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Ultimate strength =  

Yield stress =
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Design                        
Approach

Working 
stress

Limit State

all
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-Stress is restricted to  all under working loads. No load factor. 

Working stress method:

-Elastic analysis of structure is considered adequate 


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ENGINEERING DESIGN APPROACH

Yield Point
Allowable stress =



LIMIT STATE METHOD

1. Design the structure for limit state of collapse 

2. Check for limit state of serviceability.

3. Partial factors of safety for both loads as well as stresses 

Conventional analysis approach for limit state design

1. Carry out linear elastic analysis (unfactored load values)

2. For limit state values of axial force, shear force and bending moment  we 
simply multiply by load factor.

3. Section design, we follow rigorous non-linear computations.

This makes the process somewhat    
contradictory in nature.. HOW?
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y
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Only 2 points reach yield stress 
(symmetrical section, else only one)

Corresponding moment is called as Yield Moment My

OTHER FLAWS WITH CONVENTIONAL 
ANALYSIS APPROACH

But the structure has not yet reached collapse state, can still carry further load



WHY PLASTIC ANALYSIS?

The structure deemed failed at Yield Moment still has capacity to sustain higher 
loads and bending moment. 

Actual failure values Pult , Mult are  much higher than
yM yP

Correspond to yielding at 
two points only.By plastic analysis, we can get 

Actual Load Factor 

y

ult

P

P
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Plastic Analysis basically extends the Limit state approach (so far restricted to design aspect only) 
to load analysis 

In Plastic Analysis, we take into account the actual behaviour of structure beyond the yield point.

Actual behavior of structure @ collapse (rather than yield point) is realistically taken into account. 



PLASTIC ANALYSIS: ASSUMPTIONS

1) Hookes’s law of elaticity holds until yield point 
Stress – strain curve is linear till yield point.

2) Yield stress and Young’s modulus have same values for tension and compression.

3) Stress-strain curve is same in tension and compression.

4) Strain hardening is ignored 

Tension

Compression
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ASSUMPTIONS (Contd.)…..

5) Section has at least one line of symmetry.

BI-SYMMETRIC MONO-SYMMERTIC

Axis of 
bending

Why…..???
So that the plane of loading and the plane of bending coincide with 
the plane of symmetry….else formulations won’t apply

x

Not considered

y



STEP-BY-STEP ANALYIS TILL COLLAPSE

AN

-Let plane section remain plane. 

-Let loads be gradually increased starting from zero.

At point 1:  Elastic behaviour, both tension and 
compression zone. 

ENA

Elastic NA

C-T =  No net axial force. 
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INCREASE LOADS TO REACH POINT<2>

Yield point is reached for compression.

Absolute 
values 

Curvature = tan     D
botttop  
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Depth of section

Yield condition arrived !
(one point only, @ compression)
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Hence moment acting an the section = YIELD MOMENT = yM
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Larger of the two extreme fibre distances from 
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Distance from ENA, so here equal to 

POINT<2> contd…….
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INCREASE LOAD FURTHER YIELD POINT 
ARRIVES AT BOTTOM (TENSION)

POINT <3>

Stress no longer proportional to y
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No Longer elastic neutral axis (ENA)    
Nor fully plastic neutral axis (PNA)



INCREASE LOAD FURTHER SO AS TO 
REACH BEYOND YIELD POINT 

(BOTH COMP. AND TENSION) <4>

Provides a measure of 
curvature  

Plastic 
region

Elastic 
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LOAD THE STRUCTURE SUCH THAT 
ELASTIC CORE VANISHES POINT <5>

y

y

Plastic 
neutral axis 
depth. = yp

1A

2A

‘NA’ defined by C = T

New neutral axis is called as 
Plastic neutral axis (PNA)

Tension 
(Bottom)
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Top and bottom plastic zones 
merge with one another



FULLY PLASTIC SECTION.

Curvature          ∞

21 AA yy  

21 AA 

PNA bifurcates the section into 2 equal areas

ENA = PNA for Doubly symmetric sections

ENA ≠ PNA for mono symmetric sections    
(symmetric about y axis only)
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1A

2A
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PLASTIC MOMENT CAPACITY AND 
SECTION MODULUS
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21 AA  Can be obtained by taking the moment of C 
& T about the PNA
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EXAMPLE (1)
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EXAMPLE (2)
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EXAMPLE (2) contd…
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PLASTIC MOMENT
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Mp = Plastic moment capacity
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MOMENT CURVATURE RELATION
b

d

Rectangular 
section

-Plastic (end) regions – will undergo strain 
without any increase in stress. 

-Any moment beyond My will be resisted by 
shrinking of the elastic core .
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MOMENT CURVATURE RELATION
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MOMENT CURVATURE RELATION
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MOMENT CURVATURE RELATION
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SEQUENCE OF PLASTIFICATION

Increase load gradually.

yPP 

Increase load beyond Py

Region under plastification Py MMM 

Rest of the beam is elastic.
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Increase  P such that 
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Solving the two 
equationsLimiting length of 

plastic zone

Rectangular section: 0.33

H.W.: Shape of plastic region?



MOMENT CURVATURE RELATION
Very high ductility

Theoretical

My My
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pf to  105
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Variation of curvature Actual

The phenomenon of large 
increase in curvature when 
load reaches Pu is called as 
“unrestricted plastic flow”
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TYPICAL PLASTIC HINGE









LOAD APPLICATION
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Horizontal  
Load

Vertical  Load
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Plate elements of a cross-section may buckle locally due to
compressive stresses. The local buckling can be avoided
before the limit state is achieved by limiting the width to
thickness ratio of each element of a cross-section subjected
to compression due to axial force, moment or shear.

When plastic analysis is used, the members shall be capable of 
forming plastic hinges with sufficient rotation capacity (ductility) 
without local buckling, to enable the redistribution of bending 
moment required before formation of the failure mechanism.

PROVISIONS OF IS 800 (2007)
SEC 3.7 CLASSIFICATION OF SECTIONS

When elastic analysis is used, the member shall be capable 
of developing the yield stress under compression without 
local buckling.



Class 1 (Plastic) — Cross-sections, which can develop 
plastic hinges and have the rotation capacity required 
for failure of the structure by formation of plastic 
mechanism.

Class 2 (Compact) — Cross-sections, which can develop 
plastic moment of resistance, but have inadequate 
plastic hinge rotation capacity for formation of plastic 
mechanism, due to local buckling. 

Class 3 (Semi-compact) — Cross-sections, in which the 
extreme fiber in compression can reach yield stress, but 
cannot develop the plastic moment of resistance, due to local
buckling.

Class 4 (Slender) Cross-sections in which the elements 
buckle locally even before reaching yield stress. 







EX 1: SIMPLY SUPPORTED 
BEAM UNDER U.D.L
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EX 2: PROPPED CANTILEVER

Structure can still carry further loads

1st Plastic hinge shall form at ‘A’
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HIPPWhen 
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(Contd.)
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uHu PPP  1

Determinate structures

Shape of BMD does not 
change till failure

Shape of BMD  changes after 
each hinge formation. 

Indeterminate  structures

Final reactions 
@collapse ???
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BMD
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MULTISPAN INDERTMINATE BEAM 
UNDER U.D.L

BMD
(Elastic range)

For incremental load
BMD

For next incremental load 
BMD

For next incremental load
BMD

Increase ‘P’ gradually

DSI=3  =>
4 HINGES

)( 3H
?3  HP

?4  HP

)( 1H

)( 2H
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)( 1H )( 2H )( 3H
Pm 1 Pm 2 Pm 3 Pm 3
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?1 HP
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MULTISPAN INDERTMINATE BEAM 
UNDER U.D.L

BMD
(Elastic range)

Increase ‘P’ gradually

DSI=3  =>
4 HINGES

Pm 1 Pm 2 Pm 3 Pm 3

aH B C D E
A

L L L L

?1 HP



INDETERMINATE STRUCTURES
The solution process very tedious

HNHHHIu PPPPP  32

Need to analyse indeterminate 
structure 

We also get to know….. ….the sequence of hinge formation. 

Often, we are not interested in sequence.

Methods for 
simplified analysis 

EQULIBRIUM

VIRTUAL WORK 



EQUILIBRIUM APPROACH

Possible hinge locations.Shape of BMD 
(actual value not 

needed)

Consider equilibrium when structure is at verge 
of collapse 

uPP 
PM

PM

Consider equilibrium of BC

Consider overall equilibrium 

Moment about A 

Take moment about B 

B cR
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Advantage – Skip solving an indeterminate structure, 
which is otherwise tedious….
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VIRTUAL WORK APPROACH
ASSUMPTIONS:

1. Structure @ verge of collapse

2. Geometry of the structure not change 
as a result of plastification.  

Identify hinge locations and apply small virtual (RIGID BODY) rotation θ.

Ext. Virtual work =      Internal Virtual work

Which method would you judge best 
out of the three methods??
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Only Mp does the 
internal work, WHY?
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APPLICATION OF SHORT-CUT APPROACH ON 
COMPLICATED STRUCTURE

BMD
(Elastic range)

Problem: Four hinges till collapse, but seven possible locations

DSI=3  =>
4 HINGES

Pm 1 Pm 2 Pm 3 Pm 3

aH B C D E
A

L L L L

?uP

Which four of the seven possible hinges will be the governing mechanism….???

This won’t be problem in the long-hand method of sequential formation of hinges…

In equilibrium or virtual work method, we rely on some important theorems..



THEOREMS FOR PLASTIC ANALYSIS 

ASSUMPTIONS:  At the point of collapse
(1) Loading system not affected
(2) Geometry of structure not affected.                                                           

UNIQUENESS THEOREM (UT)

Following conditions must be satisfied simultaneously at point 
of collapse of structure.

1) EQUILIBRIUM CONDITION
All bending moments in equilibrium with the applied forces and reactions

2) YIELD CONDITION 
At all points of the structure, the bending moment < MP

3) MECHANISM CONDITION - Sufficient number of plastic hinges are formed 
so that mechanism condition results…..



LOWER BOUND THEOREM (LBT)

If a distribution of moments can be found such that equilibrium and yield 
conditions are satisfied…..

UPP



If a loading can be found such that a mechanism is formed, then  

UPP



If LBT and UBT are satisfied simultaneously

UPP 

…This would imply that the structure is either safe or just at the verge of 
collapse

UPPER BOUND THEOREM (UBT)



ANAYLYSIS PROCEDURE
(1) Formulate possible collapse mechanisms, based on 

indeterminacy. ( Guesswork involved!)

(2) According to UBT 

(3) Critical  value of Pu : Lowest among  these values 
………..provided all possible mechanisms included.       

Possibility of missing the critical mechanism exists.

(4) To rule out missing of critical mechanism, apply LBT (Yield and 
equilibrium criteria)

(5) If both LBT & UBT satisfied simultaneously imply correct collapse 
load

......),,( 321 uuuU PPPP

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uPP 

critu PP 



EXAMPLE

x

Let structure be @ verge of collapse. Apply virtual displacement & @ B

Internal virtual workExternal virtual work

Solving
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EXAMPLE (CONTD..)
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To ensure correct mechanism, use LBT & check yield & equilibrium condition.
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CHECK BY LBT

Equilibrium Check :

Moment about ‘B’ 
Moment about ‘B’ 
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YIELD CHECK

REACTIONS ON THE BASIS OF THE ABOVE BOUNDARY 
CONDITIONS ONLY

L
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L
Mp

A RcR 83.483.6 

P
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AB MxRMCompute  2
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Alternately, we can keep MA as unknown fix MB to a value equal 
to MP

Mp
B

RC

A
RA



NUMBER OF INDEPENDENT MECHANISMS

Possible hinge locations?

Degree of indeterminacy

Possible independent mechanisms

1

12




 rnm

r

n

1H 2H

CAUTION: THIS NUMBER IS ONLY SUGGESTIVE



EXAMPLE

2

13





 rnm

)3()2()()2( 11  pPuu MMLPLP 

Ext virtual work = Int. Virtual work

)2()(2  MpMlP PU 

P P

1H 3H2HL L L

2UP 2UP



2

A B C D

1uP

3

1uP
2A

B
C D

Ext virtual work = Int. Virtual work



How to identify possible hinge locations ???

)(
3

5
1 L

Mp
uP  )(32 L

Mp
UP 

Points of discontinuity/ maxima of BMD



MECH 1: EQUILIBRIUM CHECK

UUU PPPUBT  ,, 21

LBT – To rule out missing any mechanism. Check for equilibrium & yield.

Consider equilibrium of BCD Consider equilibrium of AB

.

2
3

10
: 1

Satified

P
L

Mp
RRCheck UDA





)(2
L

Mp
R A 
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R D 
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Mp
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3
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C
D
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D
C

B A B



AM

PM
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5

L

Mp
)(

3

5

L

Mp
)(

3

4
L

Mp
DR 

Vertical equilibrium

)(2 L
Mp

AR 

Overall equilibrium -  

PA

L
Mp

L
Mp

A

MM

LLLM



 2)(
3

5
3)(

3

4

Check for   CM
Using CD   

)(
3

4
PC MM 

Yield criteria not satisfied 

Use BCD-

B

D

CA

MECH 1: YIELD CHECK

)(
3

5

L

Mp

L
Mp2A

B C
PM

D

=> WE MISSED OUT A CRITICAL MECHANISM



NUMBER OF INDEPENDENT MECHANISMS

LBT- Some mechanism missed out……………

Mechanism <1>  

Check I      (B)  

IB  

IA



MECHANISM I(B): MISSED OUT

External virtual work = Internal virtual work

)3()2()( 11  PPBBU MMLPLP 

)(3
4

1 L

M

BU
pP 

This is lower than 
Check for equilibrium & yield condition.

UIP '

<1> ABC            CD            check vertical equilibrium.  
AR DR

<2>  Yield check
<2>  Point A(assume                       )   

<2>  Point B  

PA MM 

PM

PM

BUP 1 BUP 1

3
2A

B
C

D

A@ C@





YIELD CHECK @ B

Yield Check @ B 

A

D
CB

Overall moment equilibrium about A  

L

M
R p

D  )(
3

5

L

M
R p

A 

pA MM 

Yield check satisfied.
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4

L

M
R p
A 
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3

4

L

M
R p
A 

AM
PM

AR
DR

pB

pp

AAB

MM

MM

MLRM

3
2

3
5







Equilibrium of CD and then 
overall vertical equilibrium



PRACTICE PROBLEMS
P2

L LL.1

P2

3/L 2/L3/L.2

P

P

3/L

P2

First solve by first principles



APPLICATION OF SHORT-CUT APPROACH ON 
MULTISPAN STRUCTURE

DSI=3 
Pm 1 Pm 2 Pm 3 Pm 3

aH B C D E
A

L L L L

Possible independent mechanisms =  7 – 3 = 4

Pm 1 Pm 2 Pm 3 Pm 3

aH B C D E
A

Mechanism 1



APPLICATION OF SHORT-CUT APPROACH ON 
MULTISPAN STRUCTURE

Pm 1 Pm 2 Pm 3 Pm 3

aH B C D E
A

Mechanism 2

Pm 1 Pm 2 Pm 3 Pm 3

aH B C D E
A

Mechanism 3

Pm 1 Pm 2 Pm 3 Pm 3

aH B C D E
A

Mechanism 4



ALTERNATE FOUR MECHANISMS

DSI=3 
Pm 1 Pm 2 Pm 3 Pm 3

aH B C D E
A

L L L L

Possible independent mechanisms =  7 – 3 = 4

Pm 1 Pm 2 Pm 3 Pm 3

aH B C D E
A

Mechanism 1



APPLICATION OF SHORT-CUT APPROACH ON 
COMPLICATED STRUCTURE

Pm 1 Pm 2 Pm 3 Pm 3

aH B C D E
A

Mechanism 2

Pm 1 Pm 2 Pm 3 Pm 3

aH B C D E
A

Mechanism 3

Pm 1 Pm 2 Pm 3 Pm 3

aH B C D E
A

Mechanism 4



2 D FRAMES  

2 rnm 1 rnm
5 3 4 3

2H 2H
4H

1H 4H
1H

3H

3H

5H



2 D FRAMES 

Under symmetrical 
vertical loads 

Symmetric  

No sway frame 

Under horizontal loads or 
unsymmetrical vertical loading 
or unsymmetrical structure 
under vertical loading

Sway frame  

Beam mechanism   Sway mechanism.  

Beam + Sway – Combined Mechanism  

Beam mechanism 
(local collapse)  

Sway mechanism 
(complete collapse)  



Combined mechanism  

Beam mechanism Sway mechanism  

Hinge 
cancellation  

2θ



EXAMPLE

<1> BEAM MECHANISM

2 rnm

1 Beam
2 Sway
3 Combined. 

Independent
.300 kNmM P 

kNP

MpMpMpLP

IVWEVW

UI

UI

600

)2(







2m C DB

2L

E

D
P

A

P

UIP

UIP



mL 2

L L

CB L L



2 D FRAMES 

<2> SWAY MECHANISM

<3> COMBINED MECHANISM

3UP

kNP

MpLP

MpMpMpMpLP

IVWEVW

U

U

U

450

62

)2()2()()2(

2

2











3UP

2UP

2UP

2

L2

2
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

kNPMpLP

MpMpMpMp
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IVWEVW

UU
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40083

)2()3()2(

)()2(
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













A

A

B

B

C

C
D

E

E

D

A

BA D E

D EC

m2 300

L
L2

No work done at “B” due to 
mutual cancellation….



2 D FRAMES 
Combined mechanism is the critical (true) mechanism provided equilibrium 
& yield conditions are satisfied.

Equilibrium of DE -

Equilibrium of CDE -
kNH

LH

E

E

300

300300




kNV

LVL

CaboutMoment

E

E

300

300


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

kN400
kN400
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AV EV
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-300300



2 D FRAMES 

From horizontal /vertical 
equilibrium -

kN400

kN400

300
300

300

kN300

300

300

A B -

AV
A

AV

AV

AH

AH
A

A B C

Cannot find AA VH ,

Use equilibrium of over all structure

Solution Not possible!

kNV

kNH

A

A

100

100




L2

L

B

B

C

AH 300



2 D FRAMES 

C

L
300

300
A

B

400

300

L2

L2

Yield Check @ B -

Check equilibrium of ABC

100

100

100

100
A

B

Check moment equilibrium about C

Moment equilibrium satsified.

0

3003002100100


 LLM C

okM

kNm
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
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
100

3002100
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2 D FRAMES 

CL

300

L2

100
A

B

Yield Check @ C -

100

400

Check : Equilibrium & yield check for 
other mechanisms.

)(300

300200400

3001002100

okkNm

LLM C




CM

HOW DOES THE GOVERNING MECHANISM CHANGE WHEN THE STRUCTURE IS 
UNDER (A) ONLY VERTICAL LOADS (B) ONLY HORIZONTAL LOADS

(A) Sway mechanism not possible (B) beam mechanism not possible





PRACTICE PROBLEM

mkNMp  300

P4
3 P P

m4

m3 m3 m3

m6



Bp MBeamkNmM  )(600

Cp MColskNmM  )(300

L

LL

L2

P

P

B

C

D

E

A

EXAMPLE

L = 2m



Beam Mechanism

1)(600 Pp MBeamkNmM 

2)(300 Pp MColskNmM 

L
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mkN 600
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mkN 300mkN 300
L = 2m
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Sway Mechanism
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Combined Mechanism
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mkN 300
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mkN 300

mkN 300
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CHECK FOR EQUILIBRIUM AND YIELD CRITERIA







EXAMPLE: To check for a 
mechanism to be critical


































