CONCEPT OF MECHANICAL IMPEDANCE

$$
\begin{aligned}
& \text { Response: Displacement } \\
& \qquad \begin{aligned}
x & =x_{0} e^{j(w t}-(\varphi) \\
& =\left(x_{0} e^{-j \varphi}\right) \cdot e^{j w t} \\
& =\bar{x}_{0} e^{j w t}
\end{aligned}
\end{aligned}
$$

Phase lag of displacement w.r.t force

Harmonic Response: $\quad \dot{x}=j \omega x=\omega x e^{\frac{\pi}{2} j}$

$$
\ddot{x}=-\omega^{2} x=\omega^{2} x e^{\pi j}
$$

Velocity leads displacement by $\frac{\pi}{2}$ \& acceleration leads velocity by $\frac{\pi}{2}$
Equation of motion: $m \ddot{x}+c \dot{x}+k x=F=F_{o} e^{j \omega t} \quad$ Prof. Suresh Bhala, $\left(t-m \omega^{2}+j \omega C+1 B x=F \quad\right.$ Department of Civil Engg.
Effective dynamic stiffness: $\frac{F}{x}=-m \omega^{2}+j \omega c+k \quad$ ITD Delhi

Special case: Negligible inertial force

Define $\eta=\frac{\gamma^{*}}{\gamma}$ Mechanical loss factor

Complex Young Modulus

$$
\left(k_{d}\right)_{e f f}=\frac{A \gamma}{L}(1+\eta j)
$$

Under dynamic conditions

$$
|\gamma|_{\text {dynamic }}=\gamma \sqrt{1+\eta^{2}}>|\gamma|_{\text {static }}
$$

Exact relation between η, ξ, and C :

$$
\begin{aligned}
k+j \omega C & \equiv k+k \eta j \\
\omega C & =k \eta \\
\eta & =\left(\frac{C}{k}\right) \omega
\end{aligned}
$$

Note: $\omega=\omega_{N}$
$C=2 m \omega$
$C_{c}=$ Crtical damping

$$
[C]=\left[\frac{N s}{m}\right] \quad[k]=\left[\frac{N}{m}\right]
$$

$$
\begin{aligned}
& \omega^{2}=\frac{k}{m} \\
& F=\left(-m \omega^{2}+j \omega C+k\right) x
\end{aligned}
$$

On Solving

$$
\eta=2 \xi
$$

If force, $F=F_{o} e^{j \omega t}$
Displacement, $x=x_{0} e^{j(w t-\varphi)}$
If no damping, $\varphi=0$

Rayleigh Damping

Mass multiplier Stiffness Multiplier
How $\alpha \& \beta$ related to $\xi \& \eta$?

Solution 1:

$$
\begin{gathered}
C=\alpha m+\beta k=\frac{k \eta}{\omega} \\
\Rightarrow \alpha=0, \quad \beta=\frac{\eta}{\omega}=\frac{2 \xi}{\omega}=\frac{\xi}{\pi f}
\end{gathered}
$$

Solution 2: Preferred in case of frequency range

$$
\alpha m+\beta k=C=2 m w \xi
$$

Infinite solutions
Divide both sides by $2 m \omega$

$$
\begin{gathered}
\frac{\alpha m}{2 m \omega}+\frac{\beta\left(m \omega^{2}\right)}{2 m \omega}=\xi \\
\frac{\alpha}{2 \omega}+\frac{\beta \omega}{2}=\xi
\end{gathered}
$$

$$
\frac{\alpha}{4 \pi f}+\beta \pi f=\xi
$$

Let frequency range be $\left(f_{1}, f_{2}\right)$
Two possible equations

$$
\begin{align*}
& \frac{\alpha}{4 \pi f_{1}}+\beta \pi f_{1}=\xi \tag{1}\\
& \frac{\alpha}{4 \pi f_{2}}+\beta \pi f_{2}=\xi \tag{2}
\end{align*}
$$

Solve these 2 equations to get $(\alpha, \beta) \rightarrow$ Representation of range $\left(f_{1}, f_{2}\right)$

Either of the real or the imaginary component may be chosen

$$
\text { Strain, } \quad \begin{aligned}
\epsilon=\frac{\sigma}{\bar{\gamma}} & =\frac{\sigma_{o} e^{j \omega t}}{\gamma(1+\eta j)} \times \frac{(1-\eta j)}{(1-\eta j)} \quad \eta \ll \mathbf{1} \\
& =\frac{\sigma_{o}(1-\eta j) e^{j \omega t}}{\gamma\left(1+\eta^{2}\right)} \\
& \approx \frac{\sigma_{o}}{\gamma} \cdot e^{-j \eta} \cdot e^{j \omega t} \\
\epsilon & =\frac{\sigma_{o}}{\gamma} \cdot e^{j(\omega t-} \quad \text { Phase lag }
\end{aligned}
$$

If $\sigma=\sigma_{o} \cos (\omega t) \quad \rightarrow \quad$ Projection in X axis
Then $\epsilon=\epsilon_{o} \cos (\omega t-\eta)$
Alternatively, if $\sigma=\sigma_{o} \sin (\omega t), \quad \epsilon=\epsilon_{o} \sin (\omega t-\eta)$
If $\eta=0, \sigma \& \epsilon$ in phase:

$$
\begin{aligned}
& \frac{\sigma_{o}}{\gamma\left(1+\eta^{2}\right)} \approx \frac{\sigma_{o}}{\gamma} \\
& \epsilon=\frac{\sigma_{o}}{\gamma} \cdot e^{j(\omega t-\eta)} \\
&=\left(\frac{\sigma_{0}}{\gamma} \cdot e^{-j \eta}\right) \cdot e^{j \omega t} \quad \begin{array}{l}
\text { Phase information included } \\
\text { in the magnitude part }
\end{array} \\
&\left.=\epsilon_{o, r}+\epsilon_{0, i}\right) \cdot e^{j \omega t}
\end{aligned}
$$

$$
Z_{i j}=\frac{F_{i}}{\dot{x}_{j}} \quad \text { Ratio of force to velocity }
$$

Measuring response

If $i=j$ then $\quad Z_{i j}=\frac{F_{i}}{\dot{x}_{j}}$

Similar to FRF

$$
\begin{aligned}
& F_{\text {Resultant }}=\sqrt{F_{d}^{2}+\left(F_{m}-F_{s}\right)^{2}} \\
& =\sqrt{C^{2}+\left(m \omega-\frac{k}{\omega}\right)^{2} \dot{x}} \\
& \tan (\varphi)=\frac{F_{m}-F_{s}}{F_{d}} \\
& =\frac{m \omega-\frac{k}{\omega}}{C} \\
& Z_{\text {eff }}=Z_{\text {resultant }}=\sqrt{C^{2}+\left(m \omega-\frac{k}{\omega}\right)^{2}} \quad F_{m} \\
& \dot{x}=\left(\frac{F_{o}}{Z_{e f f}}\right) \cdot e^{j(\omega t-\varphi)}
\end{aligned}
$$

In parallel:

$$
F=F_{1}+F_{2} \quad \dot{x}=\dot{x}_{1}=\dot{x}_{2}
$$

In series

$$
\begin{gathered}
F=F_{1}+F_{2}=Z_{1} \dot{x}+Z_{2} \dot{x}=\left(Z_{1}+Z_{2}\right) \dot{x} \\
Z_{e q}=Z_{1}+Z_{2}+\cdots+Z_{n}=\sum_{i=1}^{N} Z_{i}
\end{gathered}
$$

$$
F=F_{1}=F_{2} \quad \dot{x}=\dot{x}_{1}+\dot{x}_{2}
$$

$$
\begin{gathered}
\dot{x}=\dot{x}_{1}+\dot{x}_{2}=\frac{F_{1}}{Z_{1}}+\frac{F_{2}}{Z_{2}}=F\left(\frac{1}{Z_{1}}+\frac{1}{Z_{2}}\right) \\
\frac{1}{Z_{e q}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\cdots+\frac{1}{Z_{n}}=\sum_{i=1}^{N} \frac{1}{Z_{i}}
\end{gathered}
$$

Classical mechanics representations

\dot{x} is same for all elements

$$
F=m \ddot{x}+c \dot{x}+k x
$$

For a pure damper $C(k=m=0), \varphi=0$ No phase Lag

$$
\begin{gathered}
Z_{e q}=\sum_{i=1}^{N} Z_{i}=C+m \omega j-\frac{k}{\omega} j \\
Z_{e q}=C+\left(m \omega-\frac{k}{\omega}\right) j \\
Z_{e q}=X+Y j
\end{gathered}
$$

Impedance mechanics

Equivalent to $(|Z|, \varphi)$ form

$$
\begin{aligned}
|Z| & =\sqrt{C^{2}+\left(m \omega-\frac{k}{\omega}\right)^{2}} \\
\varphi & =\tan ^{-1}\left(\frac{m \omega-\frac{k}{\omega}}{C}\right)
\end{aligned}
$$

Example:

Solving differential equation eliminated. Hence computationally simpler.

Complex Electric Permittivity

Youngs modulus

$$
\begin{gathered}
\bar{\gamma}=\gamma_{s t}(1+\eta j) \\
\sigma=\sigma_{o} e^{j \omega t} \\
\epsilon=\frac{\sigma_{o}}{\gamma} e^{j(\omega t-\varphi)} \\
\sigma=\sigma_{o} e^{j \omega t} \\
\epsilon=\frac{\sigma_{o}}{\gamma} e^{j(\omega t-\varphi)}
\end{gathered}
$$

Electric permittivity

$$
\overline{\epsilon_{33}^{T}}=\epsilon_{33}^{T}(1-\delta j)
$$

Electric Loss tangent (Electrical damping)

Electrical changes lag behind the field

$$
\begin{aligned}
D_{3} & =\overline{\epsilon_{33}^{T}} E_{3}+d_{31} T T_{1}^{T} \text { Zero stress } \\
D_{3} & \left.=\epsilon_{33}^{T} 1-\delta j\right) \cdot E_{o} e^{j \omega t} \\
& =\epsilon_{33}^{T} E_{o} \cdot e^{j(\omega t-\delta)} e^{-j \delta} \text { for } \delta \ll 1 \\
& =D_{30} \cdot e^{j(\omega t-\delta)}
\end{aligned}
$$

Analogy

