N-ADDITIVE MAPPING

R.K. Sharma, B. Prajapati
Department of Mathematics
Indian Institute of Technology, Delhi
Hauz Khas, New Delhi, 110016

S.K. Shah
Department of Mathematics
Sri Venkateswara College,
University of Delhi,
Dhaula Kuan, New Delhi, 110021

Received February 19, 2009

Abstract

Let R be a prime ring and M a trace of an n-additive mapping from R^n into S, the central closure of R, such that $M(s, s, \ldots, s)[M(s, s, \ldots, s), s] + [M(s, s, \ldots, s), s]M(s, s, \ldots, s) = 0 \forall s \in R$. Let $\binom{2n}{n}$ be invertible in C, the extended centroid of R and suppose char $R = 0$ or char $R > 2n$ then it is proved that there exist mappings λ_i of R into C such that $M(s, s, \ldots, s)^2 = \sum_{i=0}^{2n} \lambda_i(s)s^{2n-i}$. Further, if R is not algebraic of bounded degree $\leq 2n$, then it is proved that for each $i = 1, 2, \ldots, 2n$, $\lambda_i(s)$ is an i-additive mapping.

1980 Mathematics Subject Classification: Primary 16A72; Secondary 16A12, 16A68, 16A70.

Keywords and Phrases: Prime Ring, Central Closure, Extended Centroid, Traces of symmetric n-additive mapping.

*Corresponding Author {email: rksharma@maths.iitd.ac.in}

Copyright © 2008 by Hadronic Press Inc., Palm Harbor, FL 34682, U.S.A.
Let R be a prime ring and C be the extended centroid of R. Let A be the additive group of R. A mapping M from A^n to R is said to be n-additive if $M(s_1, s_2, \ldots, s_n) = M(s_1, s_2, \ldots, s_i + t_i, \ldots, s_n) \forall i = 1, 2, \ldots, n$. M is said to be symmetric if $M(s_1, s_2, \ldots, s_n) = M(s_{\sigma(1)}, s_{\sigma(2)}, \ldots, s_{\sigma(n)}) \forall \sigma \in S_n$, the symmetric group of n-symbols. We denote the Lie product $st - ts$ of s and t by $[s, t]$ and Jordan product $st + ts$ of s and t by $s \circ t$. The mapping $T_M : A \rightarrow R$ defined by $T_M(s) = M(s, s, \ldots, s)$ is called the trace of M.

In this paper we prove the following two main theorems:

Theorem 1:

Let R be a prime ring and $M : R^n \rightarrow S$ an n-additive mapping such that $M(s, s, \ldots, s)[M(s, s, \ldots, s), s] + [M(s, s, \ldots, s), s]M(s, s, \ldots, s) = 0 \forall s \in R$. Suppose that $\binom{2n}{n}$ is invertible in C and char $R = 0$ or char $R > 2n$. Then for every $s \in R$, there exist $\lambda_0, \lambda_1, \ldots, \lambda_{2n} \in C$ such that $M(s, s, \ldots, s)^2 = \sum_{i=0}^{2n} \lambda_i s^{2n-i}$.

Theorem 2:

Let R be a prime ring and $M : R^n \rightarrow S$ an n-additive mapping such that $M(s, s, \ldots, s)[M(s, s, \ldots, s), s] + [M(s, s, \ldots, s), s]M(s, s, \ldots, s) = 0 \forall s \in R$. Further, suppose $\binom{2n}{n}$ is invertible in C and char $R = 0$ or char $R > 2n$ and R is not algebraic of bounded degree $\leq 2n$ over C. Then for every $s \in R$, there exists a $\lambda_0 \in C$ and mappings $\lambda_i : R \rightarrow C$, $i = 1, 2 \ldots, 2n$ such that each λ_i is the trace of an i-additive mapping and $M(s, s, \ldots, s)^2 = \sum_{i=0}^{2n} \lambda_i(s) s^{2n-i}$.

Let A and B be two additive abelian groups. Given a mapping $N : A \rightarrow B$ define a mapping \tilde{N} on a nonempty finite subset of $A \times \mathbb{Z}$ inductively

1. $\tilde{N}((s, k)) = N(s)$ for $(s, k) \in A \times \mathbb{Z}$

2. $\tilde{N}(\Omega) = N(\bigcup_{(s, k) \in \Omega} s) - \sum_{(s, k) \in \Omega} \tilde{N}(\Gamma)$ for $\Omega \subseteq A \times \mathbb{Z}$ with $1 < |\Omega| < \infty$.

We shall need the following two results:

Lemma: [2, Lemma 1.2] Let R be a prime ring with extended centroid C and central closure S. Let a_i, b_i, c_j, d_j be elements in S such that $\sum_{i=1}^m a_i b_i + \sum_{j=1}^n c_j s d_j = 0 \forall s \in R$. If a_1, a_2, \ldots, a_m are linearly independent over C, then each b_i is a linear combination of d_1, d_2, \ldots, d_n over C.

Theorem: [2, Theorem 2.4] Let A and B be additive abelian groups and n a natural number. Suppose that $n!$ is invertible in B, that is, for each $s \in B$ there exists a unique $t \in B$ such that $(n!)t = s$. Then a mapping
N : A → B is the trace of some n-additive mapping iff both the following conditions hold:

1. \(N(ks) = k^nN(s) \) for any \(k \in \mathbb{Z} \) and \(s \in A \)

2. \(\bar{N}(\Omega) = 0 \) for any \(\Omega \subseteq A \times \mathbb{Z} \) with \(|\Omega| = n + 1 \).

Let \(M : \mathbb{R}^n \to S \) be an n-additive mapping such that

\[
M(s, s, \ldots, s)[M(s, s, \ldots, s), s] + [M(s, s, \ldots, s), s]M(s, s, \ldots, s) = 0
\]

\(\forall s \in \mathbb{R} \). For \(s = \sum_{i=1}^{2n+1} s_i \) where \(s_i \in \mathbb{R}, i = 1, 2, \ldots, 2n + 1 \) we have

\[
M\left(\sum_{i=1}^{2n+1} s_i, \sum_{i=1}^{2n+1} s_i, \ldots, \sum_{i=1}^{2n+1} s_i \right)[M\left(\sum_{i=1}^{2n+1} s_i, \sum_{i=1}^{2n+1} s_i, \ldots, \sum_{i=1}^{2n+1} s_i \right), \sum_{i=1}^{2n+1} s_i] + [M\left(\sum_{i=1}^{2n+1} s_i, \sum_{i=1}^{2n+1} s_i, \ldots, \sum_{i=1}^{2n+1} s_i \right), \sum_{i=1}^{2n+1} s_i]M\left(\sum_{i=1}^{2n+1} s_i, \sum_{i=1}^{2n+1} s_i, \ldots, \sum_{i=1}^{2n+1} s_i \right) = 0
\]

Linearizing the above relation we get

\[
\sum_{\sigma \in S_{2n+1}} \{M(s_{\sigma(1)}, s_{\sigma(2)}, \ldots, s_{\sigma(n)})[M(s_{\sigma(n+1)}, \ldots, s_{\sigma(2n+1)})] + [M(s_{\sigma(1)}, s_{\sigma(2)}, \ldots, s_{\sigma(n)})], s_{\sigma(n+1)}, \ldots, s_{\sigma(2n+1)}]\} = 0
\]

Equivalently,

\[
\sum_{\sigma \in S_{2n+1}} [M(s_{\sigma(1)}, s_{\sigma(2)}, \ldots, s_{\sigma(n)}) \circ M(s_{\sigma(n+1)}, \ldots, s_{\sigma(2n+1)})] = 0 \quad (1)
\]

\[
\sum_{j=1}^{2n+1} \left[\sum_{\{i_1, i_2, \ldots, i_n\} \subset \{1, 2, \ldots, 2n+1\} \text{ having } n \text{ elements and } \{i_{n+1}, i_{n+2}, \ldots, i_{2n}\} = \{1, 2, \ldots, j, \ldots, 2n+1\} \setminus \{i_1, i_2, \ldots, i_n\}} \right]M(s_{i_1}, s_{i_2}, \ldots, s_{i_n}) \circ M(s_{i_{n+1}}, s_{i_{n+2}}, \ldots, s_{i_{2n}}) = 0
\]

Since \(M \) is assumed to be symmetric and \(\circ \) is commutative, we get \(\frac{1}{2} \binom{2n}{n} \) terms in the summation within
the Lie bracket. Let t_1, t_2, \ldots, t_{2n} be any $2n$ elements of R. Define

$$B(t_1, t_2, \ldots, t_{2n}) = \frac{1}{2^{2n}} \sum_{i=1}^{\binom{2n}{2}} M(t_{i_1}, t_{i_2}, \ldots, t_{i_{2n}}) \circ M(t_{i_{n+1}}, t_{i_{n+2}}, \ldots, t_{i_{2n}})$$

where $i_j \in \{1, 2, \ldots, 2n\}$ for $j = 1, 2, \ldots, 2n$ and all i_j are distinct. Clearly B is symmetric and $2n$ additive and (1) can be written as

$$\sum_{i=1}^{2n+1} [B(s_1, s_2, \ldots, s_i, \ldots, s_{2n+1}), s_i] = 0 \quad (2)$$

We are now ready to prove our main theorems:

Proof of Theorem 1.

In identity (2) put $s_1 = s_2 = \ldots = s_{2n} = s^2, s_{2n+1} = t$ we get

$$2n[B(s^2, s^2, \ldots, s^2, t), s^2] + [B(s^2, s^2, \ldots, s^2), t] = 0. \quad (3)$$

Set $B_i = B(s, s, \ldots, s, s^2, s^2, \ldots, s^2), B_{i,1} = B(s, s, \ldots, s, s^2, s^2, \ldots, s^2, t)$ and suppose $B_{2n,1} = 0$. Then (3) can be written as

$$2n[B_{0,1}, s^2] + [B_0, t] = 0 \quad (4)$$

Let f be a mapping given by $f(r) = sr + rs \forall s \in R$. Since $f[r, s] = [r, s^2] \forall s \in R$. (4) becomes

$$2nf[B_{0,1}, s] + [B_0, t] = 0 \quad (5)$$

In general, we have

$$(-1)^k \binom{2n}{k} (2n - k) f^{k+1}[B_{k,1}, s] + \sum_{i=0}^{k} (-1)^i \binom{2n}{i} f^i[B_i, t] = 0 \quad (6)$$

for $k = 0, 1, \ldots, 2n$.
We prove (6) by induction on k. For $k = 0$ (6) reduces to (5). Now assume that $0 \leq k \leq 2n - 1$ and (6) holds. Put $s_1 = s_2 = \ldots = s_{2n-k-1} = s^2, s_{2n-k} = \ldots = s_{2n} = s, s_{2n+1} = t$ in (2) to get

$$(2n - k - 1) [B_{k+1,1}, s^2] + (k + 1) [B_{k,1}, s] + [B_{k+1, t}] = 0.$$

hence, $[B_{k,1}, s] = -\left(\frac{2n-k-1}{k+1}\right) f[B_{k+1,1}, s] - \frac{1}{k+1} [B_{k+1, t}]$. Put this into (6), we get

$$(-1)^{k} \binom{2n}{k} (2n - k) f^{k+1} \left\{ -\left(\frac{2n-k-1}{k+1}\right) f[B_{k+1,1}, s] - \frac{1}{k+1} [B_{k+1, t}] \right\}$$

$$+ \sum_{i=0}^{k} (-1)^{i} \binom{2n}{i} f^{i}[B_{i}, t] = 0.$$

That is,

$$(-1)^{k+1} \binom{2n}{k+1} (2n - k - 1) f^{k+2}[B_{k+1,1}, s] + \sum_{i=0}^{k+1} (-1)^{i} \binom{2n}{i} f^{i}[B_{i}, t] = 0.$$

By induction hypothesis (6) holds for all values of $k = 0, 1, \ldots, 2n$. In particular for $k = 2n$, we get from (6)

$$\sum_{i=0}^{2n} (-1)^{i} \binom{2n}{i} f^{i}[B_{i}, t] = 0.$$

$$\Rightarrow \sum_{i=0}^{2n} \sum_{j=0}^{i} (-1)^{j} \binom{i}{j} s^{j} [B_{j}, t] s^{i-j} = 0.$$

as $f^{i}(r) = \sum_{j=0}^{i} \binom{i}{j} s^{j} r s^{i-j} \forall r \in R$. From here we get

$$\sum_{j=0}^{2n} \Lambda_{j}(s) t s^{j} - \sum_{j=0}^{2n} s^{j} t \psi_{j}(s) = 0 \quad \forall s, t \in R,$$

(7)
This gives

\[\sum_{i=0}^{m} \sum_{j=0}^{m} \alpha_{i+1}s^{i-j}[B_{2n}, t]s^j = 0. \]

Hence

\[\sum_{j=0}^{m} \Lambda'_j(s)t^j - \sum_{j=0}^{m} s^jY'_j(s) = 0 \quad \forall \ t \in R. \]

where \(\Lambda'_j = \sum_{i=j}^{m} \alpha_{i+1}s^{i-j}B_{2n} \) and \(Y'_j(s) = \sum_{i=j}^{m} \alpha_{i+1}B_{2n}s^{i-j} \) for \(j = 0, 1, \ldots, 2n \).

Now \(1, s, \ldots, s^m \) are linearly independent over \(C \), hence each \(Y'_j(s) \) is a linear combination of \(1, s, \ldots, s^m \) by Lemma (1). In particular \(B_{2n} = B(s, s, \ldots, s) = \binom{2n}{n}M(s, s, \ldots, s)^2 = \sum_{i=0}^{m} \mu_is^{m-i} = Y'_m(s) \) i.e. \(M(s, s, \ldots, s)^2 = \sum_{i=0}^{m} \lambda_ix^{m-i} \) for some \(\lambda_i = \frac{1}{\binom{n}{i}}\mu_i \) in \(C \). This proves theorem 1.

Proof of Theorem 2.

Put \(s_1 = s_2 = \ldots, = s_{2n} = st \) and \(s_{2n+1} = u \) in (2) we get

\[2n[B(st, st, \ldots, u), st] + [B(st, st, \ldots, st), u] = 0, s, t, u \in R. \] (8)

Define

\[B_{i,j} = B(s, s, \ldots, s, t, t, \ldots, t, st, st, \ldots, st), \]

\[i \]

\[j \]

\[2n-i-j \]
\[B_{i,j,1} = B(s, s, \ldots, s, t, t, \ldots, t, st, st, \ldots, st, u). \]

Let \(B_{2n,0,1} = B_{0,2n,1} = 0 \). Then (8) can be written as

\[2n[B_{0,0,1}, st] + [B_{0,0}, u] = 0 \] \hspace{1cm} (9)

In general, we have

\[(-1)^k \binom{2n}{k} (2n - k) \sum_{j=0}^{k} \binom{k}{j} x^{k-j}[B_{j,k-j,1}, st]t^j \]

\[+ \sum_{i=0}^{k} \sum_{j=0}^{k} (-1)^i \binom{2n}{i} \binom{i}{j} s^{i-j}[B_{j,i-j,1}, u]t^j = 0. \] \hspace{1cm} (10)

for \(k = 0, 1, \ldots, 2n \). We prove this by induction on \(k \). For \(k = 0 \) it becomes (9). So assume this is true for \(0 \leq k \leq 2n - 1 \). In equation (2), put

\[s_1 = s_2 = \ldots = s_j = s, s_{j+1} = \ldots = s_{k+1} = t, s_{k+2} = \ldots = s_{2n} = st \text{ and } s_{2n+1} = u. \]

Then we get

\[j[B_{j-1,k-j+1,1}, s] + (k - j + 1)[B_{j,k-j,1}, t] \]

\[+ (2n - k - 1)[B_{j,k-j+1,1}, st] + [B_{j,k-j+1,1}, u] = 0. \]

The first part of this summation becomes

\[(-1)^k \binom{2n}{k} (2n - k) \sum_{j=0}^{k} \binom{k}{j} s^{k-j}[B_{j,k-j,1}, st]t^j \]

\[= (-1)^k \binom{2n}{k} (2n - k) \sum_{j=0}^{k} \binom{k}{j} \left\{ s^{k-j}[B_{j,k-j,1}, s]t^{j+1} + s^{k-j+1}[B_{j,k-j,1}, t]t^j \right\} \]

\[= (-1)^k \binom{2n}{k} (2n - k) \sum_{j=0}^{k} \binom{k}{j} s^{k-j}[B_{j,k-j,1}, s]t^{j+1} \]

\[+ (-1)^{k+1} \binom{2n}{k} (2n - k) \sum_{j=1}^{k} \binom{k}{j} \frac{j}{k-j+1} s^{k-j+1}[B_{j-1,k-j+1,1}, s]t^j \]
+ (-1)^{k+1} \binom{2n}{k} (2n-k) \sum_{j=0}^{k} \binom{k}{j} \frac{2n-k-1}{k-j+1} s^{k-j+1}[B_{j,k-j+1,1}, st]t^j
\]

+ (-1)^{k+1} \binom{2n}{k} (2n-k) \sum_{j=0}^{k} \binom{k}{j} \frac{1}{k-j+1} s^{k-j+1}[B_{j,k-j+1,1}, u]t^j

Put \(s_1 = s_2 = \ldots = s_{k+1} = s, s_{k+2} = s_{k+3} = \ldots = s_{2n} = st, s_{2n+1} = u \) in (2). We get \((2n-k-1)[B_{k+1,0,1}, st] + (k+1)[B_{k,0,1}, s] + [B_{k+1,0,1}, st] = 0 \) and then above equation becomes

\[
= (-1)^n \binom{2n}{k} (2n-k) \sum_{j=0}^{k+1} \binom{k}{j} s^{k-j+1}[B_{j-1,k-j+1,1}, s]t^j
\]

+ (-1)^{k+1} \binom{2n}{k} (2n-k) \sum_{j=1}^{k} \binom{k}{j-1} s^{k-j+1}[B_{j-1,k-j+1,1}, s]t^j

+ (-1)^{k+1} \binom{2n}{k+1} (2n-k-1) \sum_{j=0}^{k} \binom{k+1}{j} s^{k-j+1}[B_{j,k-j+1,1}, st]t^j

+ (-1)^{k+1} \binom{2n}{k+1} \sum_{j=0}^{k} \binom{k+1}{j} s^{k-j+1}[B_{j,k-j+1,1}, u]t^j

= (-1)^k \binom{2n}{k} (2n-k)[B_{k,0,1}, s]t^{k+1}

+ (-1)^{k+1} \binom{2n}{k+1} \sum_{j=0}^{k} \binom{k+1}{j} \frac{1}{k-j+1} s^{k-j+1}[B_{j,k-j+1,1}, st]t^j

+ (-1)^{k+1} \binom{2n}{k+1} \sum_{j=0}^{k} \binom{k+1}{j} s^{k-j+1}[B_{j,k-j+1,1}, u]t^j

= (-1)^{k+1} \binom{2n}{k} (2n-k) \frac{2n-k-1}{k+1} [B_{k+1,0,1}, st]t^{k+1}

+ (-1)^{k+1} \binom{2n}{k} (2n-k) \frac{1}{k+1} [B_{k+1,0,1}, u]t^{k+1}
\begin{align*}
&+ (-1)^{k+1} \binom{2n}{k+1} (2n - k - 1) \sum_{j=0}^{k} \left(\binom{k+1}{j} s^{k-j+1} [B_{j,k-j+1,1}, st] t^j \right) \\
&+ (-1)^{k+1} \binom{2n}{k+1} \sum_{j=0}^{k+1} \left(\binom{k+1}{j} s^{k-j+1} [B_{j,k-j+1,1}, u] t^j \right) \\
&= (-1)^{k+1} \binom{2n}{k+1} (2n - k - 1) [B_{k+1,0,1}, st] t^{k+1} + (-1)^{k+1} \binom{2n}{k+1} [B_{k+1,0,1}, u] t^{k+1} \\
&+ (-1)^{k+1} \binom{2n}{k+1} (2n - k - 1) \sum_{j=0}^{k} \left(\binom{k+1}{j} s^{k-j+1} [B_{j,k-j+1,1}, st] t^j \right) \\
&+ (-1)^{k+1} \binom{2n}{k+1} \sum_{j=0}^{k} \left(\binom{k+1}{j} s^{k-j+1} [B_{j,k-j+1,1}, u] t^j \right) \\
&= (-1)^{k+1} \binom{2n}{k+1} (2n - k - 1) \sum_{j=0}^{k+1} \left(\binom{k+1}{j} s^{k-j+1} [B_{j,k-j+1,1}, st] t^j \right) \\
&+ (-1)^{k+1} \binom{2n}{k+1} \sum_{j=0}^{k+1} s^{k-j+1} [B_{j,k-j+1,1}, u] t^j \\
\end{align*}

Accordingly equation (10) becomes

\begin{align*}
&(-1)^{k+1} \binom{2n}{k+1} (2n - k - 1) \sum_{j=0}^{k+1} \left(\binom{k+1}{j} s^{k-j+1} [B_{j,k-j+1,1}, st] t^j \right) \\
&+ \sum_{i=0}^{k+1} \sum_{j=0}^{i} (-1)^i \binom{2n}{i} \binom{i}{j} s^{i-j} [B_{j,i-j}, u] t^j = 0 \\
\end{align*}

This proves equation (10) for all \(k = 0, 1, \ldots, 2n \). In particular when \(k = 2n \) we get

\begin{align*}
\sum_{i=0}^{2n} \sum_{j=0}^{i} (-1)^i \binom{2n}{i} \binom{i}{j} s^{i-j} [B_{j,i-j}, u] t^j &= 0 \\
\Rightarrow \sum_{j=0}^{2n} \Lambda_j(s,t) u t^j - \sum_{j=0}^{2n} s^j u Y_j(s,t) &= 0 \\
\end{align*}

(11)
∀ s, t, u ∈ R where Λ_j(s, t) = \sum_{i=j-1}^{2n} (-1)^i \binom{2n}{i} \binom{i}{j-1} s^{i-j} B_{j,i-j} and Υ_j(s, t) = \sum_{i=j}^{2n} (-1)^i \binom{2n}{i} \binom{i}{j} B_{j,i} t^{i-j}.

We see that Λ_{2n}(s, t) = (-1)^{2n} B_{2n,0} = \binom{2n}{n} M(s, s, \ldots, s)^2 is independent of t.

We claim that [Λ_j(s, t), s] = 0 ∀ s, t ∈ R and j = 0, 1, \ldots, 2n. We prove this by induction. For j = 2n we have [Λ_{2n}(s, t), s] = [(-1)^{2n} B_{2n,0}, s] = \binom{2n}{n} M(s, s, \ldots, s)^2, s] = \binom{2n}{n} \{M(s, s, \ldots, s) \{M(s, s, \ldots, s), s]\} + [M(s, s, \ldots, s), s]

M(s, s, \ldots, s) = 0 by the given condition. Now, suppose 1 ≤ j ≤ 2n and [Λ_j(s, t), s] = 0 ∀ s, t ∈ R. Put s_1 = s_2 = \ldots = s_j = s, s_{j+1} = s_{j+2} = \ldots = s_{i+1} = t and s_{i+2} = \ldots = s_{2n+1} = st in equation (2), we get

(2n - i)[B_{j,i-1}, s] + j[B_{j-1,i-1}, s] + (i - j + 1)[B_{j,i-1}, t] = 0.

Hence

\[[Λ_{j-1}(s, t), s] = \sum_{i=j-1}^{2n} (-1)^i \binom{2n}{i} \binom{i}{j-1} s^{i-j+1} [B_{j-1,i-j+1}, s] \]

\[= \sum_{i=j}^{2n} (-1)^i + 1 \binom{2n}{i} \binom{i}{j-1} s^{i-j+1} [B_{j,i-j}, t] \]

\[+ \sum_{i=j}^{2n-1} (-1)^{i+1} \binom{2n}{i} \binom{i}{j} s^{i-j} B_{j,i-j+1, s} \]

\[= \sum_{i=j}^{2n} (-1)^{i+1} \binom{2n}{i} \binom{i}{j} s^{i-j+1} [B_{j,i-j}, t] \]

\[+ \sum_{i=j}^{2n-1} (-1)^{i+1} \binom{2n}{i+1} \binom{i+1}{j} s^{i-j+1} [B_{j,i-j+1}, s] \]

\[= \sum_{i=j}^{2n} (-1)^{i+1} \binom{2n}{i} \binom{i}{j} s^{i-j+1} [B_{j,i-j}, t] \]
Now if we define $\Phi_j : R^{2n} \rightarrow S$ by
$$\Phi_j(s_1, s_2, \ldots, s_{2n}) = \sum_{i=j}^{2n} (-1)^{i-j} \binom{2n}{i} s_1 s_2 \cdots s_{i-j} \times B(s_{i-j+1}, \ldots, s_i, s_{i+1} t, \ldots, s_{2n} t, t, \ldots, t),$$
then $\Lambda_j(s, t)$ is the trace of Φ_j for each j and $\forall t \in R$ and $[\Phi_j(s, s, \ldots, s), s] = [\Lambda_j(s, t), s] = 0 \forall s \in R$. By theorem (1), $\Lambda_j(s, t)$ is a linear combination of $1, s, \ldots, s^{2n}$ over C. Since R is not algebraic of bounded degree $\leq 2n$ over C, there exist $s_0 \in R$ such that $1, s_0, s_0^2, \ldots, s_0^{2n}$ are linearly independent over C. Hence there exist mappings $\alpha_{i,j} : R \rightarrow C; i, j = 0, 1, \ldots, 2n$ such that $\Lambda_j(s_0, t) = \sum_{i=0}^{2n} \alpha_{i,j}(t)s_0^i \forall t \in R$. Thus from (11) we have
$$\sum_{i=0}^{2n} s_0^i u \left(\sum_{j=0}^{2n} \alpha_{i,j}(t)t^j - \hat{Y}_i(s_0, t) \right) = 0$$
$\forall t, u \in R$. Therefore, $\hat{Y}_i(s_0, t) = \sum_{j=0}^{2n} \alpha_{i,j}(t)t^j \forall t \in R$ and $i = 0, 1, \ldots, 2n$.

In particular, $B(t, t, \ldots, t) = \binom{2n}{n} M(t, t, \ldots, t)^2 = \hat{Y}_{2n}(s_0, t) = \sum_{j=0}^{2n} \alpha_{2n,2n-j}(t)t^{2n-j}$
and so \(M(t, t, \ldots, t)^2 = \sum_{j=0}^{2n} \lambda_j(t) t^{2n-j} \) where \(\lambda_j(t) = \frac{1}{\binom{2n}{n}} \alpha_{2n, 2n-j}(t) \). For each \(i = 0, 1, \ldots, 2n, \alpha_{i, 2n}(t) \) are independent of \(t \) since \(\Lambda_{2n}(s_0, t) \) are independent of \(t \). This implies that \(\lambda_0(t) = (-1)^{2n} \alpha_{2n, 2n}(t) \) is independent of \(t \). Now \(\Lambda_j(s_0, t) = \sum_{i=j}^{2n} (-1)^i \binom{2n}{i} \binom{i}{j} s_0^{i-j} B(s_0, \ldots, s_0, t) \) is the trace of an \((2n - j)\)-additive mapping treated as mapping in \(t \). Hence \(\Lambda_j(s_0, t) \) satisfies the two condition of Lemma (2). Also since \(1, s_0, s_0^2, \ldots, s_0^{2n} \) are linearly independent over \(C \) and \(\Lambda_j(s_0, t) = \sum_{i=j}^{2n} \alpha_{i, j}(t) s_0^i \) so each \(\alpha_{i, j} \) satisfies both the desired conditions and hence is the trace of some \((2n - j)\)-additive mapping. In particular, each \(\lambda_j(t) = \frac{(-1)^{2n}}{\binom{2n}{n}} \alpha_{2n, 2n-j} \) is the trace of some \(j \)-additive mapping for every \(j = 1, 2, \ldots, 2n \). Hence the theorem.

References

