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SENSING TECHNOLOGIES FOR 
STRUCTURAL MONITORING
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CONVENTIONAL SENSORS (STATIC/ DYNAMIC)

**   Electrical strain gauge (ESG)    **

**   Vibrating wire strain gauge (VWSG)    **

**   Accelerometers   **

SENSORS BASED ON SMART MATERIALS
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where A is the cross sectional area, I the moment of inertia of the section and E the 

Young’s modulus of elasticity. 

Combining, the two equations:

DETERMINATION OF AXIAL LOAD AND BENDING 

MOMENT THROUGH STRAIN MEASURMENT 

yt + yb =  TOTAL DEPTH OF THE SECTION UNDER CONSIDERATION
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Tensile strain considered +ive here



 )()(2
6

22111

FF MMMM
EI

L
−−−








=  )()(2

6
11222

FF MMMM
EI

L
−−−








=

where  M1
F   and  M2

F represent the fixed ended moments, resulting from the member loads. It is assumed 

here that there is no relative displacements between the two member ends (i.e columns are inextensible). 

M1 M2

θ 1 θ 2

L

Strain gauge

MEASUREMENT OF MEMBER END ROTATIONS
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From elementary slop-deflection equations



SENSING TECHNOLOGIES FOR 
STRUCTURAL MONITORING
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CONVENTIONAL SENSORS (STATIC/ DYNAMIC)

**   Electrical strain gauge (ESG)    **

**   Vibrating wire strain gauge (VWSG)    **

**   Accelerometers   **

SENSORS BASED ON SMART MATERIALS



ELECTRICAL STRAIN GAUGE (ESG)

1/22/2024 6

Metal grids

Polyimide 

plastic film

Vi

Vo

ESG, R

Ro

Ro

Ro

Voltage 

recording 

devicegS
R

R
=



* Easy to install and handle

* Simple wheat stone bridge circuit coupled with amplification 

  circuit sufficient for measurement

* Low- cost (  ~  Rs 100)

KEY ADVANTAGES

Gauge factor



MONITORING OF STEEL FRAMES
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MONITORING OF RC STRUCTURES
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We need to measure strain distribution along the section, use the available stress-strain relations of concrete 

and steel to determine internal moment and axial force.

Steel



The internal bending moment at the section can be obtained by taking the moment of the 

compressive stresses about the centroid of the tensile stresses (bottom reinforcement) as
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MONITORING OF RC STRUCTURES
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MONITORING OF RC STRUCTURES 
USING ELECTRICAL STRAIN GAUGES

1/22/2024 11

0

20

40

60

80

100

50 60 70 80 90 100

E
s
ti
m

a
te

d
 l
o

a
d

 f
ro

m
 s

tr
a

in
 g

a
u

g
e

 (
k
N

)

% of failure load 

Prediction from strain 

gauge 9, 11

Actual loads



MONITORING OF TUNNEL LINING
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750x 4 = 3000mm
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MONITORING OF STEEL TRUSS
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ELECTRICAL STRAIN GAUGE (ESG): DRAWBACKS
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* Prone to electrical noise (electromagnetic interference)

* Prone to deterioration by water

* Suffer from decay if loaded for prolonged periods. 

* Too many wires to handle

* Best for preliminary short term STATIC monitoring.   



VIBRATING WIRE STRAIN GAUGE (VWSG)
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Bakker et al. (2000): Monitoring tunnel linings in Denmark

A VWSG essentially consists of a pre-tensioned stainless steel wire, with its ends fixed to lugs that are 

spot-welded to the monitored component. 

A sensor coil, positioned over the wire, when energized, plucks the wire and measures the frequency of 

the resulting vibrations. 

T is tension in the wire, l the length and m the mass per unit length

Expand further in terms of 

strain



INSTRUMENTATION OF SECOND 

LINK BRIDGE (MOYO, 2002)

The bridge was completed in 1997. It was instrumented during 

construction with vibrating wire strain gauges and continuously 

monitored.

1.9 KM LONG COMPRISING 27 SPANS
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INSTRUMENTATION OF SECOND 

LINK BRIDGE (MOYO, 2002)

Instrumented segment

12 stress cells 12 vibrating wire strain gauges 40 thermocouples

ALL STATIC DATA WERE RECORDED HOURLY
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STRAIN IN SEGMENT 31 DURING CURING

31

Gradually decreasing strain => Shrinkage and hydration

92m
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MONITORING CONSTRUCTION EVENTS 

FROM STRAIN DATA (SEG 27)

31 27 23

All major construction phases can be easily identified
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Comp. (bott)
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MONITORING OF TEMPERATURE

TOP

BOTTOM
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VIBRATING WIRE STRAIN GAUGE: DRAWBACKS
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* Suitable for measuring static strains only

* Prone to noise (ambient vibrations), so not good for dynamic     

  measurements

* Very expensive ($ 100 / Rs 7000)

* Too many wires to handle
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ACCELEROMETER
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ACCELEROMETER: DRAWBACKS
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* Low bandwidth

* Very fragile

* Very expensive (Typically over $500 or Rs 35, 000)

* Vandalism is an issue



SMART MATERIALS

SMART MATERIALS possess the ability to 

change SPECIFIC physical PROPERTY when 

subjected to a SPECIFIC STIMULUS input

•Optical  Fibres

•Shape Memory Alloys

•Electro-Rheological Fluids

•Piezoelectric Materials

Stimulus Response

24

U.S. Army Research Office Workshop on Smart Materials, Structures and Mathematical 

Issues, September 15-16, 1988, Virginia Polytechnic Institute & State University.



FIBRE-BRAGG GRATING (FBG) 
BASED SENSORS

25

• Flexible glass (silica) fibres (0.25 to 0.5 mm diameter)

• Used in communication 

• Total internal reflection 

OPTICAL FIBRES

https://www.elprocus.com/

• FBG: Set of gratings imprinted in a small 

segment of optical fibre. 

• Reflects a particular wavelength of light

• Strain 
• Temperature
• Pressure

Bragg wavelength 

(B)

https://www.elprocus.com/


FBG strain sensor
FBG temperature sensor

(strain-free)

COMPRESSION TEST ON GRANITE 

SAMPLES USING FBG SENSORS

1/22/2024 26



1. Multiplexing potential.

2. A number of FBG sensors  on a fiber string can be addressed simultaneously.

3. Small-size (125m), lightweight

4. Immune to EMI, durable under harsh environment and resistant to corrosion.

5. No problem of decay, since based on wavelength and not intensity.

ADVANTAGES OF FBG SENSORS FOR 

STRUCTURAL HEALTH MONITORING 

Multiple FBG sensors

1/22/2024 27

LIMITATIONS?.....Snapping, frequency…



EXPERIMENTAL EVALUATION OF FBG 

STRAIN SENSORS (MOYO, 2002)

STATIC TEST

1/22/2024 28

FBG

ESG



EXPERIMENTAL EVALUATION OF FBG 

STRAIN SENSORS (MOYO, 2002)

DYNAMIC TEST

1/22/2024 29



30

Possess capability to return “memorized” shape 

when heated

SHAPE MEMORY ALLOYS (SMA)

• Bio-medical application: stent insertion to unblock 
arteries 

• Futuristic application: damage healing
• Futuristic applications: structural control, aircraft wings http://www.vhlab.umn.edu/

Electrical heating of 
SMA cables

Song et al. (2006)

http://www.vhlab.umn.edu/


Applications:
• Shock/ vibration absorption in  

vehicle suspension
• Hydraulic valves
• Futuristic: Earthquake response 

control of structures
31

ER fluids undergo change in viscosity under an 

electric field

ELECTRO-RHEOLOGICAL (ER) FLUIDS

https://www.123rf.com/

https://www.123rf.com/


The phenomenon of piezoelectricity was discovered by Curie brothers in 1880

 = 0   0

It occurs in non-centro symmetric crystals, such as:

• Quartz (SiO2)

• Lithium Niobate (LiNbO3) 

• Lead Zirconate Titanate PZT [Pb(Zr1-xTix)O3)] 

• Lead-Lanthanum-Zirconate-Titanate PLZT [(Pb1-xLax)(Zr1-yTiy)O3)]

PIEZOELECTRIC MATERIALS

Noncentro-symmetric crystals: the act of stretching causes dipole moment in the crystal ( = Dipole moment).

.

32



PIEZOELCTRIC MATERIALS

+ + + + + + + + + + + + +

Mechanical  Stress                            Electrical  Charge

T T

+

-

Electric Field                             Mechanical Strain

Elongation/ 

contraction

E

~

Direct 

Effect

Converse 

Effect

+

-

33

SENSING

ACTUATION



APPLICATIONS
DIRECT EFFECT

Igniters/ detonators, accelerometers, tactile sensors,

pressure transducers, dynamic strain sensors,

mobile phones (mic),

structural health monitoring, energy harvesting

CONVERSE EFFECT

Mobile phones (speaker), fuel injectors, musical cards,

inkjet printers, vibration control, turbo-machinery,

actuators, precision positioning

Sound to 

electrical 

pulses

electrical pulses  

to sound 
34
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There are over 200 types of                               

piezoelectric materials available commercially: 

ceramics and polymers

Lead Zirconate Titanate (PZT) is the most widely used 

ceramic type piezoelectric material. It has high 

stiffness but is at the same time brittle.

PIEZOELCTRIC MATERIALS

Polyvinvylidene Fluoride (PVDF) is popular 

polymer. It is ductile but has less stiffness. 
35



COMMERCIAL FORMS
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CERAMICS   
LEAD ZIRCONATE 

TITANATE (PZT)

POLYMERS
POLYVINVYLIDENE 

FLUORIDE (PVDF)

Higher strength, stiffness, but brittle
Lesser strength, stiffness, but 

ductile, shape conformability

Suitable as sensor and actuator Suitable as sensor

DuraAct

OTHER SPECIAL 

TYPES

Macro Fibre Composite (MFC)



PI Ceramic

CEL

CEL
CEL CEL

CEL
PI Ceramic

Smart Materials Corp.

10x10x0.3 mm
10 x 1 mm

20x20x1 mm
10x10x0.2 mm20-5 x 2 mm

30 x 3 mm

Macro Fibre Composite (MFC) 

28x56x0.3 mm

DuraAct 

16x13x0.5 mm

CEL

CVS (30 x 10 mm)

COMMERCIAL FORMS OF PZT

37



Macro Fibre 

Composite (MFC) 
Smart Materials Corp.

SPECIAL FLEXIBLE FORM

38



Concrete Vibration 

Sensor (CVS)

COMPOSITE CONFIGURATION

Ready to use PZT-cement composite 

sensor, developed by SSD Lab,           

for concrete structures

39



CONSTITUTIVE RELATIONS
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Linear 

limit

Cheng and Reese (2000)



PIEZOELCTRIC STRAIN 
COEFFICIENT

1/22/2024
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31d =   Strain per unit electric field under zero  

      (constant) stress conditions (unit m/V) 
EY

T
S

11

1
1 = 331Ed+

=   Charge density induced by unit stress

      under zero (constant) external electric field

      (unit C/N)
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PIEZOELCTRIC STRAIN 
COEFFICIENT
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This comes into picture when both electric field and stress are along axis “3”

EY

T
S

33

3
3 = 333Ed+ 3333 ED T= 333Td+

In general for PZT material, d31 is negative, which means an electric field in positive “3” 

direction induces compressive strain along axis “1”
In contrast, d33 is positive

T3

lha

w

E3

1

3
2

𝒅𝟑𝟑



Fig. 2 Common smart materials and the associated stimulus-response.

Electric field
Change in viscosity

(Internal damping)

Heat Original  Memorized Shape

Magnetic field Mechanical Strain

Optical Fibre
Temperature, pressure,

mechanical strain

Change in Opto-

Electronic signals

(1) Stress (1) Electric Charge

(2) Electric field (2) Mechanical strain

Piezoelectric

Material

Shape Memory

Alloy

Electro-rheological

Fluid

Magneto-strictive

material

SUMMARY: SMART MATERIALS
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DYNAMIC STRAIN SENSOR
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Potential difference across 

terminals



The piezoelectric effect is dynamic, i.e., 

• Charge is generated only when the forces 
are changing 

• The initial charge will decay in circuit if the 
force remains constant…..

PZT PATCHES ARE SUITABLE FOR 
DYNAMIC STRAINS AND NOT STATIC 
STRAINS….

46

DYNAMIC STRAIN SENSOR
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COMPARATIVE STUDY
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FOLLOWING SENSORS EVALUATED FOR DYNAMIC 

RESPONSE 

Electrical strain gauges (ESG)

Accelerometers

Piezoelectric ceramic (PZT) sensor
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What are observations related to signal to noise ratio (SNR) ??
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RESPONSE USING PZT PATCH 

(FREQUENCY DOMAIN)



Sensors

Digital multimeter

(Agilent 34411A)

Test specimen

Personal computer

Hammer
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PIEZO-PATCH

ACCELEROMETER
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IMPORTANT OBSERVATIONS
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• WORST RESPONSE IN CASE OF ESG

    TYPICAL COST: $1.5  (Rs 100)

• BEST RESPONSE IN CASE OF ACCELEROMETER

   TYPICAL COST: $500 (Rs 35, 000 and above)

   (Also bulky, bandwidth limitation)

• PZT PATCH: RESPONSE QUALITY ALMOST 

COMPARABLE TO ACCELEROMETER

    TYPICAL COST: $1-10 (Rs 70-700)



SHM BY PZT PATCHES  

Two modes

(a) Dynamic strain sensor 
Direct effect, low-frequency

(b) Electro-mechanical impedance (EMI) sensor 
Direct+ converse effect, high-frequency

56



SENSING OF FLEXURE
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TDS 2004B

Tecktronix oscilloscope

34411A

Agilent digital multimeter
QDA 1000

Quazar Technologies

http://ww.quazartech.com

Four channel, real-time, low 

on resolution IMPORTED

Single channel, near real-

time, high on resolution 

IMPORTED Eight channel, real-time, high 

on resolution, INDIGENOUS 

64 channels, 3Mega samples per second per channel

IMPORTED

Voltage  α Curvature 

U2331

USB Modular Multifunction Data Acquisition

Agilent Technologies

http://cp.home.agilent.com/agilent7/s7viewers/flash/genericzoom.swf?logo2=false&serverUrl=/agilent7/is/image/&contentRoot=/agilent7/skins/&locale=en&config=Agilent/AGILENT-IMGSET&image=Agilent/PROD-824376-IS
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Sensors embedded in 
RC test structure

CVS is a ready to use packaged sensor for dynamic response 

measurement developed especially for reinforced concrete (RC) 

structures such as buildings and bridges. 

CONCRETE VIBRATION SENSOR (CVS)
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ACCELEROMETER

CONC-VIBRO SENSOR

ACCELEROMETER

CVS



1/22/2024 62

❑ Excellent signal to noise ratio

❑ Special encapsulation of the sensing element to 

prevent damage during casting.

❑ Higher longevity, negligible decay of the sensing 

element.

❑ Low cost ( one-tenth of the cost of accelerometer)

❑ Miniature size

❑ No frequency bandwidth limitation

KEY STRONG POINTS OF CVS



SYNOPSIS OF 
COURSE 

COVERAGE
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ANSWERS EXPECTED FROM SHM

Has any damage occurred in the structure 

after its construction?

If yes, what is damage location?

If damage has occurred, how severe is it?

If damage has occurred, can the structure be 

still used? What is its remaining life?
1/22/2024 64



(1) Static Response Based Techniques

 •Static Displacement Response (Banan & Hjelmstad, 1994)

 •Static Strain Response (Sanayei & Saletnik, 1996)

Time consuming => Cannot Enable Quick Assessment of Health.

GLOBAL SHM TECHNIQUES

Measure deflections

or strains

Structural 

Parameters

1/22/2024 65



(2) Dynamic Response Based Techniques 

Measure structural dynamic 

response

Modal or 

Structural 

Parameters

F(t)

Finite 

Element 

Model

F(t)

Dynamic Test

Model 

Updating

1/22/2024 66

GLOBAL SHM TECHNIQUES



PIONEER BRIDGE- SINGAPORE

18.16m

RETROFITTING was carried out to convert the simply supported system into a continuous 

deck monolithic with supports

BROWNJOHN  ET AL. (2003)
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How to make sure that 

retrofitting works were 

successful???

ANSWER:

Through appropriate 

monitoring
1/22/2024 68



MODEL UPDATING OF 

PIONEER BRIDGE
Model updating was conducted for the bridge before and after upgrading based on experimental 

modal analysis of pre- and post-upgrade dynamic response. The bridge was modelled using 3D 

beam elements.

To reflect the structural change in the upgrading, the abutment restraints were 

modelled as rotational springs of finite stiffness. The rotational stiffness at the 

abutments was found to be about 108N.m/rad after upgrading.

These investigations showed that bridge stiffness considerably increased due to 

the upgrading. This is evident from the increase of first natural frequency from 

about 6Hz to approximately 8 Hz.

MAJOR OBSERVATIONS
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•   However, rely on first few modes only- Global modes.

•   Practical, capable of quick assessment of health for 

simple structures.

Some features.........

GLOBAL SHM TECHNIQUES

•   Hence, insensitive to local or incipient damages.
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NDE TECHNIQUES (LOCAL)

Best when damage location be known a-

priori 

May render the structure unavailable during

interrogation

Suitable for specific applications 
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SHM BY PZT PATCHES  

Two modes

(a) Dynamic strain sensor 
Direct effect, low-frequency

(b) Electro-mechanical impedance (EMI) sensor 
Direct+ converse effect, high-frequency
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ELECTRO-MECHANICAL IMPEDANCE 

(EMI) TECHNIQUE

Interface between global dynamic techniques and local NDE 

techniques

Sensitivity  = As high as local ultrasonic (NDE) 

                     technique

Principle    = Similar to global vibration techniques

                       (Frequency employed: 30-400 kHz)

Piezoelectric materials are the key elements of EMI technique
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ELECTRO-MECHANICAL MPEDANCE 

(EMI) TECHNIQUE

A PZT patch is surface bonded on a structure using high strength adhesive and excited at high 

frequency (30-400 kHz) by an LCR meter or impedance analyzer (in sweep mode).

A simple physical model of 

system (Liang et. al, 1994)

Structural 

Impedance 

1 V (RMS)

PZT PATCH ACTS AS  SENSOR  AND ACTUATOR SIMULTANEOUSLY.

The technique was originally developed for aerospace structures.

ഥ𝒀 =
𝑰𝒐𝒆

ሻ𝒋(𝝎𝒕−∅

𝑽𝒐𝒆
𝒋𝝎𝒕

= 𝑰𝒐𝒆
−j∅ = 𝑮 + 𝑩𝒋

G: Conductance, B: Susceptance



Structure

PZT patch

LCR meter

Admittance measurements 

at multiple frequencies form 
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NO CHANGE IN SIGNATURE IMPLIES……..

NO OCCURRENCE OF DAMAGE IN THE STRUCTURE
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ADVANTAGES OF PIEZO-IMPEDANCE 
TRANSDUCERS
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* Fast dynamic response, long term durability,  

  competitive performance, negligible ageing

* High sensitivity (comparable to ultrasonic techniques)

* LOW COST

* Immunity to ambient noise (EMI Technique)….Why?

* Same PZT patch can also be used to measure dynamic

   strain……No frequency limitation (0.5Hz to few MHz).



10 nW

100 nW

1 µW

10 µW

100 µW

1 mW

10 mW

100 mW
1 W

10 W

100 W

µP desktop

µP Laptop

GSM

Palm, mp3

BT transreceiver

Zigbee

Hearing aids

Wrist watch

RFID Tad

32 khz quartz oscillator

Standby

IDTECHEX (2009)
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PEH Harvester 

Charging of    

smart phone

ENERGY HARVESTING
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SUGGESTED READING: 
BHALLA ET AL. (2005) 
(TUNNELLING & UNDERGROUND 
SPACE TECHNOLOGY)
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THANK YOU
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