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ENGINEERING DESIGN APPROACH

~ Working
Design stress
Approach | | . it State e

e

Ultimate strength = o,

Yield stress = O,

“Yield Point
Allowable stress = ;|-

oy &
FOS

Working stress method: O _; =

-Stress is restricted to O,;; under working loads. No load factor.

-Elastic analysis of structure is considered adequate



LIMIT STATE METHOD

1. Design the structure for limit state of collapse

2. Check for limit state of serviceability.

3. Partial factors of safety for both loads as well as stresses

Conventional analysis approach for limit state design

1. Carry out linear elastic analysis (unfactored load values)

2. For limit state values of axial force, shear force and bending moment we O'
simply multiply by load factor. | —)

3. Section design, we follow rigorous non-linear computations. /8

Tl
/" Yield Point

This makes the process somewhat °- ~

contradictory in nature.. HOW?



OTHER FLAWS WITH CONVENTIONAL
ANALYSIS APPROACH

— l’ = Only 2 points reach yield stress
(symmetrical section, else only one)
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Corresponding moment is called as Yield Moment M,

But the structure has not yet reached collapse state, can still carry further load
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7J; a9

&




WHY PLASTIC ANALYSIS?

The structure deemed failed at Yield Moment still has capacity to sustain higher
loads and bending moment.

Actual failure values P, M, are much higher than %/jy ny
] ] Correspond to yielding at
By plastic analysis, we can get two points only.

L

Actual Load Factor ﬂ:—

5

Plastic Analysis basically extends the Limit state approach (so far restricted to design aspect only)
to load analysis

In Plastic Analysis, we take into account the actual behaviour of structure beyond the yield point.

Actual behavior of structure @ collapse (rather than yield point) is realistically taken into account.



PLASTIC ANALYSIS: ASSUMPTIONS

1) Hookes’s law of elaticity holds until yield point
Stress — strain curve is linear till yield point.

2) Yield stress and Young’s modulus have same values for tension and compression.
3) Stress-strain curve is same in tension and compression.

4) Strain hardening is ignored

O

.| Actual Idgalized

O'y o, [~ Tension
“Yield Point €
Ot /

: O,
Compression Y




ASSUMPTIONS (Contd.).....

5) Section has at least one line of symmetry.

o »
}( |
‘ Axis of
| , bending
| |
BI-SYMMETRIC MONO-SYMMERTIC

Not considered
Why.....2?7?

So that the plane of loading and the plane of bending coincide with
the plane of symmetry....else formulations won’t apply



STEP-BY-STEP ANALYIS TILL COLLAPSE

mﬁlmmmmm‘l'—\ ilasuc " Ze<z g fensir
faam 3 (Bottom)
L J I Compressmn‘

' Tension
-Let plane section remain plane.

-Let loads be gradually increased starting from zero

b W B a2

] ] ] ] Compression
At point 1: Elastic behaviour, both tension and (top)

compression Zone.

<oy
C-T = No net axial force.
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k LJ y; j ohdy = o
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INCREASE LOADS TO REACH POINT<2>

Y O
[ Bl ) 2/ Tension
e

dyjj /f . <0, / Bottom

D A ENA Compression

y top
ye h 2
o=0
v I~ Vi X y

Yield point is reached for compression.

Comp. Ten;ion

\
Curvature =tang = " ;gb"” Absolute
T values
De rlv Depth of section
o & :(eb—etj With sign
Yield condition arrived ! D convention

(one point only, @ compression) +ive value implies concave upwards
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POINT<2> contd.......

Hence moment acting an the section = YIELD MOMENT= M

M
o="2
1
yce Gy]
Yield moment = My N = O'yZe
yte Ve
’\ o<o,
Elastic section
7 I modulus
’ Yemax  Larger of the two extreme fibre distances from

ENA

Distance from ENA, so here equal to g



INCREASE LOAD FURTHER YIELD POINT
ARRIVES AT BOTTOM (TENSION)
y POINT <3>

Tension
3 Bottom

ENA /

\ X .
3
Compression top

No Longer elastic neutral axis (ENA)
<~ Nor fully plastic neutral axis (PNA)

Stress no longer proportional to y




INCREASE LOAD FURTHER SOAS TO
REACH BEYOND YIELD POINT
(BOYTH COMP. AND TENSION) <4>

O

] Tension
B \) 4 Bottom
dvi T AW °
[ \ ENA
y
& J ye 4
- \!

X ®
Compression top

Ewp T € bou

g = —

D
O
Plastic _ 25
region D core

_______ Elastic Provides a measure of
core curvature

O Plastic
region



LOAD THE STRUCTURE SUCH THAT
ELASTIC CORE VANISHES POINT <5>

Top and bottom plastic zones

Tension h th
y (Bottom) merge with one another -,
0 ; 4 > Al
1 S
1
—>
o o Plastc 1/ |
5 4 3 2 . )
neutral axis pl ..

Compression

(top) depth. =y,

‘NA defined by C =T

New neutral axis is called as
Plastic neutral axis (PNA)



FULLY PLASTIC SECTION.

Curvature s== o,
Al
C =T N
cdgdil =g, f ~J- X0\ 2\ |
.
A, = 4
1 2
o,
PNA bifurcates the section into 2 equal areas 4,
[ ]

ENA = PNA for Doubly symmetric sections

ENA # PNA for mono symmetric sections
(symmetric about y axis only)




PLASTIC MOMENT CAPACITY AND

SECTION MODULUS

A = 4,

Mp=0,2,

7 = Plastic section _
P~ modulus

A
—(y, +
5 b +y,)

Shape factor = M L f =

Can be obtained by taking the moment of C
& T about the PNA

Distance between the CGs of
two areas into which PNA
divides the cross section.



EXAMPLE (1)

T B Ze:ébdz
N
< d NA
I . Zp=;1—(y1 + y,)
_bd2
4
_Zs s
f—Z =

Plastic collapse moment: 50% higher than yield moment.
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EXAMPLE (2)

2y N4 @ ?
<« 150— - 9 9 p
/T i_l 10 f g |90
- - 190 N
i Ye = —I ydA
I B 15‘bﬁlw [o\by}
7
A" \lY AK+ Y, A
ALL DIMENDIONS IN MM A, + 4,

Yield stress= 250MPa

_ 5% (150 x10) + (10 + 19-)(190 x 7)

150 x10 +190 x 7

52 mm



EXAMPLE (2) contd...

__¥ bNNE J:lbd3
3
d
(1) 148
Bl =7
1
1= (7148’ + 2 (150)(52) ~Laso —7yay

(1) (2) (3)
=11.06x10% mm*

7 - I =11.O6><106
148—

ymaX/

R — ayz\e =18.66x10° Nmm=18.66kNm



PLASTIC MOMENT

Al
Plipl_fj\‘ 150?} %9.4 A, =190 x 7 = 1330 mm >
\ - Tos A, = 1500 mm 2
4, —F 4 NA must lie in flange.
7 190 A £\ +\4)
150 v, =150 (10 — y,) +190 x 7
Y =9.4mm .

p

Z , = Firstmomentof A4, ,A4,, A, AboutPNA

= (150 x9.4)(%%) + (150 x 0.6) x (2&) + (190 x 7)(L2 + 0.6)

A, %" A,

= 133801 mm °



M, = Plastic moment capacity

i O-yZp
33.45 x10° Nmm
=33.45kNm

o | Mp _ Zp _ 33 .45 _1.79
My Ze 18.66

12
o’ 8 300

A
W, ¢

Determine f



MOMENT CU

Tension
(Bottom)

oo o
5 4 3 2 -
Compression ¢ &
(top) ~ Ed

RVATURE RELATION (»
b -

] Rectangular
Fully plastic E _ | section_[_qnp
P
c
________ Elastic - 20
cored, ¢ = ——=—~
d,/2 Ed,

Plastic
O, region

-Plastic (end) regions — will undergo strain
without any increase in stress.

-Any moment beyond M, will be resisted by
shrinking of the elastic core .

Fully plastic conditon d,—0  ¢—©



MOMENT CURVATURE RELATION

Moment curvature plot

Tension

>  (Bottom) M,
|
g&=14 5 |
0 1 My ______ | |
I |
1 | |
| |
>—o—» | i
5 4 3 2 ' p
Compression 9, i
(top)
For linear portion of curve e<e y oro < Gy
2. 2M )

— Y =
7, Ed s EdZ



MOMENT CURVATURE RELATION

Moment curvature plot

___________ 2 Plastic
i }/ T Lever
——————— | | d JI Arm
i | D S i_""PNA
- y ) e
6, 9, N i O, region
M = M core + M plast
M =O'yZec +O.yb(d—2de)(d+2de)
1 2
sbd,

M =4M, 3~ ()] wnem



MOMENT CURVATURE RELATION

M, <M <M, or P, <Pp<9,
20
e ) 2 — Wk
M=4M B- )] Q\CA\ 13
20,
¢y:Ed M
M=3M - IM &y~ /
277y 27Ty Ng
4,
4 N\ ! 1
¢y \/3 - 2(]]‘\4/1 My_gO'ybd
Condition M = M |
MP=—c)'yba’2
M » 3 ¢_> 0 4
M, 2 HW. ¢ 77



MOMENT DEFLECTION RELATION

O-y
VTV 1ﬁmﬁr\r—\r‘\l/_\m o, - 5
—
A, N
Assume that structure is determinate
%
Tension Gy
3 Bottom
Mp Wy F N 5
(o — T
My 2 |
| I
e o o .
5 4 3 2 )

Compression
top



SEQUENCE OF PLASTIFICATION

77 : o

i M Increase load gradually.
| y
M& ' P = Py M =M ,
v _PL
M mid—pt = 4 Increase load beyond P,
P
Region under plastification
L
P | Plastic zone
i | :é_/ X “’—’J
! | Rest of the beam is elastic.
M, M,




Increase P such that - ‘1’P -
P=P M=M, L

Solving the two

equations
L
po —1— -1
3 /

Rectangular section: 0.33

H.W.: Shape of plastic region?



MOMENT CURVATURE RELATION

Tension M Very high ductility
Bottom M, ¢, =5 to 109,
1 e
W I |
M, | I
| |
° ¢ y ¢ p ¢ f

Compression top

The phenomenon of large
\My\ﬂ increase in curvature when
o load reaches P, is called as
| “unrestricted plastic flow”
|
|
|

{7,

Variation of curvature Actual

Theoretical



TYPICAL PLASTIC HINGE
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Horizontal
Load

LOAD APPLICATION

Vertical Load

35
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PROVISIONS OF IS 800 (2007)
SEC 3.7 CLASSIFICATION OF SECTIONS

Plate elements of a cross-section may buckle locally due to
compressive stresses.

When plastic analysis is used, the members shall be capable of
forming plastic hinges with sufficient rotation capacity (ductility)
without local buckling, to enable the redistribution of bending
moment required before formation of the failure mechanism.

When elastic analysis is used, the member shall be capable
of developing the yield stress under compression without
local buckling.



Class 1 (Plastic) — Cross-sections, which can develop
plastic hinges and have the rotation capacity required °«

for failure of the structure by formation of plastic ¢ |%
mechanism.

¢
Class 2 (Compact) — Cross-sections, which can develop é
V2 /p

plastic moment of resistance, but have inadequate oz | 2
plastic hinge rotation capacity for formation of plastlc y C
mechanism, due to local buckling.

1

(S

Class 3 (Semi-compact) — Cross-sections, in which the@i{?g
extreme fiber in compression can reach yield stress, bu

cannot develop the plastic moment of resistance, due to local
buckling.

(=

Class 4 (Slender) Cross-sections in which the elements
buckle locally even before reaching yield stress.



1S 800 : 2007

Table 2 Limiting Width to Thickness Ratio
(Clauses 3.7.2 and 3.7.4)

Compression Element Ratio Class of Section
| Class 3
i Class | Class 2 .
i Plastic Compact Semi-compact
4 (2) (3) (4) (5)
Rolled section bt Qde 10.5¢ 15.7¢
Outstanding element of
compression flange Welded section bty 8.4¢ 9.4 13.6¢
Internal element of Compression due to
compression flange o 293¢ Bs# $2e
Axial compression b/t Mot applicable
Neutral axis at mid-depth dita 84e 105¢ 126
. ; 105.0€
If 7| is negative: dity
Web ofan I, B4e I+ 2606
H or box Generally 147 142,
soction i 105.0¢ 1




4.5.2 Reguireme

When :m analysis is used, all of the
following comditiens-shall be satisfied, unless adequate

ductility of the structure and plastic rotation capacity
of its members and connections are established for the
design loading conditions by other means of evaluation:

\/a»;/T he yield stress of the grade uj]tgc steel used

shall not exceed 450 MPa.
b} The stress-strain characteristics of the steel
shall not be significantly different from those
obtained for steels complying with 1S 2062
or equivalent and shall be such as to ensure
complete plastic moment redistribution. The

' . "
stress-strain diagram shall have a plateau at

the yield stress, extending for at least six times
the yield strain. The ratio of the tensile

strength to the yield siress specified for the

: L«q%ﬂ;\-@

grade of the steel shall not be less than 1.2.
The elongation on a gauge length complying
with 15 2062 shall not be than 15 percent, and

the steel shall exhibit strain-hardenin
capability. Steels confonnﬁh’l‘d‘lﬁ&b—l‘sﬁﬁ\
m':d to satisfy the above requirements.
¢) The members used shall be hot-rolled or
fabricated using hot-rolled plates and sections.
d) The cross-section of members not containing
plastic hinges should be at least that of
compact section (see 3.7.2), unless the

members meet the strength requirements from
elastic analysis.

gl

+

Where plastic hinges occur in a member, the
proportions of its cross-section should not
exceed the limiting values for plastic section
given in 3.7.2.

The cross-section should be symmetrical
about 1ts axis perpendicular to the axis of the
plastic hinge rotation.

The members shall not be subject to impact
loading, requiring fracture assessment or

fluctuating loading, requiring a fatigue
assessment (see Section 13).




EX1: SIMPLY SUPPORTED
BEAM UNDER U.D.L

Aﬁr\r\aé\/\am,’_C

| p 7
wil? 4
- o MM, &#M 5 \{/ 5

b

d

When M > M , but M <M , No change in shape of BMD continue till M,

My ™ 7

- & Plastic hinge @ B —
But WhenM MP Mechanism formation W = Wu
w1 & 1
8 :Mp :ZpO'y :_bdZGy
4
2(7yba’ 2
W, = > = Ultimate collapse load.

Compare with yield capacity



EX2: PROPPED CANTILEVER

A s— \LP - PLA lP an
/j 2 ¢ 3 NS
. P<P, ) N
. 3PL ‘ 0 el ’/I\ ¥ N PL
32 16 \1 16 R
| ]|
32
1st Plastic hinge shall form at ‘A’ 3PL j i” o,
Collapse will not occur 6 T T
Let P =P, when BM @ A4 =M, §+?_16’ g_i_lg
O Tension
Bottom 3PH1 ! - M _ 16 M »

P =
16 % H1 3
&

Structure can still carry further loads

Compression top




EX 2: PROPPED CANTILEVER
(Contd. ) ~

Increase " P "after formation of Plastic hinger at'
For load P > P, - B.M cannot increase (@ A

When P> P, : for incremental load ’

AP=P-P, =
When P = P,,AP = AP, 9111

Net BM @B:Z—MP+AZL £|
LB !
H };2 79 Mechanism
5 AP, L M
M =M +—Y ap, = 2 (Lo,

pP 6 pP 4 3 L



P =P, +AP

u

Determinate structures

Shape of BMD does not
change till failure

P P,
P

y

BMD

Indeterminate structures

Shape of BMD changes after
each hinge formation.

\Sli::v—\i 'Q-W\\ﬁ e-PU

\ PHldlt'Q

Final reactions
@collapse ???



MULTISPAN INDERTMINATE BEAM

UNDER U.D.L
. X

m, P m3P(H) m ;P
A l fﬁi’B l (ié)c l ;g: . ! - DSI=3 =>
H, He 4 HINGES
| L | L | L | L |

| | | | |
Increase ‘P’ graduall
BMD & Y

(Elastic range) M@/Ib\ ?}{_ fa P =9
»+Q = W
For incremental load @ J_\x

BMD : 2 AP, =?
For next incremental load (H9 at+bt+c= Mp
BMD zr AP, =2

For next incremental load P+, +¥+S= W
BMD



MULTISPAN INDERTMINATE BEAM
UNDER U.D.L

m, P m 4P
A i Aat! i i i DSI=3 =>
H B AHINGES




INDETERMINATE STRUCTURES

The solution process very tedious

P =P, + APH2 + AP, + AP,

YA
Need to analyse indeterminate

structure

We also get to know..... ....the sequence of hinge formation.

Often, we are not interested in sequence.

EQULIBRIUM
Methods for
simplified analysis

VIRTUAL WORK



EQUILIBRIUM APPROACH
T

0.5L B/ 051 OC

Shape of BMD Possible hinge locations.
(actual value not
needed) ML
Consider equilibrium when structure is at verge P =P, .
of collapse Consider overall equilibrium P
M, l P,
. S | ] C
Consider equilibrium of BC C_}A B )
) 3
(‘M , 051 v Moment about A
BT\/ Ir. M, +(2)L = P x0.5L
Take moment about B z, - M7 . 6 M
. Solving P, = ; L

Advantage — Skip solving an indeterminate structure,
which is otherwise tedious....



VIRTUAL WORK APPROACH

v D )
ASSUMPTIONS: " K g\ P =P
A e M —
1. Structure @ verge of collapse 2’\) Pi B //{7%@ C
M6 L= ¢
2. Geometry of the structure not change P (9 —D

as a result of plastification.
|dentify hinge locations and apply small virtual (RIGID BODY) rotation ©.

Ext. Virtual work = Internal Virtual work
/ A Only M, does the
P, ?9 ='Mp49+] A,_lj(_zﬂ internal work, WHY?
6M £
= Y d
L

Which method would you judge best
out of the three methods??



APPLICATION OF SHORT-CUT APPROACH ON
COMPLICATED STRUCTURE

lan J/mzP \l/m3P \Lm3P

A DSI=3 =>
HaVf &8 7 C 7D B AHINGES

| L | L | L | L |

e (LY WP\ %\
~SQIZ 1AV T ISR

Problem: Four hinges till collapse, but seven possible locations

Which four of the seven possible hinges will be the governing mechanism....???
This won’t be problem in the long-hand method of sequential formation of hinges...

In equilibrium or virtual work method, we rely on some important theorems..



THEOREMS FOR PLASTIC ANALYSIS

ASSUMPTIONS: At the point of collapse
(1) Loading system not affected
(2) Geometry of structure not affected.

UNIQUENESS THEOREM (UT)

Following conditions must be satisfied simultaneously at point
of collapse of structure.
(BT
i . =

1) EQUILIBRIUM CONDITION =
All bending moments in equilibrium with the applied forces and reactions

2) YIELD CONDITION
At all points of the structure, the bending moment < M,

3) MECHANISM CONDITION - Sufficient number of plastic hinges are formed
so that mechanism condition resulits..... U’E‘
—




UPPER BOUND THEOREM (UBT)

If a loading can be found such that a mechanism is formed, then

P>P,

LOWER BOUND THEOREM (LBT)

If a distribution of moments can be found such that equilibrium and yield
conditions are satisfied.....

...This would imply that the structure is either safe or just at the verge of

collapse
P < P,

If LBT and UBT are satisfied simultaneously

P=P,



ANAYLYSIS PROCEDURE

(1) Formulate possible collapse mechanisms, based on
indeterminacy. ( Guesswork involved!)

(2) According to UBT Py, <(P,,,P,,, Py, ......)

(3) Critical value of P, : Lowest among these values
........... provided all possible mechanisms included.
Possibility of missing the critical mechanism exists.

(4) To rule out missing of critical mechanism, apply LBT (Yield and
equilibrium criteria) P >Pp

crit

(5) If both LBT & UBT satisfied simultaneously imply correct collapse
load P — P

u



EXAMPLE

Let structure be @ verge of collapse. Apply virtual displacement & @ B

A o DS ABYH A

External virtual work 0+ ¢ Internal virtual work
(wx )L+w({l-x)L=M ,0 + M ,(0 + ¢)
@A @B
Disp. of CG 4 e
0 ~ x ¢ = L—x

Solving v = ( ”Z ) [(if;;cx ] Infinite mechanisms depending an value of x



EXAMPLE (CONTD..)

To get lowest dl: 0 = x=0.586 L
dx
M
w, =W =11 .65 (—%)
(x=0.586 L) L

According to UBT W > W

u uc

To ensure correct mechanism, use LBT & check yield & equilibrium condition.




CHECK BY LBT

>C L->¢
0,58 L -5 0.414 L
Equilibrium Check : . \ —
. Mp%/\wm
A . /177
C
A w B B w
C mmmmﬁb s N\ Ay
M 0.586L M\ A B /i
R =7 : T
A
Moment about ‘B’ Moment about ‘B
R,x0.586 L =wi+2M, Ro(L-x)=M , + w2
R, =0.586 wL R. = 0.4140 wL

Check R, +R. =wL

.. Equilibrium condition satisfied




YIELD CHECK

AT Ry B\'V‘ c “Z— Me

REACTIONS ON THE BASIS OF THE ABOVE BOUNDARY
CONDITIONS ONLY

R,=6.83 22 Rc = 4.83

Compute M , = R x - 2—- M,

Alternately, we can keep M, as unknown fix Mg to a value equal
to Mp



NUMBER OF INDEPENDENT MECHANISMS

: l
o\

Possible hinge locations? pn Q

Degree of indeterminacy r L

Possible independent mechanismsm = n — r
H, H =2 =1

—— >

CAUTION: THIS NUMBER IS ONLY SUGGESTIVE




EXAMPLE

How to identify possible hinge locations ?77?
» Points of discontinuity/ maxima of BMD

P
i L L H  _Ho g m =AY AN Y,
B C >9 D

= V3 LG
\ L\ >

cip”l D | ipm ipm ,
TR 4 ey

Ext virtual work = Int. Virtual work CCaiflia\Wark gisvirtual work

P, (20L) + P, (LO) = M ,(20)+ M ,(30) P, (pl)=M ¢+ Mp (2¢)

5
PMIZ?(MTP PU2:3(MTP




MECH 1: EQUILIBRIUM CHECK
v

UBT = P,,,P/),> P,

LBT — To rule out missing any mechanism. Check for equilibrium & yield.

5 Mp 5 Mp
M 3—( 7 ) 3—( 7 )
ﬁ \i{ l s
A JMP D
Consider equilibrium of BCD Consider equilibrium of AB
M
r i g—( i ) M, A M,
BT\ - 9D A@ 7) B
MP j M T RA > 2(Mp )
R D - 3_( ‘Z ) L
Check :RA+RD:10—MP = 2 P,
3 L

. Satified



MECH 1: YIELD CHECK

Mp

A
/2 ’ Mp ( )

I A Use BCD- R, = > (2
< - jB ic 9D 3
A, 1 Vertical equilibrium

- R, =2("1)

_y 4 5
Overall equilibrium - M, + —=(F) x 3L = =(% )L +2L]

3
M A M P
Check for M .. N\C Using CD
5  Mp 4
ij] J/ 3 ( L )“\ T(] D Mc=§(MP)
<: B G 7
A ?2% 4 N

Yield criteria not satisfied
=> WE MISSED OUT A CRITICAL MECHANISM



NUMBER OF INDEPENDENT MECHANISMS

LBT- Some mechanism missed out...............

Mechanism <1> T .. ‘ o

Check | (B)

LA
|
|
|
|
|
|
|
|
\
\
|
|
|
|
$




MECHANISM I(B): MISSED OUT

e ~

e

External virtual work = Internal virtual work
P, ,(LO)+ P,(2LO)=M .0+ M ,(30)
@4 @cC
M

Py i3 :§—( Lp)

This is lower than P
Check for equilibrium & yield condition.

<1>ABC R, CD R , check vertical equilibrium.

<2> PointA(assume M , # M , )
<2> Yield check <
<2> Point B




YIELD CHECK @ B

Yield Check @ B —

R, =2, Equilibrium of CD and then
RA%(%) > L overall vertical equilibrium
M, \L l o, D M, 5 Mp
— B CMP T RDZT RA—E(L)
A R,
RA

Overall moment equilibrium aboutA M , = M |

M,=R,L-M,
:%Mp_Mp
M, =%Mp

Yield check satisfied.



PRACTICE PROBLEMS

2P

. |
] L L

P

\L L

1. e

First solve by first principles

2P

Ny i

-
2. j L/3 L/3 L/37°77 L/2




APPLICATION OF SHORT-CUT APPROACH ON
MULTISPAN STRUCTURE

lan \LmzP \l/m3P \Lm3P

A -
Ha QO B 707 C 797 D E_97 DS|—3
| L | L | L | L

|
| | | | !
Possible independent mechanisms= 7-3=4

Mechanism 1

A hlr 1Bl 797C¢7’7DLE—97



APPLICATION OF SHORT-CUT APPROACH ON
MULTISPAN STRUCTURE

Mechanism 2

m P

A z}gii #ck#oig%

Mechanism 3

Mechanism 4




ALTERNATE FOUR MECHANISMS

lan \LmzP \l/m3P J/m3P

A -

Ha QO B 707 C 797 D E_97 DS|—3
| L | L | L | L

|
| | | | !
Possible independent mechanisms= 7-3=4

Mechanism 1




APPLICATION OF SHORT-CUT APPROACH ON
COMPLICATED STRUCTURE

Mechanism 2

m, P 2 3
A | ! |
I L\B L //7'7 C 77 D E~>

Mechanism 3

m, P m P
N ¢ | |
AR\ B 6 797\c\ 2D E%

Mechanism 4

m P
A
hifa LBi 7"7ci %\D\ixe‘b



2D FRAMES




2D FRAMES

Symmetric

Under symmetrical
vertical loads
No sway frame

\

Beam mechanism
(local collapse)

Under horizontal loads or
unsymmetrical vertical loading
or unsymmetrical structure

under verticél loading
Sway frame

Beam mechanism Sway mechanism.

Beam + Sway — Combined Mechanism

o

Sway mechanism
(complete collapse)



é
PERS; a
Sway mechanism

AN/4
Y

-~
od

() |




EXAMPLE

C 1 Beam ‘ Independent

L = 2m 2 Sway
2k - 3 Combined.

EVW = IVW
PyLo=Mp o+ Mp (20)+ Mp ¢
2m“p =600 kN B © D
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2 D FRAMES

<2> SWAY MECHANISM EVW = 1VW 4. 300
L’.——»\ZL?’ » \// \/ / \/ v

2 P,,(2Lop)=(Mp ¢)+ Mp ¢ + Mp (2¢)+Mp (2¢9)
A B D E
2P, L = 6Mp

P,, = 450 kN
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<3> COMBINED MECHANISM il i
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C gp Ve e ) A~

fbﬂ Mp ¢ + Mp (2¢)+ Mp (3¢p) + Mp (2¢)
A T D E

3P,;Lp =8Mp ¢ = P,, = 400 kN
A C D~ F
No work done at “B” due to
mutual cancellation....



2D FRAMES

Combined mechanism is the critical (true) mechanism provided equilibrium
& yield conditions are satisfied.

Equilibrium of DE -
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2D FRAMES

ABC T B
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Use equilibrium of over all structure

l 400 kN
From horizontal /vertical
equilibrium -
300
H , =100 kAN
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Check equilibrium of ABC
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300 Check moment equilibrium about C
2L |
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100 xz 3% 2m
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Yield Check @ B - Moment equilibrium satsified.
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2 D FRAMES

Yield Check @ C -

400. B L C
¥/
lst'/
) I M. =100 x2L +100 x L — 300
= 400 + 200 — 300
-— _|
100 KAZ"/‘3OO = 300 kNm (ok )

!

100 Check : Equilibrium & yield check for

other mechanisms.

HOW DOES THE GOVERNING MECHANISM CHANGE WHEN THE STRUCTURE IS
UNDER (A) ONLY VERTICAL LOADS (B) ONLY HORIZONTAL LOADS

(A) Sway mechanism not possible (B) beam mechanism not possible






PRACTICE PROBLEM

Mp =300 kN — m
4m




EXAMPLE

P M , = 600kNm(Beam) = M ,
M , =300kNm(Cols) =M .

L=2m




Beam Mechanism

P M , = 600kNm(Beam) = M ,,
. M , =300kNm(Cols) =M,
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Sway Mechanism

M , = 600kNm(Beam) = M ,,

P M , =300kNm(Cols) =M,
P
—>
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300kN —m
]VWPV = EVW D D Iy, /

M, (p)+ M ,,(p)+ M ,, 2p)+ M ,,(2¢) = P,,(2L¢p)
P, =7 “4ZCo L



Combined Mechanism
M , = 600kNm(Beam) = M ,,
M , =300kNm(Cols) =M,

300kN —m

VW = EVW & D C / v

M @)+ M ,,(20)+ M ,,3p)+ M , (2¢0)=P,;(2Lp)+ P, (L)
P,,=7 S 0D
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CHECK FOR EQUILIBRIUM AND YIELD CRITERIA









EXAMPLE: To check for a
mechanism to be critical
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N MECHANISM .
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