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Dynamics of Serial Multibody 
Systems Using the Decoupled 
Natural Orthogonal Complement 
Matrices 
Constrained dynamic equations of motion of serial multibody systems consisting of rigid 
bodies in a serial kinematic chain are derived in this paper. First, the Newton-Euler 
equations of  motion of the decoupled rigid bodies of  the system at hand are written. Then, 
with the aid of  the decoupled natural orthogonal complement (DeNOC) matrices asso- 
ciated with the velocity constraints of  the connecting bodies, the Euler-Lagrange inde- 
pendent equations of  motion are derived. The De NOC is essentially the decoupled form 
of the natural orthogonal complement (NOC) matrix, introduced elsewhere. Whereas the 
use of  the latter provides recursive order n-n being the degrees-of-freedom of the system 
at hand--inverse dynamics and order n 3 forward dynamics algorithms, respectively, the 
former leads to recursive order n algorithms for both the cases. The order n algorithms 
are desirable not only for their computational efficiency but also for their numerical 
stability, particularly, in forward dynamics and simulation, where the system's acceler- 
ations are solved from the dynamic equations of  motion and subsequently integrated 
numerically. The algorithms are illustrated with a three-link three-degrees-of-freedom 
planar manipulator and a six-degrees-of-freedom Stanford arm. 

1 Introduction 

The conventional approach to obtain the dynamic model, i.e., 
equations of motion, of a mechanical system, consisting of rigid 
bodies coupled by kinematic pairs or joints, is to use either 
Newton-Euler (NE) or Euler-Lagrange (EL) equations. While the 
NE equations are obtained from the free-body diagrams, the EL 
equations resulted from the kinetic and potential energy of the 
system. The former is not suitable for motion simulation, as it finds 
the internal forces and torques that do not affect the motion of the 
system. Alternatively, EL equations give independent set of equa- 
tions that are good for motion simulation, however, require com- 
plex calculations for the partial derivatives. With the advent of 
digital computation, a series of new methods in the study of 
dynamic modeling of mechanical systems have been developed. 
Huston and Passerello (1974) introduced the first computer- 
oriented method to reduce the dimension of the unconstrained 
dynamical equations, namely, Newton-Euler equations of motion, 
by eliminating the constraint forces. What was basically used to 
reduce the dimension is an orthogonal complement of the velocity 
constraints of the mechanical system under study. An orthogonal 
complement is defined as the matrix whose columns span the 
null-space of the matrix of the velocity constraints, and, hence, the 
premultiplication of the transpose of it with the unconstrained 
dynamic equations of motion vanishes the constrained moments 
and forces. The said orthogonal complement is not unique. In some 
approaches, an orthogonal complement is found using numerical 
schemes which are of an intensive nature, requiring, for example, 
singular-value decomposition or eigenvalue computations (We- 
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hage and Haug, 1982; Kamman and Huston, 1984). In Angeles and 
Lee (1988), Angeles and Ma (1988), and Saha and Angeles (1991), 
however, the complement is obtained naturally from the velocity 
constraint expressions without any complex computation. There- 
fore, the complement is called natural orthogonal complement 
(NOC). The NOC is the matrix that relates the angular and linear 
velocities of the rigid bodies in the system to the associated joint 
rates, as in Eq. (16). 

The purpose of deriving a dynamic model here is to obtain 
inverse and forward dynamics algorithms required in control and 
simulation of the mechanical systems under study, respectively. 
While almost all proposed inverse dynamics algorithms for serial- 
chain mechanical systems, as shown in Fig. 1, are recursive of 
order n, O(n)--n being the degrees-of-freedom of the system at 
hand--complexity, e.g., Hollerbach (1980), Luh, Walker and Paul 
(1980), Kane and Levinson (1983), Angeles et al. (1989), Scia- 
vicco and Siciliano (1996), most of the traditional forward dynam- 
ics algorithms are of O(n 3) (Walker and Orin, 1982; Kane and 
Levinson, 1983; Angeles and Ma, 1988). Note here that in inverse 
dynamics the explicit derivation of the equations of motion in 
terms of the generalized coordinates is not required, e.g., in Scia- 
vicco and Siciliano (1996), where the joint torques are calculated 
from the trajectory of the end-effector. Alternatively, explicit ex- 
pressions for the matrices, particularly, the generalized inertia 
matrix associated with the equations of motion must be evaluated 
for forward dynamics, e.g., in Angeles and Ma (1988) and others, 
in which the joint accelerations are solved from the equations of 
motion. Conventionally, a numerical approach is taken to solve for 
the joint accelerations. For example, in Angeles and Ma (1988), (i) 
first, the elements of the inertia matrix are evaluated; (ii) then, the 
numerical decomposition of the matrix, namely, the Cholesky 
decomposition (Stewart, 1973), is performed; and (iii) finally, the 
joint accelerations are solved by backward and forward substitu- 
tions. Since the complexity of the Cholesky decomposition is of 
order n 3, the forward dynamics algorithm also requires O(n 3) 
computations. There is, however, an alternative approach to obtain 
a forward dynamics algorithm recursively, whose computational 
complexity is in the order n, i.e., O(n), e.g., Armstrong (1979), 
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Fig. 1 An n-body serial manipulator 

Featherstone (1983), Rodriguez (1987), Schiehlen (1991), Rodri- 
guez and Kreutz-Delgado (1992), and Saha (1997). There is also a 
parallel O(log N) algorithm proposed in Fijany et al. (1995) which 
requires a special computer hardware, namely, a parallel architec- 
ture. Because of the special hardware requirement the parallel 
algorithms will not be discussed further. 

The algorithm by Armstrong (1979) was the first of its kind 
where the recursive solution to the equations of motion of an 
n-link manipulator mounted on a spacecraft is obtained. Feather- 
stone (1983) has introduced the concept of articulated body inertia 
(ABI) which has been efficiently evaluated by McMillan and Orin 
(1995). The ABI is derived by extending the expressions for the 
equations of motion of a single body to a system of coupled bodies. 
Rodriguez (1987), on the other hand, presented a novel robot 
inverse and forward dynamics algorithms based on Kalman filter- 
ing and smoothing technique arising in the state estimation theory. 
The methodology has been used to solve several other dynamics 
problems as well, namely, by Rodriguez, Jain, and Kreutz-Delgado 
( 1991 ), and Jain and Rodriguez (1995). Schiehlen (1991 ) and Saha 
(1997), however, have independently used the linear algebra ap- 
proach to arrive at a recursive forward dynamics algorithm. It is 
interesting to note that, compared to the O(n  3) schemes, e.g., 
Angeles and Ma (1988), computational complexity of all the O(n) 
schemes, wherever known, are efficient when n ~ 12, as is 
evident from Table 2. The ©(n) algorithms, however, calculate the 
joint accelerations that are smooth functions of time (Ascher et al., 
1997). As a result, numerical integration is faster and, hence, the 
total time in simulation may be less while comparing with the 
O(n  3) scheme. Besides, O(n) algorithms provide physical inter- 
pretations of the parameters they calculate and the intermediate 
steps they follow. Thus, the recursive forward dynamics is becom- 
ing more and more popular. 

In this paper, the NOC (Angeles and Lee, 1988) is taken one 
step further to uniformly develop a set of independent dynamic 
equations of motion from which both recursive inverse and for- 
ward dynamics algorithms can be written. Here, the NOC is 
expressed as a product of two matrices, one is a block triangular 
and the other one is a block diagonal. Hence, the term decoupled 
added to it. Unlike the NOC, its modified form, i.e., the DeNOC, 
allows one to write expressions of the elements of the matrices and 
vectors associated with the dynamic equations of motion in ana- 
lytical, recursive form, as shown in Section 4. These characteris- 
tics were not so obvious with the earlier form of the NOC, e.g., in 
Saha and Angles (1991). Moreover, many of the physical inter- 
pretations obtained in this paper have corresponding interpreta- 
tions in Featherstone (1983), Rodriguez (1987), Rodriguez and 
Kreutz-Delgado (1992), and others, as indicated after Eqs. (14), 
(17), and (50). The present approach provides an alternate ap- 
proach to the development of a recursive forward dynamics algo- 
rithm, compared to others, e.g., Rodriguez (1987). The present 
approach is built upon basic mechanics and linear algebra theory. 
Hence, it is easy to comprehend, even by a fresh mechanical 
engineer without any knowledge of control theory. Moreover, 
there is equivalence of many steps and interpreted variables ob- 

tained from Gaussian elimination of the inertia matrix, as shown in 
Appendix B, and Kalman filtering (Rodriguez, 1987). As a result, 
it may be commented that they are equivalent under certain con- 
ditions. The real proof is, however, behind the scope of this paper. 

The contributions of this paper are listed as follows. 

1 A systematic uniform development of the dynamic model of 
a serial-chain mechanical system. Here the word, uniform, implies 
that no different sets of equations of motion are required to obtain 
inverse and forward dynamics algorithms, as in Sciavicco and 
Siciliano (1996) and others, where Newton-Euler equations of the 
motion of the uncoupled bodies are used to obtain a recursive 
inverse dynamics algorithm and the joint accelerations (forward 
dynamics) are computed from the independent set of equations. 

2 Recursive expressions not only for the generalized inertia 
matrix (Saha, 1997), but also for the generalized matrix of con- 
vective inertia terms, and the generalized forces/torques, as shown 
in Section 4. 

3 As a consequence of the above items, not only a forward 
dynamics algorithm (Saha, 1997) but also an inverse dynamics 
algorithm is possible from the same set of dynamics equations of 
motion. 

4 Implementation of the above algorithms to a planar three- 
degrees-of-freedom manipulator and a six-degrees-of-freedom 
Stanford arm. 

5 Physical interpretation of different terms obtained during the 
dynamic modeling, and correlation of those with the similar terms 
appeared in the literature, e.g., Featherstone (1983) and Rodriguez 
(1987) and Rodriguez and Kreutz-Delgado (1992). 

The paper is organized as follows: Section 2 introduces some 
definitions required to derive the dynamic model given in Section 
3. Section 4 shows how to derive the analytical expressions for the 
matrices and vectors associated with the equations of motion, 
whereas Section 5 gives the applications, namely, inverse and 
forward dynamics algorithms. The results of the algorithms with 
respect to two examples are provided in Section 6. 

2 Some Definitions 
Referring to Fig. l, it is assumed that a serial multibody system, 

namely, the serial manipulator, has a fixed "base" and n moving 
rigid bodies, numbered # 1 . . . . .  #n, coupled by n one-degree-of- 
freedom kinematic pairs or joints, say, a prismatic or a revolute, 
which are indicated in Fig. 1 as 1 . . . . .  n. The ith joint couples the 
ith body with that of the (i - 1)st. Now, referring to the motion 
of the ith body, Fig. 2, the following terms are defined: 

t~ and n~: the six-dimensional vectors of twist and wrench of 
the ith link, i.e., 

ti-~" and wi--= fs (1) Vi 

where 0~ and v~ are the three-dimensional vectors of angular 
velocity and the linear velocity of the mass center of the ith link, 
C~, as shown in Fig. 2, respectively, whereas ni and fi are the 
three-dimensional vectors of the moment about Ci and the force at 
Ci, respectively. 

vi (velocity) 

I m i : mass 
~ - ' f ~ / Q ~ J ~  Ii : inertia T / / c i  / , . . . . .  . 

O 

Fig. 2 Free-body diagram of the fih body 
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~i and M~: the 6 × 6 matrices of angular velocity and mass 
of the ith body, respectively, namely, 

o I o 1 O toi × 1 and Mi ~ O mil  (2) 

where o~ × 1 is the 3 × 3 cross-product tensor associated with 
vector ooi, which when operates on any three-dimensional Carte- 
sian vector, x, results in a cross-product vector, i.e., (to~ × 1)x -~ 
to~ × x. Moreover, L and m~ are the 3 × 3 inertia tensor about the 
mass center, C~, and the mass of the ith body, respectively. 
Furthermore, 1 and O are the 3 × 3 identity matrix and the matrix 
of zeros, respectively. Henceforth, the dimensions of 1 and O 
should be understood as of dimensions that are compatible with the 
dimensions of the matrix expressions where they appear. 

t and w: the 6n-dimensional vectors of generalized twist and 
wrench, respectively, i.e., 

t -= [t~ r . . . . .  t,r] r and w ~- [w r . . . . .  w,r] r (3) 

where t~ and w~, for i = 1 . . . . .  n, are defined in Eq. (1). 

and M: the 6n x 6n matrices of generalized angular 
velocity and mass, respectively, namely, 

-= diag [ ~ ,  . . . . .  1~,] and M =- diag [M~ . . . . .  M,,] 

(4) 

where ~ i  and M~, for i = 1 . . . . .  n, are given in Eq. (2). 

//: the n-dimensional independent vector of joint rates, i.e., 

O ~- [0 ,  . . . . .  0 , ]  ~ (5) 

where 0~ is the displacement of the ith joint, as shown in Fig. 3. 

3 Dynamic  Model ing Using the DeNOC 

For a serial-chain mechanical system shown in Fig. l, the steps 
to obtain the dynamic equations of motion using the DeNOC 
matrices are given below: 

1 Derivation of the Unconstrained Newton-Euler (NE) 
Equations of Motion: 

(a) From the free-body diagram of the ith rigid body, Fig. 2, 
write the Newton-Euler equations of motion as 

Iigo i -I- 0.) i X I io0 i = n i (6a) 

mi~ri : f i  (6b) 

where ni and f~ are the resultant moment about and force 
applied at the mass center, C~, respectively. Using the 
definitions given in Eqs. (1) and (2), the above six scalar 
equations can be put in a compact form as 

M i t  i -I- [Wilt i = w i (7) 

r~j ~d~ 

~ / / ~  ~O~--/--~:~r ~ rne 

Fig. 3 A coupled system 

(b) 

(a) 

where the six-dimensional twist-rate vector, ti, and the 
6 X 6 mass-rate matrix, 19Ii, are, respectively, the time 
derivative of t~ and M~, which are defined as 

Write Eq. (7) for i = 1 . . . . .  n: This gives 6n uncoupled 
scalar equations for the whole system, which are put in the 
following form: 

Mt + l~t = w (9) 

where ic and 1VI are the time derivative of the generalized 
twist, t, and generalized mass, M, respectively, i.e., 

i ~ ITS' ,  . . . .  [T]T and 1~ ------ diag [1VI, . . . . .  l~l,] 

(lO) 
in which t~ and IVL appear in Eq. (8). 

Derivation of Kinematic Constraints: 

In this step, motion constraints due to the kinematic pairs are 
derived. For example, velocity constraints between two links, 
#i and #j, coupled by the ith revolute joint, as shown in Fig. 
3, can be expressed as 

to i = oJj + 0iei (1 la) 

vi = vj + ooj x rj + oJ~ x d i . (1 lb) 

The above six scalar equations are written in a compact 
form as 

ti = B0t j + Pi0i (12) 

where the 6 X 6 matrix, B~j, and the six-dimensional 
vector, p~, are as follows: 

Bu -= c o × 1 and Pi ~- e i N d i 

% × 1 being the cross-product tensor associated with 
vector c u , defined similar to tos × 1 of Eq. (2), i.e., (% × 
1)x ~ % × x, for any arbitrary three-dimensional Carte- 
sian vector x. The vector, % ,  as shown in Fig. 3, is given 
by, % --= -d~  - rj. It is interesting to note here that the 
matrix, B~j, and the vector, p~, have the following inter- 
pretations: 

• For two rigidly connected moving bodies, #i and #j, B 0 , 
propagates the twist of #j to #i. Hence, matrix B u is 
termed here as the twist propagation matrix, which has the 
following properties: 

BuBjk=B~k, B , =  1, and B~ 1 = Bji. (14) 

Matrix B~j is nothing but the state transition matrix of 
Rodriguez (1987). 

• Vector, pi, on the other hand, takes into account the 
motion of the ith joint. Hence, p~ is termed as the 
joint-rate propagation vector, which is dependent on 
the type of joint. For example, the expression of p~ in 
Eq. (13) is for a revolute joint shown in Fig. 3, whereas 
for a prismatic joint vector p~ is given by 

pi--- [e0] :  for a prismatic joint (15) 

where e~ is the unit vector parallel to the axis of linear 
motion. Correspondingly, 0~ of Eq. (12) would mean 
the linear joint rate. Other joints are not treated here 
because any other joint, e.g., spherical or screw, can be 
treated as combination of revolute or revolute and pris- 
matic pairs, respectively. 
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Write Eq. (12), for i = 1 . . . . .  n, as 

t = NO, where N---- NtNd. (16) 

In Eq. (16), N is the 6n × n NOC matrix, introduced in 
Angeles and Lee (1988), whereas its decoupled form, N 
N~Nd, is termed as the decoupled NOC (DeNOC) matrices 
(Saha, 1997). The 6n × 6n lower block triangular matrix, 
N~, and the 6n × n block diagonal matrix, Nd, are given 
by 

(b) 

Nz -= 2~ 1 and 

k B,I B',~2 

 00° ° l Nd ~ P2 

0 ,, 

(17) 

where the first two properties of the twist propagation 
matrix, B~j, given in Eq. (14) are used. Moreover, O and 
0 are the 6 × 6 matrix and the six-dimensional vector of 
zeros, respectively. Matrices N~ and Nd are the spatial 
operators of Rodriguez and Kreutz-Delgado (1992), which 
are "anticausal" and "memory-less" nonrecursive, respec- 
tively. 

3 Incorporation of the Kinematic Constraints Into the NE 
Equations of Motion: Premultiply N T with the decoupled NE 
equations of motions, Eq. (9), i.e., 

N r ( M i  + 1VIt) = Nr(w ~ + w')  (18) 

where w is substituted as w -= w L + w~--w t~ and w ~ are the 
generalized external and internal constraint wrenches, respec- 
tively. Since constraint moments and forces do not perform any 
work, trw ~ vanishes, i.e., trw I = 0rNrw~ = 0, which implies that, 
for independent 0, Nrw ~ = 0. Hence, Eq. (18) is rewritten as 

N 7(Mi + lflt) = N rw e. (19) 

Note that in order to eliminate the constraint wrench from the 
decoupled NE equations, Eq. (9), as done in Eq. (19), it is impor- 
tant to write the generalized twist, t, as a linear transformation of 
the independent generalized speed, as in Eq. (16). 

4 Constrained Euler-Lagrange (EL) Dynamic  Equations 
of  Motion: Su.bstitute..the e.x.pression of t, Eq. (16), and its time 
derivative, i.e., t : NO + NO, into Eq. (19). The result is the 
following constrained dynamic equations of motion: 

I 0 +  C 0 = ' r  (20) 

where 

I ~- N~MN --- N~'I~Nd: the n × n generalized inertia matrix 

(G1M); 

C --= Nr(Mlq  + 1VIN) -~ N ~,l'l~I'N,l: the n × n matrix of 

convective inertia terms; 

~- -~ Nrw e --- N~qee: the n-dimensional vector of generalized 

forces due to driving torques and those resulting from 

gravity and dissipation, etc. 

The expressions for 1VI, 1~I', and ~F are associated with the 
composite body of the system under study and derived in the next 

section, Section 4. Note that Eq. (20) is essentially the Euler- 
Lagrange equations of motion that has been arrived from the 
uncoupled Newton-Euler equations, e.g., Eq. (9). Moreover, the 
use of the NOC, N, as introduced in Angeles and Lee (1988), does 
not allow further simplification of associated expressions of Eq. 
(20), i.e., matrices I and C, and vector ~'. Hence, a computer 
algorithm is required at this stage for dynamic analysis. Alterna- 
tively, the DeNOC matrices given in Eq. (16) allows one to write 
the analytical recursive expressions for each element of the ma- 
trices, I, C, and ~', as shown in the following section. These 
expressions lead to recursive inverse and forward dynamics algo- 
rithms, given in Sections 5. l and 5.2, respectively, whose compu- 
tational complexities are of order n, i.e., ©(n), and provide many 
physical interpretations, e.g., after Eqs. (14), (17), (23b), and (50). 

4 A n a l y t i c a l  E x p r e s s i o n s  for  I, C,  a n d  7 

The analytical expressions for the GIM, I, the generalized 
matrix of convective inertia terms, C, and the generalized vector of 
joint forces/torques, as given after Eq. (20), are derived next. 
These expressions provide the basis for uniform development of 
the recursive inverse and forward dynamics algorithms. That is, 
unlike other approaches, e.g., Sciavicco and Siciliano (1996) and 
others, where free-body diagrams and NE equations are used to 
develop inverse dynamics algorithm and the EL equations are used 
for forward dynamics, here only one set of equations, namely, Eqs. 
(20), (24), (29), and (30), are used for both the algorithms. 

4.1 Derivation of  the GIM, I. Substituting the expression 
for the NOC in terms of the DeNOC matrices, i.e., N ~- NtNd, as 
in Eq. (17), into that of matrix I -~ NrMN, as given after Eq. (20), 
one obtains 

I ~~ --= N,/MNd, where 1~1 ~ N~MNi (21) 

in which the 6n × 6n symmetric matrix, 191, is given by 

• T ~ 1VI, B;,NI2 • B,,M,,] 
• • B ,aM,, / (22) l f 4 ~  1VI2B2, NI2 . r ~  

: ~ • : 

J 1VInB,I ]~I,B,~ ' • l~I 

where the 6 × 6 matrix, ~L, for i = 1 . . . . .  n, is defined as 

t~ 

1Vii--= Mi + ~ B~,MkBki. (23a) 
k = i l l  

Note the summation over k = i + l . . . . .  n in Eq. (23a). An 
algorithm computing 1VIa, for i = 1 . . . . .  n, from Eq. (23a) will 
certainly require order n 2 computations. However, a close look to 
Eq. (23a) with the first two properties of B~, Eq. (14), in mind 
reveals that the summation expression can be evaluated recur- 

n 

sively, i.e., ~ r ~ r ~ BklMkBki Bi,.l,iMi.,.iBi+l,i, f o r /  = n . . . . .  1, 
k i ~ l  

with 1~1,,+~ ~ O, because there is no (n + l )s t  link in the 
system. Hence, Eq. (23a) has the following recursive relation: 

1~I i : M i + Bf+l.il~Ii+lBi+l. i where IVI,, ~ M,,. 
(23b )  

The 6 × 6 matrix, ~1~, is the mass matrix of composite body, i, i.e., 
I~lj represents the mass and inertia properties of the system com- 
prising of (n - i + 1) rigidly connected bodies, namely, bodies 
#i . . . . .  #n, as indicated in Fig. 1 by dotted line. The expressions 
for the elements of the GIM, I of Eq. (20), which is symmetric 
positive definite, are then given by 

iij = ij, = pfl~l,Bqpj (24) 

f o r i  = 1 . . . . .  n ; j  = 1 . . . . .  i. 
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Table 1 Computational complexities in inverse dynamics 

Algorithm M A n = 6 

Hollerbach (1980) 412n - 277 320n - 201 2195M 1719A 
Luh et al. (1980) 150n - 48 131n + 48 852M 834A 
Walker and Orin 

(1982) 137n - 22 101n - 11 800M 595A 
Proposed 120n - 44 97n - 55 676M 527A 
Khalil et al. (1986) 105n - 92 94n - 86 538M 478A 
Angeles et al. (1989) 105n - 109 90n - 105 521M 435A 
Balafoutis et al. (1988) 93n - 69 81n - 65 489M 421A 

M: Multiplication/Division; A: Addition/Subtraction 

4.2 Derivation of C Matrix. Using the NOC and its time 
derivative in terms of the DeNOC matrices, i.e., N =- N~N~, and lq 

SlNd + NlSd, respectively., the.generalized matrix of convec- 
tive inertia terms, C [ ~ N r ( M N  + MN)], as defined after Eq. (20), 
is obtained as 

C =- N~M'Nd,  where lql' =- N~MN, + lq4n + 1~I ( 2 5 )  

in which the following identities are used: 

l~/d -~ l~Nd and l~l = NT19IN~ (26) 

where the 6n × 6n matrix, 12, is defined in Eq. (4). In Eq. (25), 
the multiplication of two block diagonal matrices, M and fI ,  can 
be easily performed, whereas the expressions for the matrices, 
NfMIq, and M, are shown below: 

B T11~I21 

N ~Mlql ~ fI21 

- In - -  1,1 

7 '7 gg 
M M i  M2 

'7 ." 
• ~ M2 M2 M--= 

7 '7 
M. M,, 

T ~ B.IH.,n-I 
T ~ B ,,2H.,.- 

T " 
B n2Hn,n I 

" 

• " 

i ]  and 

(27) 

the 6 × 6 matrices, 1~I~ and ITI0, for i = 1 . . . . .  n; j = 1 . . . . .  
i - 1, being obtained as 

,7 ,"1" 
Mi = Mr + Mi+l and (-I 0 -~ M i U i j  + BiT+l,i~Ii+l,i (28) 

in which ~I,,÷ 1 = f-I,+ ~.,, = O. The individual element of the n × 
n matrix, C, i.e., c 0 , for i, j = 1 . . . . .  n is given as 

T T ~ T ~ ~ j  I P i ( B j / M j f l j  + Bj+I,iHj~ ,,i + ~ ) ) P j  if i 

CiJ = [piT(~IrBij~j + ~Iq + ~li)ps otherwise. (29) 

4.3 Derivation of ~- Vector. The generalized vector of 
forces and torques, ~, can he obtained from its expression after Eq. 
(20), i.e., for, i = 1 . . . . .  n, 

% p(ff~, where * ~ = w ~ +  r -E  = Bi+l,iWi+ l (30) 

in which ~ is the six-dimensional vector component of the 
6n-dimensional vector, ~,F~, namely, 

. . . . .  (31) 

Note in Eq. (30) that in the absence of any external forces and 
moments on the end-effector, w,,~ e, , = 0. 

5 A p p l i c a t i o n s  

A class of serial multibody systems are industrial manipulators. 
Suitable dynamic models of these manipulators are required 
mainly for their control and simulation purposes. Control involves 
inverse @namics, whereas simulation requires forward dynamics. 
These algorithms are presented in the following subsections. 

5.1 Inverse Dynamics Algorithm. The inverse dynamics 
problem is defined as, given the motion of  a manipulator, calculate 
the actuator forces~torques required to maintain the given motion. 
Based on the dynamic equations of motion, Eq. (20) and the 
expressions for the elements of the associated matrices, I, C, and 
~-, Eqs. (24), (29), and (30), respectively, a recursive inverse 
dynamics algorithm is presented here for the following input: For 
i = 1 . . . . .  n, 

1 constant Denavit-Hartenberg (DH) parameters (Denavit and 
Hartenberg, 1955)--the DH parameters are also defined in 
Appendix A - - o f  the system under study, i.e., at, br, and c~, 
for a revolute pair, and a~, b~, and 0r, for a prismatic pair. 

2 time history of the variable DH parameter, i.e., 0r, for a 
revolute pair, and br, for a prismatic joint, and their first and 
second time derivatives, i.e., 0r, 0r, and be, ~r. 

3 mass of each body, mr. 
4 vector denoting the distance of the (i + l)st  joint from the ith 

mass center, Cr, in the (i + 1)st frame. 
5 inertia tensor of the ith link about its mass center, C~, in the 

(i + 1)st frame. 

The inverse dynamics algorithm then calculates the joint forces/ 
torques, i.e., %, for i = 1 . . . . .  n, in two recursive steps, as shown 
below: 

Forward Recursion 

v, = Pl01; 
v2 : p202 + Vl; 

V~ = p,0,, + v,,-1; 

~t = P101 + l l lp l01  
~2 = P20z + i"~2P202 + B21~I + I ~ 2 1 V l  

~,, = p,O,, + l l ,p , ,0 ,  + B,,,,,_l~n_ 1 
+ Un,n_lv,~_ l 

Backward Recursion 

% = M,,~,, + M,,v,;  %, = p r y ,  
T T Y. I = M.,-i~,, I + 1VI,, iv,,-1 + B. , , , -W.; %-1 = P,,-lY.-I 

Vl = Migl  + M l v l  + B~ly2; TI = P~TJ 

where vr, ~r, and % are the six-dimensional vectors. Note from 
the expression for % above and that in Eq. (30), '~ff ---= %, while 
~ E  W,+l = 0. This implies that, without any external forces/ 
moments on the end-effector, only inertia forces, 3,,., contribute 
to w~, and, hence, the required joint  forces/torques are due to 
system motion only. 

For an all revolute-joint serial manipulator, the computational 
complexity of the above algorithm is compared in Table 1 with 

Table 2 Computational complexities in forward dynamics 

Algorithm M A n = 6 n = 12 

Proposed 201n - 335 193n - 361 871M 797A 2077M 1955A 
Featherstone (1983) 199n - 198 174n - 173 996M 871A 2190M 1915A 
Walker and Orin (1982) ~nt 3 + 11 ~n2 + 38½n - 47 ~nl 3 + 7n 2 + 386n _ 46 633M480A 2357MI716A 

M: Multiplication/Division; A: Addition/Subtraction 

990 / Vol. 66, DECEMBER 1999 Transactions of the ASME 

Downloaded 23 Nov 2007 to 203.199.213.67. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



End ~ / ~  0 ' 
effector ~ / , '  

rl Jg~'lg ~ 02 
t21 s " "  

X 

Fig. 4 A three-degrees-of-freedom manipulator 

o 

5 

4 

3 

2 

1 

0 

-1 

-2 

tau_ 1 

tau 3 

i 

i i 

2 6 
time (sec) 

8 10 

Fig. 5 Torques for three-degrees-of-freedom manipulator 

some other existing algorithms. Even though the algorithm is not 
the best but it is very simple, as evident from the two-step algo- 
rithm where six-dimensional vectors are treated similar to those of 
three dimensional vectors. That is, if one knows v~ finding out v2 
is very similar to the evaluation of the linear velocity of body 2 
from the known linear velocity of body 1. A computer software 
called RIDIM (Recursive Inverse Dynamics of Industrial Manip- 
ulators) is developed in C+  +, which has the following features: 

• RIDIM can handle manipulators with both revolute and pris- 
matic pairs or joints; 

• gravity is taken into account by providing negative acceleration 
due to the gravity, denoted by g, to the first body, #l  (Kane and 
Levinson, 1983), i.e., an additional term is added to £1 as 

~ = Pt01 + l~lPl01 + P where p ~ [0 T, _griT.  (32) 

The rest of the algorithm remains same. 

The software is illustrated with two examples, as in Section 6. 

5,2 Forward Dynamics Algorithm. Forward dynamics is 
defined as, given the joint forces~torques, find the joint accelera- 
tions. This step is required in simulation, where the joint acceler- 
ations, 0, are solved from the dynamic equations of motion, Eq. 
(20), and integrated numerically to obtain the joint velocities and 
positions, 0 and 0, respectively, for a given set of initial condi- 
tions. 

The required input for the forward dynamics algorithm are as 
follows: For i = 1 . . . . .  n, 

• inverse dynamics items, 1, and 3-5, as in Section 5.1. 
• initial value for the variable DH parameter, i.e., 0i, for a 

revolute pair, and bl, for a prismatic pair, and their first time 
derivative, i.e., 0i and b,. 

• .time history of the input joint forces/torques, i.e., +~. 
• each component of the six-dimensional vector, 4~ --- ,r - CO, 

i.e., 4~, which is to be computed from any recursive inverse 
dynamics scheme, e.g., the one given in Section 5.1, while 0 = 
0 (Walker and Orin, 1982). 

The forward dynamics algorithm, as proposed in Saha (1997), is 
presented here for the sake of completeness of this paper. The 
algorithm is based on the UDU r decomposition of the generalized 
inertia matrix, I of Eq. (20), i.e., I -= UDU r, as outlined in 
Appendix B. Substituting for I, and, 4) =- ~" - CO, in Eq. (20), one 
obtains 

UDUrO = dp. (33) 

A three-step recursive scheme is then used to calculate the joint 
accelerations from the above equations, i.e., 

1 Solution for ÷: The solution, ÷ = U ~4~, is evaluated as 

0 
g 
o 

-2 

-3 

-4 
0 05 

Fig. 6 
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Fig. 7 The six-degrees-of-freedom Stanford arm 

Ti ~)i T = --  p i ' l ] i , i + l  (34) 

where ÷,, --= ~b,,, and the six-dimensional vector, ~b.~+~, is obtained 
as 

- -  T 

~ i , i + l  : Bi+l , i~ l~i+l  and T~i+i ~ i~i+l~i_ 1 ..4- lf~i+1,i+2 (35) 

in which ~,,.,+1 = 0. The new variable, tk~+~, is the six- 
dimensional vector which is defined in Appendix B. 

2 Solution for  ~r." The solution of the equation, Drr = ÷, 
involves the inverse of the diagonal matrix, D of Eq. (54), which 
is simple, namely, D -1 has only nonzero diagonal elements that are 
the reciprocal of the corresponding diagonal elements of D. Thus, 
vector rr is obtained as follows: For i = 1 . . . . .  n, 

fi = ~i/rhi. 

The scalar, rh~, is defined in Eq. (47). 

3 Solution for  O: In this step, ~ = U rzr, is calculated, for 
/ = 2  . . . . .  n 

T 
Oi = T i -  i~i~ 'Li , i -1  (36) 

where Ot --- ~-~, and the six-dimensional vector,/x~,g_~, is obtained 
from 

~'~i,i 1 -~ B i , i - l ~ i - !  and ~ i - i  ~- Pi:10i-1 -4- i . l , i_l, i  2 (37) 

in which/x~0 = 0. 
The complexity of the proposed forward dynamics algorithm is 

compared in Table 2 with some other algorithms. The complexity 
of the proposed algorithm is very similar to those of Featherstone 
(1983). 

Based on the above algorithm, a simulation software, RFDSIM 
(Recursive Forward Dynamics and Simulation of Industrial Ma- 
nipulators) is also developed in C + +  in which the numerical 

integration scheme is based on the Runge-Kutta fifth/sixth-order 
method (Press et al., 1997). 

6 Examples  

For the illustration of the inverse and forward dynamics algo- 
rithms developed in Sections 5.1 and 5.2, respectively, two ma- 
nipulators, namely, a three-degrees-of-freedom planar manipulator 
and a six-degrees-of-freedom Stanford arm, as shown in Figs. 4 
and 7, respectively, are analyzed using RIDIM and RFDS!M 
software. 

6.1 A Three-Degrees.of-Freedom Planar Manipulator. 
The manipulator under study is assumed to move in the X - Y  plane, 
whereas the gravity is working in the negative Y direction, as 
indicated in Fig. 4. Let i and j be the two unit vectors parallel to 
the axes, X and Y, respectively, and k =-- i × j. The expressions for 
the three joint torques, namely, ¢1, z2, and %, are evaluated 
explicitly from the inverse dynamics algorithm given in Section 
5.1, which exactly match with those reported in Angeles (1997). 
Moreover, RIDIM is used to find the joint torques for the following 
normal j oint angle trajectories and their corresponding 1 st and 2nd 
time derivatives: 

0 i = ~ t 

with T = 10.0 sec. The joint torques obtained from RIDIM are 
plotted in Fig. 5, where "tau_l .. . .  tau_2" and "tau_3" denote the 
joint torques, T~, z2, and $3, respectively. The plots are also 
verified with the plots obtained from the explicit expressions. 

In order to test RFDSIM, free fall simulation, i.e., motion due to 
gravity only, without any external joint torque, of the manipulator 
is carried out with the initial conditions as 0g(0) = 0r(0) = 0, for 
i = 1, 2, 3. The variations of the simulated joint angles are shown 
in Figs. 6, where "th_l," "th_2," and "th 3" represent 01,02, and 
03, respectively. Note from Fig. 4 that due to gravity the first joint 
angle, 0~, will increase initially in the negative direction, as 
evident from Fig. 6. Moreover, the system under gravity behaves 
as a triple pendulum. These is evident from all the joint angle 
variations, namely, 0~, 02, and 03 of Fig. 6. 

6,2 A Stanford Arm. As a second example, a more general 
six-axis six-degrees-of-freedom manipulator, namely, the Stanford 
arm, as shown in Fig. 7, is taken whose Denavit-Hartenberg (DH) 
parameters, along with the mass and inertia properties are given in 
Table 3. The normal joint trajectory for the six joints are taken 
from Cyril (1988) as 

1 [ ~ _  ( ~ t ) ]  for e (39a) 0 ~ = ~  t - s i n  - -  -¢3 

b 3 ~ t sin 

with T = 10.0 sec, 01(0) = 0, for i ¢ 2, 3, 02(0) = 90 deg, 
b3(0 ) -~ 0, and Oi(T) = 60 dee, for i 4= 3 and b3(T) = 0.1 m. 
The joint torques are calculated from RIDIM and plotted in Figs. 

Table 3 DH parameters, and mass and inertia properties of Stanford arm 

Link a~ b~ a~ Oi m~ rx r~ r~ 1~, 1 ,  Iz~ 
(m) (m) (deg) (deg) (kg) (m) (kg-m 2) 

1 0 .2 -90 O~ (0) 9 0 -.1 0 .01 .02 .01 
2 0 .1 -90 02 (90) 6 0 0 0 .05 .06 .01 
3 0 b3(O) 0 0 4 0 0 0 .4 .4 .01 
4 0 .6 90 04 (0) 1 0 - .  1 0 .001 .001 .0005 
5 0 0 -90 05 (0) .6 0 0 0 .0005 .0005 .0002 
6 0 0 0 06 (0) .5 0 0 0 .003 .00l .002 
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8(a)-(f), which exactly match with those reported in Cyril (1988) 
for the same arm. 

Interpretations similar to the planar manipulator, as given in 
Section 6.1, can be provided for the Stanford arm also. For 
example, the motion of joint 3 should sharply increase once the 
joint 2 turns more than 90 deg, which are evident from Figs. 9(c) 
and (b), respectively. 
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7 Conclusions 
A dynamic modeling methodology for serial multi-body 

mechanical systems is presented. The modeling is based on the 
Newton-Euler equations of motion and the DeNOC matrices as- 
sociated with the kinematic constraints, namely, Eq. (16). The 
dynamic modeling using the DeNOC has the following features: 

• physical interpretations of many terms, e.g., the mass matrix of 
a composite body, as defined after Eq. (23b), and others, as 
given after Eqs. (14), (17), and (50). 

• unlike the original definition of the NOC (Angeles and Lee, 
1988), the DeNOC provides recursive analytical expressions 
for the elements of the associated matrices, i.e., I, C, and ¢, 
Eqs. (24), (29), and (30), respectively. 

• due to the recursive expressions of the elements of matrices, I, 
C, and ~-, recursive O(n) algorithms for inverse and forward 
dynamics are possible for a general n-axis industrial manipu- 
lator, as presented in Section 5.1 and 5.2. 

The computational complexities for both the inverse and forward 
dynamics algorithms are computed and compared in Tables 1 and 2, 
respectively. The algorithms are not the best in terms of the complex- 
ities, however, provide simple algorithms, particularly, the inverse 
dynamics algorithm presented in Section 5.1. They are also developed 
uniformly from the same set of equations, namely, Eqs. (20), (24), 
(29), and (30), which is simple to implement. Two software, namely, 
RID1M and RFDSIM are developed in C+ +, which are tested with 
respect to two manipulators, namely, a three-degrees-of-freedom pla- 
nar manipulator and a six-degrees-of-freedom Stanford arm. The 
results from RIDIM are compared with those available in the litera- 
ture for the same systems, namely, with Angeles (1997) for the 
three-degrees-of-freedom manipulator and with Cyril (1988) for the 
six-degrees-of-freedom Stanford arm, whereas the results of RFDSIM 
are interpreted intuitively. 
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A P P E N D I X  A 

Denavit-Hartenberg Nomenclature 
In order to describe the Denavit-Hartenberg (DH) nomencla- 

tures (Denavit and Hartenberg, 1955) that is followed here, note 
that the manipulator under study consists of n + 1 links, namely, 
a "base" and n links, denoted by # l  . . . . .  #n, coupled by n pairs 
numbered as l . . . . .  n, respectively. As shown in Fig. 1, ith pair 
couples the (i - 1)st and the ith links. Moreover, a coordinate 
system X~, Y~, Z~ is attached to the (i - 1)st link. 

Then, for the first n frames, DH parameters are defined accord- 
ing to the following rules: Referring to Fig. 10, 

1 Zr is the axis of the ith pair. Its positive direction can be chosen 
arbitrarily. 

2 Xr is defined as the common perpendicular to Z ,  and Z~, directed 
from the former to the latter. The origin of the ith frame, O~, is the 
point where Xr intersects Z,  If these two axes intersect, the 
positive direction of Xr is chosen arbitrary. The origin, Or, is 
coincides with the origin of the (i - 1)st frame, O , .  

3 the distance between Zi and Zr+~ is defined as ai, which is 
non-negative. 

4 the Zr coordinate of the intersection of the X ,  axis with Zr is 
defined as br, which thus can be either positive or negative. For 
a prismatic joint, b~ is variable. 

5 the angle between Zr and Zr+~ is defined as at ,  and is measured 
about the positive direction of Xr+l, and 

6 the angle between Xr and Xr+~ is defined as 0~, and is measured 
about the positive direction of Z~. For a revolute joint, 0r is 
variable. 

Since no (n + 1)st link exists the above definitions do not apply 
to the (n + 1)st frame and it can be chosen at will. 

A P P E N D I X  B 

Decomposit ion of the GIM, I 
In order to obtain the UDU r decomposition of the GIM, I of Eq. 

(20)--the elements of which are given by Eq. (24)--the rules of 
the Gaussian elimination (GEl (Stewart, 1973) are applied on these 
elements for the Reverse Gaussian Elimination (RGE), as pro- 
posed in Saha (1997). The scheme is reproduced here for the 
completeness of the paper. 

B.1 RGE of the GIM, I. Conventionally, the GE (Stewart, 
1973) begins from the first column of the matrix under interest. In 
the proposed elimination, it is assumed that the GE of matrix I, Eq. 
(20), whose elements are given by Eq. (24), starts from the nth 

• Z .  Zi+l 

Fig. 10 Danavlt-Hartenberg nomenclature 

column• This is to obtain recursive relations starting from the nth 
body. Thus, the RGE name is used. In RGE, after the annihilation 
of the first (n - 1) elements of the nth column, the modified 
inertia matrix, denoted by L,,, is expressed as 

L,, -= .(,,/ ~ (,,I (40) 
l n - l , l  " " " ) n - l , n - I  

inl " " " in.n-I inn 

• ( n )  where i,,,, is the pivot (Stewart, 1973) and trj are the modified 
elements of I, whereas "sym" denotes the symmetric elements of 
the (n - 1 ) × (n - 1) matrix, resulting from the deletion of the 
nth row and column of matrix L,,. Equation (40) is realized by 
premultiplying matrix I with the elementary upper triangular 
matrix (EUTM) of order, n and index n, as done in GE with 
elementary lower triangular matrix (ELTM) (Stewart, 1973). An 
EUTM of order n and index k, denoted by Ek, is defined as 

E k ~ 1 - akl~" (41) 

where 1 is the n × n identity matrix and the n-dimensional 
vectors, o~k and Ak, are defined by 

Olk =-- [alk . . . . .  ak-I.k, 0 . . . . .  0] r (42) 

A~ ~ [0 . . . . .  0, l . . . . .  0] r. (43) 

From Eqs. (42) and (43), the EUTM, Ek, Eq. (41), has the follow- 
ing structure: 

1 0 

E k 1 -ak  I.k ' ' '  (44) 
1 • • • 

0 / ~  ' . .  

where "O's" imply zeros. Moreover, in the RGE, the modified 
matrix after the annihilation of the first k-1 elements of the kth 
column is expressed as 

Lk = EkLk+l (45) 

Note here that, i fk  = n and L,,+~ -= I, and the matrix, L,, of Eq. 
(40), follows from Eq. (45). Furthermore, the elements of Ek and 
Lk, ark and :(k) respectively, are computed from the following t o , 

scheme: 

• F o r k = n  . . . . .  2 ; D o i = k -  1 . . . . .  1 ; D o j =  i . . . . .  1 

ark = pr0i~ and i(k/ij = Prl~I~kB0Pj (46) 

end do j ;  end do i; end for k. 

In Eq. (46), matrix B~j, and vectors p~ and p~ are defined in Eq. 
(13), whereas the six-dimensional vector qJrk and the terms asso- 
ciated to it are given as 

t~ -~  191kpk, (krk ~ B ~ k ,  rhk ~ P;~k,  (47) 

0,,k 
Oh -~ = - ,  and qJik ~ - 7 .  (48) 

m k  m k  

In Eq. (47), 1Elk --= ~Ikk+~, which is used to simplify the notation. 
The 6 × 6 matrix, ~Lk'of Eq. (46) and ~Ik (~k ,k+*)  of Eq. (47), 
are evaluated from the following relation: 

1VI,k ~ l~,lr- qtrk, where aItrk --= ~ i~nqt~ (49) 
I = k  

and 1VIi is given in Eq. (23a). Note that, the 6 × 6 matrix, xI~rk, has 
a recursive relation, whose substitution, along with that of Mr, Eq. 
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(23b), into the expression of 1VI~, Eq. (49), leads to a recursive 
equation, i.e., 

T ^ lf, l~k = M~ + B,+~.~M~+~.~B~+i.~ and l~lkk = l~Ik -- 0tkqt~ r (50) 

where k = n . . . . .  2; i = k - 1 . . . .  , 1. Moreover, for i = k - 
1, I~L+ i,~ -~ l~la, and 1~I,, -~ M,,. 

Note that, in contrast to the definition of 1VIi associated to the 
composite body, i, Eq. (23a), the matrix, I~L, as in Eq. (50) for k = i, 
has the following interpretation: It represents the mass and inertia 
properties of the articulated body i, which is defined as the system 
consisting of bodies #i . . . . .  #n that are coupled by joints i + 1 . . . . .  
n, i.e., replace the fixed joints of the ith composite body, as shown in 
Fig. 1 by the dotted line, by a kinematic pair, say, a revolute joint. 
Here, the matrix, I~L, incorporates the effects of joints into the rigid 
composite system i, resulting 1~I~ of Eq. (23a). In fact, comparison of 
the expressions for I~l~ and 1Vie (~1~1~,~+1), as in Eqs. (23b) and can be 
obtained from (49), respectively, show that the 6 × 6 matrix, ~,~+~, 
causes this change. This could have prompted Lilly and Ofin (1990) 
to name the matrix as the articulation transfotTnation matrix. Matrix, 
1~I~ is also termed as the articulated-body inertia of link i (Feather- 
stone, 1983), and the state estimation error covariance (Rodfiguez, 
1987; Rodriguez and Kreutz-Delgado, 1992) that satisfies the discrete 
Riccati equations. Thus, it is commented that a correlation exists 
between the Gaussian elimination technique and the Kalman filtering 
approach, which can be exploited for the deeper understanding of the 
dynamics characteristics of a complex mechanical system. Finally, the 
scalar, tfi~, is interpreted as the moment of inertia of the articulated 
body, i, about the axis of rotation of the ith joint. 

B.2 UDU r Decomposition. The scheme to obtain the UDU r 
are then given in the following steps: 

1 The RGE of I, whose elements are given by Eq. (24), can be 
expressed as 

E I = L 2 ,  where E ~ E 2 . . . E , ~  (51) 

in which the n × n matrix, Ek, for k = n . . . . .  2, is the EUTM 
and E and L2, respectively, are the n × n upper and lower 
triangular matrices. 

2 An essential property of the EUTM, EK, similar to the 
ELTM (Stewart, 1973), is 

E~ -1~  (1 - -  O / k / ~ )  I _.~ I + O/k/~ ~ (52) 

where eek and Ak are defined in Eqs. (42) and (43), respectively. 
Using Eq. (52), the GIM, I, is written from Eq. (51) as 

I = U L 2 ,  where U ~ E  J (53) 

In Eq. (53), U and L2 are the n × n upper and lower triangu- 
lar matrices, respectively. Moreover, from the inverse of 
the EUTM, Eq. (52), it is clear that the diagonal elements of 
U are unity and the above-diagonal elements are the compo- 
nents of the vector, ~ ,  for k = 2 . . . . .  n, that are evaluated in 
Eq. (46). 

3 Since the factorization, given by Eq. (53) is not unique 
(Stewart, 1973), a unique decomposition is obtained by normaliz- 
ing the elements of L2 as 

L2 = DL, where D -= diag [thl . . . . .  N,,] (54) 

D being the n × n diagonal matrix, whose non zero elements 
are those of the matrix, Lz,  as calculated in Eq. (47). Hence, the 
diagonal elements of matrix L are unity. 

4 Since, for the SPD matrix, I, L ~ U r (Stewart, 1973), the 
desired decomposition of the manipulator GIM, I of Eq. (20), is 
given as 

I = UDU r (55) 

where the elements of the matrices, U and D, are evaluated 
using Eqs. (46)-(50). 
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