listed on the back cover or to Professor G.F.D. Duff (1), accompanied by a detailed version (not for publication), since papers will be refereed.

Mathematical Reports will publish at irregular intervals Memoirs by Fellows reviewing their research activities. They are meant to correspond to the 'inaugural lectures' traditionally presented by fellows of other national academies. Our programme of short papers written or presented by Fellows remains unchanged.

Comptes rendus mathématiques est le titre d'un journal dans lequel sont publiés des articles courts résumant les dernières recherches effectuées. Les textes dactylographiés sont photocopiés. Ils ne doivent pas compter plus de six pages, et leur présentation doit être conforme aux instructions détaillées qui paraissent la dernière page.

Un numéro paraît tous les deux ou trois mois. On conseille aux auteurs de relire leurs textes attentivement, puisqu'aucune épreuve ne leur sera envoyée. Les frais de publication de tout article accepté sont de 15$ la page. Les auteurs recevront gratuitement cinquante exemplaires de leur tirage à part.

L'abonnement, coûtant 15$ par an, et les frais de publication doivent être acquittés au bureau de la rédaction (1). Les abonnés domiciliés ailleurs que le Canada et les États-Unis sont priés de régler par mandat de paiement international.

Accompagnés d'une version détaillée (non destinée à la publication), les articles rédigés en français ou en anglais doivent être adressés à l'un des membres de l'Académie des Sciences, dont la liste figure en dernière page, ou au professeur G.F.D. Duff (1); ils sont soumis à une évaluation avant d'être acceptés.

(1) C.R. Math, Rep., Department of Mathematics, University of Toronto, Toronto, Ontario M5S 1A1.

Sponsored by the departments of mathematics of Queen's University, the Universities of Toronto and Waterloo.

Subventionné par les départements de mathématiques des Universités Queen's, de Toronto et de Waterloo.
ON SOLVABLE LIE IDEALS OF A RING

R.K. Sharma and J.B. Srivastava

Abstract: Let \(R \) be an associative, unitary ring in which \(2 \) is invertible. It is proved that if a Lie ideal \(U \) of \(R \) is solvable then \(\gamma_2(U)R \) is a two sided nil ideal of \(R \).

Let \(R \) be an associative ring with identity and \(\mathcal{L}(R) \) be the associated Lie ring of \(R \) under the Lie multiplication
\[
[x, y] = xy - yx; \quad x, y \in R.
\]

An ideal \(U \) of \(\mathcal{L}(R) \) is called a Lie ideal of \(R \). The identity
\[
ur = [u, r] + ru; \quad u \in U, r \in R
\]
implies that \(UR = RU = RUR \) is the two sided ideal of \(R \) generated by \(U \). For any two Lie ideals \(U \) and \(V \) of \(R \), \([U, V] \) denotes the Lie ideal of \(R \) generated by all \([u, v] \); \(u \in U, v \in V \).

The Commutators are defined left normed, i.e.
\[
[x_1, x_2, \ldots, x_n] = [(x_1, x_2, \ldots, x_{n-1}), x_n], \text{ for } n \geq 3 \quad \text{and} \quad [x_1, x_2] = x_1 x_2 - x_2 x_1
\]
for all \(x_1, x_2, \ldots, x_n \in R \). The derived chain and the lower central chain of a Lie ideal \(U \) of \(R \) are defined by
\[
\delta^{(0)}(U) = U, \quad \delta^{(m)}(U) = [\delta^{(m-1)}(U), \delta^{(m-1)}(U)] \quad \text{for } m \geq 1,
\]
and
\[
\gamma_1(U) = U, \quad \gamma_n(U) = \gamma_{n-1}(U), U \quad \text{for } n \geq 2, \text{ respectively.}
\]

\(U \) is said to be solvable (nilpotent) if for some positive integer \(C \), \(\delta^{(C)}(U) = 0 \) (\(\gamma_{C+1}(U) = 0 \)). \(R \) is said to be Lie solvable (Lie nilpotent) if there exists a positive integer \(n \) such that \(\delta^{(n)}(\mathcal{L}(R)) = 0 \), \(\gamma_{n+1}(\mathcal{L}(R)) = 0 \).
Jennings [1] proved that if a ring \(R \) is Lie nilpotent then \(\gamma_2(\mathcal{Z}(R))R \) is a nil ideal of \(R \). Sharma and Srivastava [3] proved that if a ring \(R \) in which both 2 and 3 are invertible is Lie solvable, then \(\gamma_2(\mathcal{Z}(R))R \) is a nil ideal of \(R \). In case of Lie nilpotent grouprings, we refer to Levin and Sehgal [2] and Sharma and Srivastava [4]. In this paper we take up the case of a solvable Lie ideal \(U \) of a ring \(R \) in which 2 is invertible and prove (Theorem 5) that \(\gamma_2(U)R \) is a two sided nil ideal of \(R \). It is shown that the condition of invertibility of 2 cannot be dropped. Some other related results are also obtained.

We begin with

Lemma 1. For any Lie ideal \(U \) of a ring \(R \),

\[
\gamma_3(U)R^3 \leq \delta^3(U)R
\]

Proof. follows from Lemma 2.4(11) and Theorem 2.7 of [4].

Lemma 2. For any Lie ideal \(U \) of a ring \(R \),

\[
\delta^{(1)}(U), \mathcal{Z}(R) \text{ and } \delta^{(1)}(1) \leq \delta^{(2)}(U)R.
\]

Proof. follows from Lemma 1 and Corollary (1.6(1), [3]).

Lemma 3. Let \(U \) be a Lie ideal of a ring \(R \), then for \(x, y \in U \), \(4(x, y)^3 \in \gamma_3(U)R \).

Proof. We observe that

\[
2 (x, y)^2 = [x^2, y, y] + x[y, x, y] + [y, x, y]x
\]

\[
\equiv [x^2, y, y] \pmod{\gamma_3(U)R}.
\]

And,

\[
2 (x^2, y, x) = [x^2, y, x] + [(x^2, y, y), [x, y]]
\]

\[
+ [x^2, y, y]y + y[x^2, y, x]
\]

\[
\equiv [y^2, x^2, y, x] \pmod{\gamma_3(U)R}.
\]
But \([y^2, x^2, y, x] \in [\langle U^2, \mathcal{X}(R) \rangle, U, U] \subseteq [\langle U, \mathcal{X}(R) \rangle, U, U] \)
\(\subseteq \gamma_3(U) \) by Lemma (1.2(1) (3)).

Hence, \(4(x, y)^3 \in \gamma_3(U)R \)

Lemma 4. Let \(U \) be a Lie ideal of a ring \(R \) in which \(2 \) is invertible.

Then for every \(\alpha \in \delta^2(U)R \) there exists a positive integer \(M \) such that \(\alpha^M \in \delta^2(U)R \).

Proof. Let \(x_i, y_i \in U \) and \(r_i \in R \) for \(i = 1, 2, \ldots, n \).

If \(\alpha = \sum_{i=1}^{n} [x_i, y_i]r_i \in \delta^2(U)R \), then \(\alpha^{2n+1} \) will be a finite sum consisting of \((2n+1)\)-fold products of the elements of the type \(\{x_i, y_i\}r_i \), \(i = 1, 2, \ldots, n \), and in each such \((2n+1)\)-fold product at least one \(\{x_j, y_j\}r_j \) for some \(j = 1, 2, \ldots, n \) will be repeated at least 3-times. Hence \(\alpha^{2n+1} \) is a finite sum of the elements of the type

\[r(x_j, y_j)s(x_j, y_j)t(x_j, y_j)w \]

for some \(r, s, t, w \in R \).

The proof of the lemma follows from the following observation and

Lemma 2

\[r(x_j, y_j)s(x_j, y_j)t(x_j, y_j)w \]
\[= r(x_j, y_j)s(x_j, y_j)^3tw - r(x_j, y_j)s(x_j, y_j)x_j, y_j, tw \]
\[= r(x_j, y_j)s(x_j, y_j)^3tw \pmod{\delta^3(U)R(R)R} \]
\[= rs(x_j, y_j)^3tw + r(x_j, y_j)s(x_j, y_j)^2tw \]
\[= rs(x_j, y_j)^3tw \pmod{\delta^4(U)R(R)R} \]
\[= 0 \pmod{\delta^4(U)R(R)R} \] by Lemma 3

\(M \) can be taken as any positive integer greater or equal to \(\delta(2n+1) \).

We can now easily conclude

Theorem 5. Let \(R \) be a ring in which \(2 \) is invertible. If a Lie ideal \(U \) of \(R \) is solvable, then \(\gamma_2(U)R \) is a two sided nil ideal of \(R \).
Proof. follows by repeated applications of Lemma 4.

We can improve upon the Theorem 2.4 of [3] as

Theorem 6. Let R be a ring in which 2 is invertible. If R is Lie solvable then $\gamma_2(2(R))R$ is a two sided nil ideal of R.

Proof. follows from Theorem 5, for $U=2(R)$.

Theorem 7. Let R be a ring in which 2 is invertible. If a Lie ideal U of R is nilpotent, then $\gamma_2(U)R$ is a two sided nil ideal of R.

Proof. follows from Theorem 5.

Remark 8. The condition of invertibility of 2 in Theorems 5, 6 and 7 can not be dropped, for example, if $R=\mathbb{Z}_2[S_3]$, the group algebra of characteristic 2 of the group of permutations S_3 on three symbols over $\mathbb{Z}_2=\{0,1\}$, and $U=\gamma_2(2(R))$, then it is easy to see that $\delta^{(2)}(U) \subseteq \gamma_2(U)=0$, $(\sigma+\sigma^2) \in \gamma_2(U)$ and $(\sigma+\sigma^2)^k=(\sigma+\sigma^2)^k=0$ for every positive integer k, where $\sigma=(1,2,3)$.

References.

Indian Institute of Technology, Kharagpur (West-Bengal)-721302, INDIA.

Indian Institute of Technology, Mauz Khas, New Delhi-110016, INDIA.

Received May 14, 1991
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.L. Synge (i)</td>
<td>Edmond E. Granirer (e)</td>
</tr>
<tr>
<td>H.S.M. Coxeter (a)</td>
<td>F.H. Clarke (y)</td>
</tr>
<tr>
<td>Gilbert de B. Robinson (a)</td>
<td>S. Halperin (a)</td>
</tr>
<tr>
<td>M.S. Macphail (d)</td>
<td>P. Lancaster (s)</td>
</tr>
<tr>
<td>Israel Halperin (a)</td>
<td>S.A. Cook (a)</td>
</tr>
<tr>
<td>Douglas Derry (c)</td>
<td>D.R. Brillinger (z)</td>
</tr>
<tr>
<td>H.J. Zassenhaus (f)</td>
<td>M.D. Choi (a)</td>
</tr>
<tr>
<td>N.S. Mendelsohn (g)</td>
<td>N.D. Gupta (g)</td>
</tr>
<tr>
<td>W.T. Tutte (h)</td>
<td>V. Snaith (j)</td>
</tr>
<tr>
<td>G.F.D. Duff (a)</td>
<td>Thomas Bloom (a)</td>
</tr>
<tr>
<td>Bernard Banaschewski (j)</td>
<td>K.B. Ranger (a)</td>
</tr>
<tr>
<td>Rimhak Ree (e)</td>
<td>D.A. Dawson (d)</td>
</tr>
<tr>
<td>P.G. Rooney (a)</td>
<td>E.J. Woods (n)</td>
</tr>
<tr>
<td>F.V. Atkinson (a)</td>
<td>J.B. Friedlander (a)</td>
</tr>
<tr>
<td>D.A.S. Fraser (a)</td>
<td>R.M. Kane (u)</td>
</tr>
<tr>
<td>L.A. Lorch (m)</td>
<td>E. A. Perkins (e)</td>
</tr>
<tr>
<td>Paulo Ribenboim (n)</td>
<td>M. Csirgo (d)</td>
</tr>
<tr>
<td>J. Aczél (h)</td>
<td>Lon M. Rosen (e)</td>
</tr>
<tr>
<td>J.H.H. Chalk (a)</td>
<td>C.L. Stewart (h)</td>
</tr>
<tr>
<td>Robert P. Langlands (p)</td>
<td>George A. Elliott (v)</td>
</tr>
<tr>
<td>Donald Bures (e)</td>
<td>J.S. Feldman (e)</td>
</tr>
<tr>
<td>George A. Grätzner (g)</td>
<td>C.K. Gupta (g)</td>
</tr>
<tr>
<td>A.H. Lachlan (q)</td>
<td>A.B. Borodin (a)</td>
</tr>
<tr>
<td></td>
<td>J.E. Marsden (z)</td>
</tr>
<tr>
<td></td>
<td>J.N.K. Rao (d)</td>
</tr>
</tbody>
</table>

(a) Depts. of Math., Stat. and C.S., University of Toronto, Toronto, Ont. M5S 1A1
(b) Dept. of Math., University of Victoria, Victoria, B.C. V8W 2Y2
(c) Dept. of Math., University of Alberta, Edmonton, Alberta T6G 2G1
(d) Dept. of Math., Carleton University, Ottawa, Ontario K1S 5B6
(e) Dept. of Math., University of British Columbia, Vancouver, B.C. V6T 1W5
(f) Dept. of Math., Ohio State University, Columbus, Ohio 43210, U.S.A.
(g) Dept. of Math., University of Manitoba, Winnipeg, Manitoba R3T 2N2
(h) Faculty of Math., University of Waterloo, Waterloo, Ontario N2L 3G1
(i) Institute for Advanced Studies, Dublin 4, Ireland
(j) Dept. of Math., McMaster University, Hamilton, Ontario L8S 4K1
(k) Dept. of Math., McGill University, Montréal, Québec H3C 3G1
(m) Dept. of Math., York University, Downsview, Ontario M3J 1P3
(n) Dept of Math. and Stat., Queen's University, Kingston, Ontario K7L 3N6
(q) Dept. of Math., Simon Fraser University, Burnaby, B.C. V5A 1S6
(r) Dept. of Math., Dalhousie University, Halifax, N.S. B3B 3J5
(s) Dept. of Math. and Stat., University of Calgary, Calgary, Alberta T2N 1N4
(u) Dept. of Math., University of Western Ontario, London, Ontario N6A 5B9
(v) Maths. Institute, Copenhagen University, Copenhagen, Denmark
(w) Dept. of Math., University of Ottawa, Ottawa, Ontario K1N 9B4
(y) C.R.M., Université de Montréal, C.P. 6128, Succ. A., Montreal, P.Q. H3C 3J7
(z) Dept. of Stats., University of California, Berkeley, CA 94720, U.S.A.
Contents

P. Fuchs
A note on the Granville-Heath-Brown theorem 61

A. Benassi
La clôture séparable du corps des séries formelles généralisées 66

D. Nour El Abidine
Sur le groupe des classes d'un anneau intégre 69

C. Farsi and N. Watling
Fixed point subalgebras of the rotation algebra 75

J. Gutiérrez
A polynomial decomposition algorithm over factorial domains 81

M. Yamada
An approach to Wieferich's condition 87

I. Fleischer
A lattice theoretic look at some ring theoretical radicals 93

M. El Azhari
Sur la continuité des homomorphismes d'algèbres 99

G. Almkvist and A. Meurman
Values of Bernoulli polynomials and Hurwitz's zeta function at rational points 104

A. Benassi
Le Théorème de Rolle sur le corps des séries formalles généralisées 109

R. K. Sharma and J. B. Srivastava
On solvable Lie ideals of a ring 115

Mailing Addresses 119

ISSN 0706-1994
Second class mail Registration 5424
ON UNITS IN \(ZD_8 \)

R. K. SHARMA and S. GANGOPADHYAY

Indian Institute of Technology
Department of Mathematics
Kharagpur (West Bengal) 721302, India

Communicated by Peter Hilton

The derived and lower central chains have been studied for the group of units of augmentation 1 in the integral group ring of the dihedral group of order 8.

1. Introduction

Let \(G \) be a finite group, \(Z \) the ring of integers and \(ZG \) the integral group ring of \(G \). An invertible element \(\sigma = \sum a \sigma \in ZG \) is called a unit of augmentation 1 in \(ZG \) if \(\Sigma a = 1 \).

Let \(D_8 = \langle a, b : a^4 = 1, b^2 = 1, ab = ba^{-1} \rangle \) be the dihedral group of order 8 and let the group of units of augmentation 1 in the integral group ring \(ZD_8 \) be denoted by \(V = V(ZD_8) \). Dennis [1] obtained the following presentation of \(V \) in terms of generators and relations:

\[
V = \langle a, b, A, B, C : a^4 = b^2 = 1, ab = ba^{-1}, aAa^{-1} = B^{-1}, aBa^{-1} = A^{-1}, \\
aCa^{-1} = C^{-1}, bAb = B, bB = A, bC = AC^{-1}B \rangle \quad (\ast)
\]

Here \(\{A, B, C\} \) generates a free group of rank 3 in \(V \). We shall denote it by \(F_3 \). For any \(x, y \in V \), the commutator of \(x \) and \(y \) is denoted by \((x, y) := xyx^{-1}y^{-1} \). Clearly \(x \) and \(y \) commute if and only if \((x, y) = 1 \). This fact is also denoted some times by writing \(x \equiv y \), particularly when \(x \) and \(y \) are generators of a group \(G \). Furthermore, if \(x \) commutes with both \(y \) and \(z \), then this fact is denoted by \(x \equiv \{y, z\} \). For any two subsets \(X, Y \) of \(V \), \((X, Y) := \{(x, y) : x \in X, y \in Y\} \). However, when \(X, Y \) are subgroups of \(V \) then \((X, Y) \) will mean the subgroup \(\{(x, y) : x \in X, y \in Y\} \). Further, let \(V \supseteq V^{(i)} \supseteq V^{(i+1)} \supseteq \cdots \supseteq V^{(n)} \supseteq \cdots \) and \(V = \gamma_1(V) \supseteq \gamma_2(V) \supseteq \cdots \supseteq \gamma_n(V) \supseteq \cdots \) respectively, be the derived and lower central chains of \(V \).

In this note, we prove that \(V^{(i)} \) is a free group of infinite rank for every \(i \geq 2 \). Further, we prove that \(\gamma_n(V) \) is a free group of rank \(129 \).

Let the group \(G \) be presented as

\[
(a_1, \ldots, R_1, \ldots)
\]

and \(H \) be a subgroup of \(G \). Let \(K \) be a right coset representative system for \(G \bmod H \) then \(K \) consists of elements of \(G \) each of which comes from a distinct right coset of \(H \) in

\[1\] thanks the NBHM for the research grant awarded to him.

AMS subject classification: 16S34, 16U60.