

To identify machine type, record induced vibrations fromsurroundings, and determine operating frequency

OBJECTIVES:

To identify machine type, record vibrations from surroundings, determine operating frequency and check if vibrations are within limit

OBJECTIVES:

To identify machine type, record vibrations from surroundings, determine operating frequency and check if vibrations are within limit

Time (s)

COMPUTATIONAL APPROACH:

Use both "time period" method and "fast Fourier transform"

MATLAB COMMANDS:

Vfft= abs(fft(V)) %Converting time domain signal into frequency domain

f=(0:N-1)/(N*T) %Corresponding frequency points, N: Total no of data points, T= Sampling time

How to obtain displacement ???

Sensitivity= 100 mV/g

Calibration constant = $98 \text{ ms}^{-2}/\text{V}$

HOW TO FIND ACCELERATION AMPLITUDE??

Find peak to peak displacement......

Amplitude= 0.5* (peak to peak displacement)

OBJECTIVE:

To experimentally measure coefficient of elastic uniform compression

PROCEDURE

- Direct method of determining C_z
- Acceleration response available at various excitation frequencies
- Obtain f_N
- Follow remaining computational procedure already described in theory class
- Every student shall be allotted different time interval

PROCEDURE

- Direct method of determining C_z
- Acceleration response available at various excitation frequencies
- Obtain f_N
- Follow remaining computational procedure already described in theory class
- Every student shall be allotted different time interval

OBJECTIVE:

To analyse and design foundation for a reciprocating machine

OBJECTIVE:

To determine transmissibility

EXPERIMENT S 24/03/21 OBJECTIVE : To determine transmissibility of a machine METHODOLOGY: 1) Une readings of Exp. 3 to abbin IN 2) Determin E 3) fm : Different for each student 5H2 to 75H2 4) Use expression for - @ Exact value 3 & () Ignore & CONCLUDE/INFER: Give your opinion on the value of T' calculated. Suggest measures of reducing 'T'

OBJECTIVE:

To implement vibration isolation for a machine

SUPPORTED ON STIFF BEARINGS T> 100%

imm

1500x30

IIIII

01 211

25 kg

ii ii ii ii ii ii

EXPERIMENTAL SET UP

OPERATION OF MACHINE ON STIFF BEARINGS

INSTALLATION OF RUBBER PADS AS INTERFACE 100x100x50 mm GRADE 50⁰

T = ??

OPERATION OF MACHINE WITH RUBBER PADS

COMPUTATIONS

- Determine the average acceleration amplitude of vibrations before and after installation of rubber pads
- Force transmitted before placement $F_1 = m_F a_1$
- Force transmitted after placement $F_2 = m_F a_2$
- Reduction in transmissibility (%) = $(F_2 F_1)/F_1$
- Compare with theoretical values in the two cases and comment

3D MODAL ANALYSIS OF FRAME TYPE FOUNDATION OF A TURBO GENERATOR

OBJECTIVE:

EXPERIMENT 7 (Computational)

Concrete grade M 35 Operating frequency 50 Hz

LOADING POINTS

Machine Data

Machine Weight (Total including Rotor)

Turbine @ Bearing 1 Turbine @ Bearing 2 Generator Seating Plate location 3 -1 Generator Seating Plate location 3 -2 Generator Seating Plate location 4 -1 Generator Seating Plate location 4 -2 Total Machine weight

400.00	kN
360.00	kN
100.00	kN
1160.00	kN

EXPECTATIONS

- Do modelling using both line and 3D brick elements
- Determine relevant natural frequencies and mode shapes
- Perform frequency check
- Compare the results of two modelling approaches

EXPERIMENT 8 (Computational)

OBJECTIVE:

3D HARMONIC ANALYSIS OF FRAME TYPE FOUNDATION OF A TURBO GENERATOR

Machine Operating Speed	50.00	Hz
Unbalance Force		
Along _Z (Vertical)		
Turbine @ Bearing 1	5.00	kN
Turbine @ Bearing 2	7.00	kN
Generator Seating Plate location 3 -1	7.50	kN
Generator Seating Plate location 3 -2	7.50	kN
Generator Seating Plate location 4 -1	7.50	kN
Generator Seating Plate location 4 -2	7.50	kN
Total Unbalance Force along Y (Vertical)	42.00	kN
Along X (Lateral)		
Turbine @ Bearing 1 5.00	kN	
Turbine @ Bearing 2 7.00	kN	
Generator Seating Plate location 3 -1 7.50	kN	
Generator Seating Plate location 3 -2 7.50	kN	A 1.
Generator Seating Plate location 4 -1 7.50	kN	ACTIV Go to I

Short Circuit Torque 2160 kNm

EXPECTATIONS

- Do modelling using both line and 3D brick elements
- Determine amplitudes under operating loads
- Check for codal compliance
- Compare the results of two modelling approaches