A Note on Presentation of General Linear Groups over a Finite Field

Swati Maheshwari and R. K. Sharma
Department of Mathematics, Indian Institute of Technology Delhi, New Delhi, India
Email: swatimahesh88@gmail.com; rksharmaiitd@gmail.com

Received 22 September 2016
Accepted 20 June 2018

Communicated by J.M.P. Balmaceda

AMS Mathematics Subject Classification (2000): 20F05, 16U60, 20H25

Abstract. In this article we have given Lie regular generators of linear group $GL(2, \mathbb{F}_q)$, where \mathbb{F}_q is a finite field with $q = p^n$ elements. Using these generators we have obtained presentations of the linear groups $GL(2, \mathbb{F}_{2^n})$ and $GL(2, \mathbb{F}_{p^n})$ for each positive integer n.

Keywords: Lie regular units; General linear group; Presentation of a group; Finite field.

1. Introduction

Suppose \mathbb{F} is a finite field and $GL(n, \mathbb{F})$ is the general linear the group of $n \times n$ invertible matrices and $SL(n, \mathbb{F})$ is special linear group of $n \times n$ matrices with determinant 1. We know that $GL(n, \mathbb{F})$ can be written as a semidirect product, $GL(n, \mathbb{F}) = SL(n, \mathbb{F}) \rtimes \mathbb{F}^*$, where \mathbb{F}^* denotes the multiplicative group of \mathbb{F}. Let H and K be two groups having presentations $H = \langle X \mid R \rangle$ and $K = \langle Y \mid S \rangle$, then a presentation of semidirect product of H and K is given by,

$$H \rtimes_{\eta} K = \langle X, Y \mid R, S, xyx^{-1} = \eta(y)(x) \, \forall x \in X, y \in Y \rangle,$$

where $\eta : K \to Aut(H)$ is a group homomorphism. Now we summarize some literature survey related to the presentation of groups. In 1977, S.M. Green established a presentation of $SL(n, \mathbb{F})$ for, $n \geq 3$ (see [3]) and in 1994, T.A. Fransis has found a presentation of $GL(n, \mathbb{F})$, where \mathbb{F} is a division ring (see [2]). In case \mathbb{F} is a field, T.A. Fransis has also provided a presentation of $SL(n, \mathbb{F})$.
Generators for the semigroup has been provided by J. Konieczny (see [5]). A presentation of $SL(n, \mathbb{F})$ has also been given by G. Chiaselotti (see [1]). We have seen that a presentation of $SL(n, \mathbb{F})$ has been found, so we can always find one presentation of $GL(n, \mathbb{F})$ using semidirect product. In that case, cardinality of the generating set of $GL(n, \mathbb{F})$ is dependent on \mathbb{F}. It motivates us to find a presentation of $GL(n, \mathbb{F})$ with fix number of generators. In this article, we establish a presentation of $GL(2, \mathbb{F}_q)$ with fix number of generators, where generators are Lie regular units. These elements have been first introduced by R. K. Sharma et al. in 2012 (see [8, 4]). A generating set for $GL(4, \mathbb{Z}_n)$ has been found by S. Maheshwari and R. K. Sharma in 2016 (see [7]).

Throughout this paper, ϕ denotes the Euler’s totient function and $U(R)$ denotes the unit group of the ring R. Suppose G be a group then $o(G)$ denotes the order of the group G.

2. Preliminaries

Here we record some well known results and basic definitions, which we shall use frequently in this note.

Lemma 2.1. The order of the special linear group $SL(2, \mathbb{F}_q)$ is $\frac{o(GL(2, \mathbb{F}_q))}{q-1}$.

Definition 2.2. An element ‘a’ of a ring R is said to be Lie regular if $a = [e, u] = eu - ue$, where e is an idempotent of R and u is a unit of R. Further, a unit in R is said to be Lie regular unit if it is Lie regular as an element of R.

In the following lemma $e_{ij}(r)$ for $1 \leq i, j \leq n$ and $r \in \mathbb{F}_q$ denotes elementary matrix of the form $e_{ij} = I + re_{ij}$, where e_{ij} denotes the matrix with 1 on the (i,j)-th position and 0 elsewhere and I is the $n \times n$ identity matrix.

Lemma 2.3. [2, p. 944] Suppose \mathbb{F}_q is a finite field. Then $SL(n, \mathbb{F}_q)$ has a presentation with generators $e_{ij}(r)$ and relations:

\((i) \) $e_{ij}(r)e_{ij}(s) = e_{ij}(r + s)$,

\((ii) \) $[e_{ij}(r), e_{kl}(s)] = 1$ if $i \neq l, j \neq k$,

\((iii) \) $[e_{ij}(r), e_{jk}(s)] = e_{ik}(rs)$ if i, j and k are distinct, and

\((iv) \) $ee_{ji}(r)e^{-1} = e_{ij}(-trt)$ for $e = e_{ij}(t)e_{ji}(-t^{-1})e_{ij}(t), t \in \mathbb{F}_q^*$.

Let α be a primitive element of \mathbb{F}_q, where $q = p^n$ and $1 \leq i, j \leq q - 1$. For convenience, we rewrite the above presentation in new symbols as follows:
Corollary 2.4. Let
\[a_i = \begin{pmatrix} 1 & \alpha^i \\ 0 & 1 \end{pmatrix}, \quad b_j = \begin{pmatrix} 1 & 0 \\ \alpha^j & 1 \end{pmatrix}. \]

Then SL(2, \(\mathbb{F}_{p^n}\)) is generated by \(a_i\) and \(b_j\) with these relations:

(i) \(a_i^p = 1\) and \(b_j^p = 1\),

(ii) for \(i \neq j\), we have \(a_i a_j = a_k\), \(b_i b_j = b_k\), where \(k\) is such that \(\alpha^i + \alpha^j = \alpha^k\), and \(1 \leq k \leq q - 1\),

(iii) \((a_i b_{q-1-i}^{-1} a_i)(b_j b_{q-1-j}^{-1} a_i)^{-1} = a_{2i+j}^{-1}\),

(iv) \((b_i a_{q-1-i}^{-1} b_i)(a_j a_{q-1-j}^{-1} b_i)^{-1} = b_{2i+j}^{-1}\).

Theorem 2.5. [6, Theorem 1.1] Two groups having same presentation are isomorphic.

3. Lie Regular Generators of General Linear Groups

Observe that the element
\[a = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} \]
is a Lie regular unit in \(M_2(\mathbb{F}_q)\) and \(b = \begin{pmatrix} 0 & k \\ 1 & 0 \end{pmatrix}\), where \(k\) is invertible in \(\mathbb{F}_q\), is also a Lie regular unit in \(M_2(\mathbb{F}_q)\) (see [8, Proposition 2.14]).

Theorem 3.1. Suppose \(\mathbb{F}_{2^n}\) is a finite field and \(\alpha \in \mathbb{F}_{2^n}^*\) is a primitive element i.e. \(o(\alpha) = 2^n - 1\). Then the linear group GL(2, \(\mathbb{F}_{2^n}\)) is generated by Lie regular units \(a, b\) and \(c\), where
\[a = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}. \]

Proof. Let \(G\) be a subgroup of GL(2, \(\mathbb{F}_{2^n}\)) generated by \(a, b\) and \(c\). Set
\[a_i = (bc)^{-i}(bab)(bc)^i = \begin{pmatrix} 1 & \alpha^i \\ 0 & 1 \end{pmatrix}, \quad b_j = (bc)^j a(bc)^{-j} = \begin{pmatrix} 1 & 0 \\ \alpha^j & 1 \end{pmatrix}, \]
where \(1 \leq i, j \leq 2^n - 1\). By using Corollary 2.4, \(a_i\) and \(b_j\) generate SL(2, \(\mathbb{F}_q\)).

Let \(x = bc = \begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix}\), then order of \(x\) is \(2^n - 1\). Consider a subgroup of \(G\),
\[H = \langle x \mid x^{2^n-1} \rangle. \]

We see that \(H \cap SL(2, \mathbb{F}_{2^n}) = \{I_2\}\), thus
\[o(HSL(2, \mathbb{F}_{2^n})) = (2^n - 1) o(SL(2, \mathbb{F}_{2^n})). \]

Since \(HSL(2, \mathbb{F}_{2^n}) \subseteq G \leq GL(2, \mathbb{F}_{2^n}) \) and by lemma 2.1, \(o(GL(2, \mathbb{F}_{2^n})) = (2^n - 1) o(SL(2, \mathbb{F}_{2^n})) \), as a consequence, we have \(HSL(2, \mathbb{F}_{2^n}) = GL(2, \mathbb{F}_{2^n}) \).

Theorem 3.2. Suppose \(F_q \) is a finite field with \(q = p^n \), where \(p \) is an odd prime and \(\alpha \in F_q^* \) is a primitive element i.e. \(o(\alpha) = q - 1 \). Then the linear group \(GL(2, F_q) \) is generated by Lie regular units \(a, b \) and \(c \), where
\[
a = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}.
\]

Proof. Let \(G \) be a subgroup of \(GL(2, F_q) \) generated by \(a, b \) and \(c \). Set
\[
a_i = (bc)^{-i}(bc) \frac{\alpha^i}{(2^n - 1)} ab(ab)^i = \begin{pmatrix} 1 & \alpha^i \\ 0 & 1 \end{pmatrix},
\]
\[
b_j = (bc)^j((bc) \frac{\alpha^j}{(2^n - 1)} a(ab)^{-j} = \begin{pmatrix} 1 & 0 \\ \alpha^j & 1 \end{pmatrix},
\]
where \(1 \leq i, j \leq q - 1 \). By using Corollary 2.4, \(a_i \) and \(b_j \) generate \(SL(2, F_q) \). Remaining proof is same as proof of Theorem .

4. Presentation of \(GL(2, \mathbb{F}_{2^n}) \)

In the following theorem we assume that \(1 \leq i, j \leq 2^n - 1 \) and \(n > 1 \).

Theorem 4.1. Let
\[
a = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix},
\]
where \(\alpha \) is a primitive element of \(\mathbb{F}_{2^n} \). Then a presentation of \(GL(2, \mathbb{F}_{2^n}) \) is
\[
\langle a, b, c \mid a^2, b^2, c^{2(2^n - 1)}, c^2 \in \text{center}, (ab)^3, (bc)^{2^n - 1}, \quad aa_ia = (bab)b_i(ab), a_1a_2 = a_{k_0} \rangle,
\]
where \(k_0 \in \mathbb{N} \) is such that \(\alpha + \alpha^2 = \alpha^{k_0} \) and
\[
a_i = (bc)^{-i}(bab)(bc)^i = \begin{pmatrix} 1 & \alpha^i \\ 0 & 1 \end{pmatrix}, \quad b_j = (bc)^ja(bc)^{-j} = \begin{pmatrix} 1 & 0 \\ \alpha^j & 1 \end{pmatrix}.
\]

Proof. \(\alpha + \alpha^2 \) is non-zero element in \(\mathbb{F}_{2^n} \) for \(n > 1 \). So there exist \(k_0 \) such that \(\alpha + \alpha^2 = \alpha^{k_0} \). Let \(G \) be a group generated by \(a, b, c \) and having presentation,
\[
\langle a, b, c \mid a^2, b^2, c^{2(2^n - 1)}, c^2 \in \text{center}, (ab)^3, (bc)^{2^n - 1}, \quad aa_ia = (bab)b_i(ab), a_1a_2 = a_{k_0} \rangle.
\]
First, we shall show that \(G \) is finite. Consider a group \(H \) having the following presentation

\[
H = \langle a_i, b_j \mid a_i^2, b_j^2, a_i a_j = a_k, b_i b_j = b_k, a_i b_{2^n-1-i} b_j (a_i b_{2^n-1-i} a_i)^{-1} = a_{2i+j}, \\
(b_i a_{q-1-i} b_j) (a_j (b_i a_{q-1-i} b_j)^{-1} = b_k^{-1}) \rangle,
\]

where \(k \in \mathbb{N} \) is such that \(\alpha^i + \alpha^j = \alpha^k \). We have some observations,

(i) If \(a_1 a_2 = a_{k_0} \), then \(a_1 a_{k+1} = a_{k_0 + (k-1)} \) for \(1 \leq k, k_0 \leq 2^n - 1 \) and \(k_0 \) is such that \(\alpha + \alpha^2 = \alpha^{k_0} \). We shall show this by induction, for \(k = 1 \) it holds. Assume for \(k = m \), \(a_m a_{m+1} = a_{k_0 + (m-1)} \), from here we get

\[
bab(bc)^{-1} = (bc)^{1-k_0} bab(bc)^{k_0-2} bab. \tag{4.1}
\]

Let \(k = m + 1 \). Then

\[
a_{m+1} a_{m+2} = (bc)^{-1-m} bab(bc)^{-1} bab(bc)^{m+2} = (bc)^{-m-k_0} bab(bc)^{m+k_0} \text{ using (4.1)} = a_{k_0 + m}.
\]

(ii) \(b_i b_j = b_i \).

(iii) \((ab)_i^2 = 1 \).

The statement holds by using the relation \(a_1 a_i = (bab)b_i(bab) \) and the observation (1).

(iv) \(c a_i c^{-1} = b_{i-1} \).

As relations in the group \(H \) can be obtained by using above observations and relations in the group \(G \). Which implies that the group \(H \) is a subgroup of \(G \), infact it is a normal subgroup of the group \(G \). Corollary 2.4 and Theorem 2.5, give that the group \(H \) is isomorphic to \(SL(2, \mathbb{F}_{2^n}) \). Now consider the quotient group \(G/H \), we see that

\[
G/H = \langle c \mid c^{2^n-1} \rangle.
\]

and \(o(G) = o(GL(2, \mathbb{F}_{2^n})) \). This proves that \(G \cong GL(2, \mathbb{F}_{2^n}) \). \(\blacksquare \)

In \(\mathbb{F}_2 \), we see that \(\alpha = 1 \), so the element \(b \) is same as the element \(c \). Hence we have a remark for presentation of \(GL(2, \mathbb{F}_2) \).

Remark 4.2. A representation of \(GL(2, \mathbb{F}_2) \) is

\[
\langle a, b \mid a^2, b^2, (ab)^3 \rangle.
\]

In the following corollary we are giving a presentation of \(GL(2, \mathbb{F}_{2^n}) \), where \(2 \leq n \leq 7, n \neq 5 \). In this case, we have a primitive polynomial, \(1 + x + x^n \) (see [9]) and hence \(\alpha + \alpha^2 = \alpha^{n+1} \).
Corollary 4.3. A presentation of $GL(2, \mathbb{F}_{2^n})$ is
\[\langle a, b, c \mid a^2, b^2, c^{2(q-1)}, c^2 \in \text{center}, (ab)^3, (bc)^{2^n-1}, aa, a = (bab)b_i(bab), a_1a_2 = a_{n+1} \rangle. \]

5. Presentation of $GL(2, \mathbb{F}_q)$

Theorem 5.1. Let p be an odd prime, $q = p^n$ for $n \geq 1$ and α is a primitive element of \mathbb{F}_q. Let
\[a = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}, b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, c = \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix} \]
and $a_i = (bc)^{i} \frac{q}{q-1} ab(b)^i, b_i = (bc)^i ((bc) \frac{q}{q-1} a)(bc)^{-i}$ for $1 \leq i, j \leq q-1$. Then a presentation of $GL(2, \mathbb{F}_q)$ is
\[\langle a, b, c \mid a^2, b^2, c^{2(q-1)}, c^2 \in \text{center}, (ab)^3, ((bc) \frac{q}{q-1} a)(bc)^q \rangle, \]
\[a_1a_2 = a_2a_1 = a_{k_0}, a'_i = a_{k'_v}, b_{q-1}b_i = b_i b_{q-1}, \]
\[a_{q-1}^i b_{q-1}^{-1} a_{q-1}^{-1} = b(b)^{\frac{q}{q-1}}, aa_i a = a_{q-1}^{-1} b_i a_{q-1}^{-1}, \]
\[(a_{q-1} b_{q-1}^{-1} a_{q-1}) b_m (a_{q-1} b_{q-1}^{-1} a_{q-1})^{-1} = a_m^{-1}) \]
where k_0 and k'_v are such that $\alpha + \alpha^2 = \alpha^k_0$, $i' \alpha = \alpha^{k'_v}$ and $1 \leq k_0, k'_v, m \leq q-1$.

Proof. Let $\alpha + \alpha^2$ be not an invertible element in \mathbb{F}_q. Then $\alpha + \alpha^2 = 0$, it provides that $\alpha = -1$. This is the possible case when $q = 3$. We will discuss this case separately. Hence $\alpha + \alpha^2$ is invertible in \mathbb{F}_q, $q \neq 3$, so there exist k_0 such that $\alpha + \alpha^2 = \alpha^k_0$. Since i' and α are non-zero elements of \mathbb{F}_q. Hence there exist k'_v such that $i' \alpha = \alpha^{k'_v}$ as $i' \alpha$ is a non-zero element. Suppose G is a subgroup of $GL(2, \mathbb{F}_q)$ generated by a, b, c and having presentation
\[\langle a, b, c \mid a^2, b^2, c^{2(q-1)}, c^2 \in \text{center}, (ab)^3, ((bc) \frac{q}{q-1} a)(bc)^q \rangle, \]
\[a_1a_2 = a_2a_1 = a_{k_0}, a'_i = a_{k'_v}, b_{q-1}b_i = b_i b_{q-1}, \]
\[a_{q-1}^i b_{q-1}^{-1} a_{q-1}^{-1} = b(b)^{\frac{q}{q-1}}, aa_i a = a_{q-1}^{-1} b_i a_{q-1}^{-1}, \]
\[(a_{q-1} b_{q-1}^{-1} a_{q-1}) b_m (a_{q-1} b_{q-1}^{-1} a_{q-1})^{-1} = a_m^{-1}) \]
First we shall show that group G is finite. Consider a subgroup H of G which is given by
\[H = \langle a_i, b_j \mid a_i^2, b_j^2, a_i a_j = a_{k_i}, b_i b_j = b_{k_j}, (a_i b_{q-1}^{-1} a_j) b_j (a_i b_{q-1}^{-1} a_j)^{-1} = a_{2i+j}, (b_i a_{q-1}^{-1} b_k) a_j (b_i a_{q-1}^{-1} b_k)^{-1} = b_{2i+j} \rangle, \]
where $k \in \mathbb{N}$ is such that $\alpha^i + \alpha^j = \alpha^k, 1 \leq k \leq q-1$. We have some observations,
(i) $ba, b = b_i$.
The statement holds by using relation $b_{q-1}b_i = b_ib_{q-1}$.

By using the above observations and relations in the group G, we see that the relations in the group H can be obtained. Hence H is a subgroup of the group G, in fact normal subgroup of G. Corollary 2.4 and Theorem 2.5, give that the group H is isomorphic to $SL(2, \mathbb{F}_q)$. Now we consider the quotient group G/H.

Case 1. When $\frac{q-1}{2}$ is even we have,

$$G/H = \langle c | c^{q-1} \rangle.$$

Case 2. When $\frac{q-1}{2}$ is odd we have,

$$G/H = \langle b, c | b^q, c^{\frac{q+1}{2}}, bc = cb \rangle.$$

In both cases we see that $o(G/H) = q - 1$. This proves that $G \cong GL(2, \mathbb{F}_q)$. ■

Corollary 5.2. When $q = 3$, a presentation of $GL(2, \mathbb{F}_q)$ is

$$\langle a, b, c | a^2, b^2, c^2, a^2c^2 \in center, (ab)^3, (bca)^3, (bc)^2, a^2 = a_2, b_{q-1}b_i = b_ib_{q-1}, a_{q-1}b_{q-1}a_{q-1}^{-1} = b(bc)^{\frac{q-1}{2}}, a_2a = a_{q-1}b_1a_{q-1}, (a_{q-1}b_{q-1}a_{q-1}^{-1})m(a_{q-1}b_{q-1}a_{q-1}^{-1})^{-1} = a_m^{-1} \rangle,$$

where $1 \leq m \leq 2$.

In the following corollary we are giving a presentation of $GL(2, \mathbb{F}_9)$. In this case, we have a primitive polynomial, $2 + x + x^2$.

Corollary 5.3. A presentation of $GL(2, \mathbb{F}_9)$ is

$$\langle a, b, c | a^2, b^2, c^{16}, a^2, c^2 \in center, (ab)^3, (bca)^3, (bc)^8, a_1a_2 = a_2a_1 = a_8, a_2^2 = a_5, b_8b_1 = b_1b_8, a_8^{-1}b_8a_8^{-1} = b(bc)^4, a_2a = a_8^{-1}b_8a_8, (a_8b_8^{-1}a_8)b_8(a_8b_8^{-1}a_8)^{-1} = a_m^{-1} \rangle.$$

Thus we have found presentations for $GL(2, \mathbb{F}_{2^n})$ and $GL(2, \mathbb{F}_{p^n})$ in terms of Lie regular units. The exciting thing about these generators is that these elements have a fixed form \(\begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}\) for some $\alpha \in \mathbb{F}_q \setminus \{0\}$, except \(\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}\) and \(\begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}\).

All results are verified with MAGMA software.

References

