PROSPECTS, CHALLENGES AND IMPEDIMENTS IN THE DEVELOPMENT OF BIOMASS GAS BASED SOLID OXIDE FUEL CELL (SOFC) IN INDIA

Seminar on Challenges in Fuel cell Technology: India’s Perspective
Indian Institute of Technology- Delhi
1st and 2nd December 2006

Contents of the Lecture
- Introduction
- Types of fuel cell
- Solid Oxide Fuel Cell Reaction and Configuration
- Important Components of the Solid Oxide fuel cell
- Salient features of the components and performance
- Prospects of Solid Oxide fuel cell systems
- Challenges in Solid Oxide Fuel cell Development
- Experience of VIT in Solid Oxide Fuel Cell program
- Impediments in the realization
- Conclusion and Suggestions for the future

What is a fuel cell?
- A fuel cell is an electrochemical device that combines hydrogen or other fuels and oxygen to produce electricity, with water and heat as its by-product. As long as fuel is supplied, the fuel cell will continue to generate power. Since the conversion of the fuel to energy takes place via an electrochemical process, not combustion, the process is clean, quiet and highly efficient – two to three times more efficient than fuel burning.
- No other energy generation technology offers the combination of benefits that fuel cells do. In addition to low or zero emissions, benefits include high efficiency and reliability, multi-fuel capability, operation flexibility, durability, and ease of maintenance. Fuel cells are also scalable and can be stacked until the desired power output is reached. Since fuel cells operate silently, they reduce noise pollution as well as air pollution and the waste heat from a fuel cell can be used to provide hot water or space heating for a home or office.

Types of Fuel Cells

<table>
<thead>
<tr>
<th>Fuel Cell Designation</th>
<th>Electrolyte</th>
<th>Temperature °C</th>
<th>Cell Efficiency (Load Partial Load)</th>
<th>Type of Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline Fuel Cell</td>
<td>AFC</td>
<td>60...90</td>
<td>50...80</td>
<td>Mobile, stationary</td>
</tr>
<tr>
<td>Polymer Electrolyte</td>
<td>PEFC</td>
<td>50...80</td>
<td>30...40</td>
<td>Mobile, stationary</td>
</tr>
<tr>
<td>Direct Methanol</td>
<td>DMFC</td>
<td>110...130</td>
<td>30...40</td>
<td>Mobile</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>PAFC</td>
<td>160...220</td>
<td>50</td>
<td>Stationary</td>
</tr>
<tr>
<td>Molten Carbonate</td>
<td>MCFC</td>
<td>620...660</td>
<td>65</td>
<td>Stationary</td>
</tr>
<tr>
<td>Solid Oxide Fuel</td>
<td>SOFC</td>
<td>800...1000</td>
<td>65</td>
<td>Stationary</td>
</tr>
</tbody>
</table>

Reference: Automotive handbook – MICO

ELECTROCHEMICAL REACTIONS OCCURRING IN DIFFERENT TYPES OF FUEL CELL

Solid Oxide Fuel Cells

Reference: Solid Cell and D.A. Jardine, clean energy, the Royal Society of Chemistry, UK 2004
Reactions in Solid Oxide Fuel Cell

Types of SOFCs

- Tubular
 - Extremely expensive production
 - Low power density
- Planar
 - High power density
 - Lends itself to mass production

SOFC Advantages and Limitations

- Advantages
 - Being operated at high temperatures and cooling is done by air, there is no water management problem.
 - Can handle many conventional fuels, CO is also a fuel, and is more tolerant to higher concentrations of hydrocarbons and sulfur than for the PEMFC.
 - Considerably less complex fuel reforming compared to PEMFC. Particularly, natural gas fuel can be reformed within the stack.
 - With cogeneration, the system efficiencies can be quite high and flat over the operating temperature range.
 - Very low level of NOx and SOX emissions.
 - Pressurized SOFC can replace the combustor in a gas turbine power plant to reach the efficiencies up to 70%.

- Limitations
 - High operating temperatures mean it requires special materials tolerant to those temperatures.
 - Sealing and thermal cycling are major problems.
 - Longer start-up time.

Application of Solid Oxide Fuel cell

- The development of planar type SOFC is being pursued worldwide by many companies in USA, Europe and Japan.
- The focus for the development is in auxiliary power supply of the order of magnitude 5 kW.
- The applications include auxiliary power for trucks when parked to reduce the significant waste of diesel by running the truck in idle overnight. The expected savings could be around 450,000 gallons of diesel annually only in the USA!
- Planar SOFC are being considered also for home electric power needs to become semi-independent of the grid power.
- Typical unit consist of about 10x10 cm size plates with two stacks consisting of about 40-50 cells connected in series.

Combined Heat and Power (CHP) systems

- The Siemens-Westinghouse's SOFC power system has shown 46% electric efficiencies in pilot power plant. Small tube bundles have operated over 40,000 hours and a record 69,000 hours for a single tube SOFC.
- Combined-cycle system in which the fuel cell replaces the burner in a gas turbine cycle could achieve the overall system efficiency of over 70%.
- The high temperature fuel cell thus can exceed the efficiencies achieved today by combined gas and steam turbine (60%).
- The high temperature fuel cell can also tolerate many fuels and fuel impurities.
- For small-scale CHP technology (~100 kW to several MW), all fuel cell systems can be used.
Important components and Requirements

Electrolytes

- The function of electrolyte is to separate the two gas atmospheres and to transport the oxygen ions without significant losses from the cathode to the anode.
- It should have sufficient oxygen ion conductivity
- Minimum voltage loss across the electrolyte
- Stable under oxidizing condition
- Should have sufficient mechanical strength
- Yttria stabilized Zirconia (YSZ) is extensively used
- Alternate electrolyte materials are perovskites based on LaGaO$_3$ doped with ceria.
- Should be chemically stable in large oxygen partial pressure gradient potential

Interconnects (Bipolar plates)

- The interconnect has to meet the following demands
 - High electronic and low ionic conductivities (electrical conductivity > 1 S cm$^{-1}$)
 - Chemical stability under the reducing and oxidizing conditions at the anode and cathode sides of the cell at temperature of up to 1000°C (Range of oxygen activity 10^{-18}-1 bar)
 - Gas tightness;
 - Thermal expansion coefficient matching with that of other cell components
 - Low costs.

Seals

- Leakage and Stress Hydrogen Leakage Rigidity of Stack
- Volatility and Stability of seal material Cost
Important components and Requirements - Cont.

Components for reactant supply and products outlet

For the supply of hydrogen and other fuels to the anode and oxygen/air to the cathode and to evacuate H2O and CO2 products
1. It should withstand high temperature oxidation/reduction reactions
2. Leak proof connection to the end plates

Instrumentation
1. To measure the temperature, pressure, voltage and current of the cells, intermediates and electrodes

Materials for SOFC applications

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>YSZ, ScSZ, CeO2 (mod.)</th>
<th>LaGaO3 (mod.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode</td>
<td>Ni/YSZ, Ni/CoO2 (mod.)</td>
<td>Cu/YSZ, Cu/CoO2, Cu/YSZ, Ni/SrTiO3, Ni/La, Sr, TiO2, Ni/YZr, TiO2, Ni/Y, Sr, Zr, TiO2, Ni/Sr, Ga NiOx</td>
</tr>
<tr>
<td>Anode substrate</td>
<td>Ni/YSZ, Ni/Al2O3, Ni/TiO2, Ni/NiCrO3</td>
<td></td>
</tr>
<tr>
<td>Cathode</td>
<td>(La, Sr, Ca)MnO3, (La, Sr, Ca)CoO3, (Pr, Sr, Ca)MnO3, LatSr Ca)FeO3, LatNiFeO3</td>
<td></td>
</tr>
<tr>
<td>Interconnect</td>
<td>Ceramic/metallic: LaCrO3 (mod.), Ferritic Steel Cr-based alloys, Austenitic steel</td>
<td></td>
</tr>
<tr>
<td>Sealing</td>
<td>Glass, Glass ceramic, Metallic gasket</td>
<td></td>
</tr>
</tbody>
</table>

CURRENT PROCESSING TECHNIQUES USED FOR SOFC

- a) the tubular design
- b) the electrolyte-supported design
- c) the anode-supported design

Processing scheme for SOFC fabrication by tape calendaring (filled arrows) and by tape casting (hollow arrows)

Schematic Diagram of Extrusion Process
Schematic of the Slurry Coating (Dipping) Process.

Printing Method for Tubular Cell Preparation

Single-Cell Manufacturing

Tape casting of SOFC cell

Planar SOFCs: Microstructure

- Anode: Ni-80% active current, ~1 mm thick
- Electrolyte: yttria-stabilized zirconia (YSZ), ~30-50 µm thick
- Cathode: conducting ceram, ~50 µm thick

Schematic of the anode model element
Correlation between screen and paste film on the substrate

SCREEN-PRINTING PROCESS

Details of the SOFC Project under progress in VIT

Project Funding Details

<table>
<thead>
<tr>
<th>Project title</th>
<th>Development of Technology for Upgradation of Producer Gas From Biomass Gasifier As Feed Stock In Solid Oxide Fuel For Power Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project funded by</td>
<td>Department of Science and Technology (DST)</td>
</tr>
<tr>
<td>The total amount allocated for this project</td>
<td>Rs. 21,52,800/-</td>
</tr>
<tr>
<td>For Institutional overheads</td>
<td>Rs. 17,94,000/-</td>
</tr>
<tr>
<td>Additional funding from VIT</td>
<td>Rs. 10,00,000/-</td>
</tr>
<tr>
<td>Duration of the Project</td>
<td>30 months</td>
</tr>
</tbody>
</table>

ORGANIZATIONS CONTACTED FOR THE SUPPLY OF SOFC ELEMENTS

<table>
<thead>
<tr>
<th>FUEL CELL MANUFACTURERS</th>
<th>FUEL CELL</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acumentrics Corporation (USA)</td>
<td>5 kW tubular SOFC beta unit</td>
<td>Cleveland, Ohio; Japan; Seward, Alaska; Houston, Texas; Idaho Falls, Idaho</td>
</tr>
<tr>
<td>Ceramic Fuel Cells Ltd. (CFCL) Australia</td>
<td>1 kW MicroCHP SOFC</td>
<td>South Melbourne, Australia; Chaudron, Australia; Brandenburg, Germany; State of Tasmania, New Zealand; Wellington, New Zealand; Oldenburg, Germany</td>
</tr>
<tr>
<td>FuelCell Technologies (FT) Canada</td>
<td>5 kW SOFC</td>
<td>Mononaaga, Canada; Ft. Meade, Maryland; Kingston, Canada; Itajuba, Brazil; Vancouver, Canada; Pittsburgh, Pennsylvania; Lago, Belgium; Perth Dam State Park, Pennsylvania; Fairbanks, Alaska; mechanical and Tezno, Germany</td>
</tr>
<tr>
<td>Global Thermoelectric USA</td>
<td>2 x 1 kW SOFC systems</td>
<td>Various locations, USA; Billings, Montana; Calgary</td>
</tr>
<tr>
<td>Russia</td>
<td>1 kW SOFC</td>
<td>Snezhinsk, Russia</td>
</tr>
</tbody>
</table>
ORGANIZATIONS CONTACTED FOR THE SUPPLY OF SOFC ELEMENTS

<table>
<thead>
<tr>
<th>FUEL CELL MANUFACTURERS</th>
<th>FUEL CELL</th>
<th>LOCATION</th>
</tr>
</thead>
</table>
| Mitsubishi Heavy Industries (MHI), Japan | SOFC | 150-200 kW | *Japan*
| Siemens Power Generation, Inc, Germany | SOFC | 500-600 kW | *Germany*
| Sulzer Hexis, Switzerland | SOFC | 1 kW to 1600 kW | *Switzerland*
| Tokyo Gas, Japan | SOFC | *Japan*
| ZTEK Corp, USA | SOFC | 25 kW | *USA*
| International Fuel Cell USA | SOFC | *USA*
| Gesellschaft für innovative Energie und Wasserstoff-Technologie mbH (IT) | SOFC | *Brunnthal*, Germany
| Gastech Technology BV | SOFC | *Apeldoorn*, Netherlands
| Fuel Cell Institute of Australia Pty Ltd (FCIA) | SOFC | *Cabramatta NSW, Australia*

Firms responded for the supply of SOFCs and components
- HT Ceramix- Switzerland for the supply of 100W fuel cell stack with strict conditions
- Indec – Netherlands for the supply of anode, and electrolyte fuel cell elements
- Others had regretted or suggested to contact the above suppliers

The terms and conditions given by the suppliers of the Solid oxide fuel cell
HT ceramix supplier of fuel cell stack.
- HT Ceramix, Switcher land
 - Offer against the purchase enquiry HT Ceramix 100W five cell stack
 - Total cost - €24,150 or Rs. 14,24,850 and for 20W €20,400, Rs. 12,36,000
- Htc agrees to supply a stack for educational / technical evaluation purpose laboratory/ prototyping conditions.
- Htc grants a free, non-exclusive non-transferable license limited to the sole purpose evaluation HTc' SOFC stack.
- The stack should be tested as per procedure outline by HTc. If HTc products applied failure by the customer to communicate to and consult with HTc on testing and evaluation procedures or any other purpose to which HTc products are applied invalidates all or any warranty, product liability, patent infringement or indemnification, express or implied, for which HTc may be liable worldwide.

Price of fuel cells

<table>
<thead>
<tr>
<th>Fuel Cell</th>
<th>Price (US$ per kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphoric acid (PAFC)</td>
<td>4000-4500</td>
</tr>
<tr>
<td>Polymer electrolyte membrane (PEMFC)</td>
<td>5000-15000</td>
</tr>
<tr>
<td>Molten carbonate (MCFC)</td>
<td>>15000</td>
</tr>
<tr>
<td>Solid Oxide Fuel Cell (SOFc): tubular design with/without micro-tubine</td>
<td>10000-25000</td>
</tr>
<tr>
<td>Solid Oxide (SOFc): Planar design</td>
<td>>10000</td>
</tr>
</tbody>
</table>

Stationary	Transportation
1500 | 30-50
700-800 | 1200 for 1-5MW plants
700-1000 |
The terms and conditions given by the suppliers of the Solid oxide fuel cell HT ceramix supplier of fuel cell stack. (cont.)

- The customer shall not allow its collaborators or anyone else to reverse engineer or execute analysis of any kind either directly or indirectly on the dimensions, chemical composition, microstructure, surface morphology, method of manufacture or assembly of the cell, an diffusion & distribution layer, current collection layer and the stack itself.
- The customer, upon the completion of the useful life of the stack, shall return the stack to HTc for appropriate disposal.
- The stack initial performance is guaranteed for 24 hours if the HTc startup procedure is followed and the operating condition respected.
- The HT ceramix has suggest to buy the test equipments from Advanced Measurements, Canada.
- These results were obtained under our ideal laboratory conditions. HTceramix offers no guarantee of identical performance under other laboratory conditions.
- This offer is made pursuant to the laws of the Canton de Vaud, Switzerland.

HOT COMPRESSION KIT

INSULATING PLATE AND A TEST FIXTURE

QUOTATIONS FROM THE SUPPLIERS OF SOFC CELL ELEMENTS

- InDEC (HC Starck), Netherlands
 - Offers only fuel cell elements (anode, cathode and electrolyte)
 - Do not offer the stack
 - Has suggested to contact stack design engineers for consultancy and bear the consultancy charges.
 - The consultancy charges for advising the stack engineering was indicated as us $ 25,000 however they do not give guarantee.
 - Has suggested to buy the stack test equipment from (ECN)
 - Has given offer for three types of fuel cell elements
 - Anode supported (ASC1, ASC2)
 - Electrode supported cells (ESC2)
 - We have to buy minimum 10 cells

ESC and ASC cell Configuration

Offers from the Fuel Cell Test Equipment

<table>
<thead>
<tr>
<th>S.No</th>
<th>Company</th>
<th>Quotation amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Advanced measurements</td>
<td>$131,400 Canadian dollar Rs. 60,44,400</td>
</tr>
<tr>
<td>2</td>
<td>ECN, Netherlands</td>
<td>€1,28,000 Rs.73,45,011</td>
</tr>
<tr>
<td>3</td>
<td>VB Ceramics, India</td>
<td>Rs. 12 lakhs Negotiated to 8 lakhs</td>
</tr>
</tbody>
</table>
Quotations from the suppliers of SOFC test rig.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Company</th>
<th>Quotation amount</th>
<th>Remarks</th>
</tr>
</thead>
</table>
| 1 | Advanced measurements | $131,400 Canadian dollar | 1. The supply includes
a. Gas flow system with control for both fuel and oxidizer
b. Heat exchanger to cool producer gas with air
c. Pre heater to heat to 800C
d. Furnace – 1000C rating system
e. Data acquisition and control
f. Electronic Load
g. Piping and tubing
2. They will provided at extra cost the following
 Regulated supply of clean producer gas
a. Fuel cell manifold
b. UPS
c. Gas detection (Can be offered at extra cost) |
| | ECN, Netherland | €112,000 | 1. Informed over phone, detailed quotation yet to be received
2. ECN will provide support knowledge on assembly, conditioning / startup procedure, operation etc only when decide to purchase the test rig from them.
3. For information on stack design only when consultancy agreement signed and payment is made separately for this knowledge.
4. However ECN does not give guarantee whatsoever on performance, endurance as this technology is still under development. |
| 3 | VB Ceramics, India | Rs. 8 lakhs | 1. The supply includes
a. Producer gas pre treatment plant
b. Compressor assembly
c. Reservoir tank
d. Mass flow controller
e. Heat exchanger
f. Vacuum furnace
g. Pipe line
h. Electronic load
i. Control panel
j. Data acquisition (controlled from the control panel not from the computer)
2. They will provided at extra cost the following
 Data acquisition system and control software |

Quotations from the suppliers of SOFC Test rig. (cont.)

The process followed for the purification of producer gas

LIST OF PROJECTS AND EQUIPMENTS USING PRODUCER GAS AS FEED STOCK

A. Preparation and refining of producer gas
B. Common Furnace for Heating the working fluid
C. Solid oxide Fuel cell
D. Common Control panel

<table>
<thead>
<tr>
<th>S.NO</th>
<th>LIST OF EQUIPMENTS</th>
<th>S.NO</th>
<th>LIST OF EQUIPMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>REACTOR</td>
<td>07</td>
<td>HIGH PRESSURE ISOLATED RECEIVING</td>
</tr>
<tr>
<td>02</td>
<td>SCREW CONVEYOR</td>
<td>08</td>
<td>FURNACE CHAMBER WITH BURNER</td>
</tr>
<tr>
<td>03</td>
<td>CYCLONE SEPARATOR</td>
<td>09</td>
<td>HEAT TRANSFER TUBE</td>
</tr>
<tr>
<td>04</td>
<td>CERAMIC COARSE FILTER</td>
<td>a. TO HEAT THE PRODUCER GAS FROM 400-1000C</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>CERAMIC FINE FILTER</td>
<td>10</td>
<td>b. TO HEAT THE VEGETABLE OIL FROM 30-750C</td>
</tr>
<tr>
<td>06</td>
<td>COMPRESSOR</td>
<td>11</td>
<td>c. SAND DRYER Pumps C/B</td>
</tr>
<tr>
<td>07</td>
<td>CONTROL PANEL</td>
<td>12</td>
<td>d. CONTROL PANEL</td>
</tr>
</tbody>
</table>

Producer Gas Purification Unit
LIST IMPORTANT EQUIPMENTS, COMPONENTS AND INSTRUMENTS

• Fuel processing
 – Hot producer gas filtration equipment
 – Cooling of producer gas – heat exchanger
 – Producer gas compressor
 – High pressure producer gas receiver
 – Pressure regulator for producer gas
 – Flow measurement and control system for producer gas
 – Heater for the producer gas to heat from room temperature to around 850°C
 – Thermocouples 8 numbers
 – Pressure sensors transducers 4 numbers
 – Temperature indicator cum recorder – 1 No.

• Oxidizer processing
 – Air compressor
 – Air receiver
 – Air pressure regulator
 – Air flow meter and controller
 – Air heater from room temperature to around 850°C
 – Thermocouples 6 numbers
 – Temperature indicator cum recorder – 1 no.
 – Pressure sensors – 2 nos.
 – Flow meters with control valve

• Fuel cell assembly
 – Single / multi cell stack – 2 nos.
 – Fuel and oxidiser inlet plumbing lines and nozzles – 1 set
 – Producer gas
LIST IMPORTANT EQUIPMENTS, COMPONENTS AND INSTRUMENTS

• Fuel cell assembly
 – Single / multi cell stack
 – Fuel and oxidizer inlet plumbing lines and nozzles
 – Product gas piping
 – Thermocouples
 – Fuel cell furnace
 – Fuel cell gaskets
 – High temperature adhesive for fuel cell
• Performance evaluation equipments
 – Voltmeters, ammeter, Energy meter
 – Data acquisition system with monitor and printer
• Fuel cell test equipment
• Tools and fixtures

Summary & Requirement

• Present status of research on SOFC in other laboratories in India
 – The following laboratories have reported that they are carrying out research in fuel cell and also in SOFC.
 • Central Glass and Ceramic Research Institute, Calcutta – CGCRI
 • Central Electrochemical Research Institute, Karaikudi (CECRI), Karaikudi & Chennai

Details from CGCRI, Kolkata on SOFC

• CGCRI scientist working on the SOFC has informed that development of kW level SOFC is one of the current multi-crore CSIR-NMITLI project
 • He has worked back from abroad specifically to establish this laboratory
 • He has worked in USA, Germany, Canada and Japan for 8 years directly on SOFC with Siemens-Westinghouse/Penn state, Forschungszentrum Juelich and McMaster university and Ishihara's group.
 • 20 scientist including 5 JRFs are working on SOFC project in CGCRI
 • Have imported test rig to evaluate the performance
 • They are carrying out the research with commercially available pure hydrogen.
 • SOFC design is extremely complicated compared to PEM and PAFC stacks. In his opinion there is nobody working on SOFC with producer gas as feed stock.
 • Information from CECRI, Karaikudi is yet to be received
 • Fuel cell Research centre at Chennai has separate laboratory space with 7 scientist and supporting staff. CSIR has spent considerable amount in establishing facilities.

Research and Development Challenges for SOFC

| SOFC Tubular design | • High cell and stack fabrication cost
| | • Long start-up/shut-down times (upto several hours).
| | • Significant thermal shielding required to avoid heat losses
| | • Difficulties in the management of electrical and thermal load demands, as well as in temperature maintenance.

| SOFC Planar design | • Selection and poor life – time of interconnect and sealing materials
| | • Lower operating temperature so that cheap metallic interconnect materials can be used with minimal cell degradation.
| | • Poor thermal cycling capability
| | • Sealing and thermal compatibility issues.
| | • High rates of cell degradation during operation
| | • Long start-up/shut-down times (up to several hours).
| | • Significant thermal shielding required to avoid heat losses.
| | • Difficulties in electrical and thermal load demand, as well as in temperature maintenance.
PROBLEMS FOR NEW DEVELOPERS (IMPEDIMENTS)

- It is too expensive for any new laboratory to attempt to develop different elements required for manufacturing Solid Oxide Fuel Cell.
- Laboratories around the world are reluctant to share their knowledge on practical aspects of solid oxide fuel cell.
- The fund made available from the funding agency in India is too meager to attempt any reasonable research and development on Solid Oxide Fuel Cell.
- Even the limited number of personals working on SOFC development are not having specific goal to commercialize the technology.

CONCLUSION AND SUGGESTIONS

- Government of India should form a separate organization similar to ISRO to consolidate the research and development activities progressing in different laboratories and academic institution in the country and realize commercial scale plants in project mode.
 - The present laboratories working on different element can also continue to do their research getting the fund through the centralized organization.
 - The new organization should be given clear mandate for developing solid oxide fuel cell power plants integrated with co generation units
 - In absence of creation of an exclusive organization, India will have only pockets of researchers carrying out research without any definite aim and purpose.

References

2. J-H Choi and co authors Characteristics of Pulse Cleaning in the Ceramic Filter Unit at High Temperature., Department of Chem. Eng & IEP, Gyeongsang National University, Korea.

References (cont.)

5. Catalogue details of M/s Fuel Cell materials Ltd. Ohio
10. A report on “Australian Hydrogen Activity” Dr.D.A.J.Rand of CSIRO energy technology, and Dr.S.F.S. Badewal of CSIRO manufacturing and Infrastructure Technology, for the Department of Industry, tourism and Resources.

Thank you