STRUCTURAL ANALYSIS: REVIEW OF BASIC CONCEPTS

http://web.iitd.ac.in/~sbhalla/cv1756.html

Dr. Suresh Bhalla
Professor
Department of Civil Engineering
Indian Institute of Technology Delhi

METHODS OF ANALYSIS

FORCE METHODS

Forces are unknowns

DISPLACEMENT METHODS
Displacements are unknowns

Degree of Static Indeterminacy (DSI)

Force method
-Method of consistent deformations
-Moment distribution method

Displacement methods

Degree of Kinematic Indeterminacy (DKI)

STABILITY AND DETERMINACY NECESSARY AND SUFFICIENT CONDITIONS

For overall stability (2D STRUCTURE):

$$
\begin{equation*}
r>=3 \quad r=\text { No. of reactions } \tag{1}
\end{equation*}
$$

$$
\left(\Sigma F_{x}=0, \Sigma F_{y}=0, \Sigma \mathbf{M}_{z}=0\right)
$$

(2) No geometric instability

For 3D structure :
(1) $r>=6$

$$
\left(\sum \mathrm{F}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}=0, \sum \mathrm{M}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}=0\right)
$$

(2) No geometric instability

FORCE METHOD DEGREE OF STATIC INDETERMINACY (DSI)

It is the number of unknown forces, over and above the minimum required, to satisfy the conditions of equilibrium and stability for a structure.

STABILITY AND DETERMINACY (BEAMS)

r = No. of reactions,

$\mathrm{c}=$ Conditions of construction
$r<c+3 \quad$ Statically unstable
$r=c+3 \quad$ Statically determinate
provided no geometric instability .
$r>c+3$ Statically indeterminate provided no geometric instability
UNKNOWNS VS NUMBER OF EQUATIONS

EXAMPLE 1

Two equations of conditions :
$r<3+c$
Hence unstable

1. Cannot resist moment at link.
2. Link is 2 force element, therefore cannot resist forces perpendicular to link.

EXAMPLE 2

> Each element behaves as link element. Therefore, cannot resist any force normal to itself.........Both members shall rotate about respective hinges....essentially large radius

$43+1=4$
$r=3+c$

Stable and determinate ????

Number of reactions are adequate but the beam is still unstable not due to inadequate arrangement of supports but an instability within the structure

Hence, this is called as internal geometrical instability
Note: Structure will undergo large inelastic deformation but total collapse

EXAMPLE 3

Stable and indeterminate to first degree

STABILITY AND DETERMINACY (TRUSS)

UNKNOWNS VS NUMBER OF EQUATIONS
$b=$ No of bars, $r=n o$ of reactions, $j=n o$ of joints

$$
b+r<2 j
$$

Statically unstable

$$
b+r=2 j
$$

Statically determinate
provided no geometric instability

Unknowns = b+r
Equations = 2j
$b+r>2 j$
Statically indeterminate provided no geometric instability
$\sum M_{z}$ not independent

EXAMPLE 4

ANY
 GEOMETRIC INSTABILITY

Stable and indeterminate to first degree.

How to make stable and determinate????
Remove one bar only such that truss action not disturbed

EXAMPLE 5

$b+r \quad 2 j$
$7+4 \quad 2 \times 5$
$11>10$

Stable and determinate ????
No.... Structure has Internal Geometrical Instability...

Rework converting the right support into roller

STABILITY AND DETERMINACY (RIGID FRAMES)

b = No of elements, r = no of reactions, $\mathbf{j}=$ no of joints, $c=$ No of conditions of construction

UNKNOWNS VS NUMBER OF EQUATIONS

3b+r < 3j+c
$3 b+r=3 j+c$
Statically determinate provided no geometric instability

$3 b+r>3 j+c$
Statically indeterminate provided

$$
\begin{aligned}
\text { Unknowns } & =3 b+r \\
\text { Equations } & =3 j+c
\end{aligned}
$$

no geometrical instability

EXAMPLE 6

$3 b+r$	$3 j+c$
$3 \times 6+6$	$3 \times 6+0$
24	18
$3 b+r$	$>$

$3 b+r>3 j+c$

ANY
 GEOMETRIC INSTABILITY

Stable and indeterminate to $6^{\text {th }}$ degree

EXAMPLE 7

Stable and indeterminate to $4^{\text {th }}$ degree

FORCE METHOD

First step: Degree of static indeterminacy (DSI)

$r=$ No. of reactions, $c=$ Conditions of construction,
$b=$ No of bars/ members, $j=$ No. of joints

FORCE METHOD

Redundant forces and reaction are unknowns

- Choose redundants
-Form compatibility and equilibrium equations
-Solve

FORCE METHOD

Compatibility condition: $\theta_{1}=\theta_{2}$
This enables determination of redundant " X "
Unknown reactions obtained by using
Equilibrium condition.

DISPLACEMENT METHOD

Displacements are considered as unknowns

Degree of kinematic indeterminacy (DKI)

No. of independent displacements (degrees of freedom) possessed by the structure.

All other displacements can be expressed in terms of these key displacements.

DEGREE OF KINEMATIC INDETERMINACY (DKI): TRUSSES

PLANE TRUSS: DKI = $2 \mathrm{j}-\mathrm{r}$
j = No. of joints

$r=$ No. of reactions

DKI $=2 \times 4-3$
$=5$

SPACE TRUSS: DKI = 3j-r

DEGREE OF KINEMATIC INDETERMINACY (DKI): 2D FRAMES

SPACE FRAME: DKI = 6j - r

DEGREE OF KINEMATIC INDETERMINACY (DKI): 2D FRAMES WITH INEXTENSIBLE MEMBERS

PLANE FRAME: $D K I=3 j-r-C i$

$C_{i}=$ No. of conditions of inextensibility, generally equal to the number of inextensible members

DEGREE OF KINEMATIC INDETERMINACY (DKI):

 2D FRAMES WITH INEXTENSIBLE MEMBERS AND RELEASESPLANE FRAME: $D K I=3 j-r-C_{i}+f$
$f=\quad$ No. of releases

SPACE FRAME: $D K I=6 j-r-C_{i}+f$

EXAMPLE 8

$$
\text { DKI }=3 j-r-C_{i}+f
$$

2

DKI $=8$
(Members are inextensible)

EXAMPLE 9

(Members are inextensible)
For space frames, $f=3 \mathrm{~N}-3$

THANK YOU

FOR DISCUSSION AND QUERIES:
PLEASE JOIN MS TEAM CHANNEL

