DEPARTMENT OF CIVIL ENGINEERING

MAJOR :CEL836 STRUCTURAL HEALTH MONITORING (2014-15)

Time allowed: 2 hoursVenue: VI 401

NOTE: (a) This question paper contains one page only. (b) All questions are compulsory. (c) **Assume any data which you deem is necessary but not supplied. (d)** Draw neat and clear sketches wherever required.

Question 1.

- a. State the observations related to stiffness loss as a function of loading cycles during fatigue related experiments involving bolted joint specimens monitored by EMI technique.
- b. On what basis can the PZT identified stiffness substitute the absolute stiffness of the specimen.
- c. What is the practical relevance of the correlation between the PZT identified stiffness and the absolute stiffness?

Question 2.

Explain how we can reduce the interrogation time for an array of PZT patches instrumented on say a 2D structure for routine monitoring when localization is not of utmost importance? Further, how do we localize damage in case existence of damage is established?

Question 3.

An electrical strain gauge of base resistance 350 ohms is installed in a structural component. What should be the resolution of the interrogation system be if it is desired to measure strain with a resolution of 0.5 microstrain? The gauge factor for the strain gauge as supplied by the manufacturer is 2.16.

(5 marks)

inspection and dye reentrant testing techniques. (3+3 = 6 marks)

Describe the principle and equipment arrangement for the low-cost adaptation of the EMI technique employing the PZT patch in self-sensing mode. State its two

Describe the principles, two advantages and two limitations of magnetic particle

Question 5.

Question 4.

Question 6.

Describe the uniform load surface curvature method for damage assessment.

advantages and two limitations as compared to the LCR approach.

(4 marks)

(3+3 = 6 marks)

(<mark>3 ma</mark>rks)

(2+2+2 = 6 marks)

:06 May 2014

: 30

Date

Max marks