STRUCTURAL ANALYSIS: REVIEW OF BASIC CONCEPTS

http://web.iitd.ac.in/~sbhalla/cvl756.html

Dr. Suresh Bhalla Professor Department of Civil Engineering Indian Institute of Technology Delhi

METHODS OF ANALYSIS

FORCE METHODS DISPLACEMENT METHODS

Forces are unknowns

Displacements are unknowns

Method of consistent deformations

Force method

Degree of Static Indeterminacy (DSI)

Slope deflection method

Matrix Stiffness method

Direct stiffness method for computer applications

Moment distribution method

Displacement methods Degree of Kinematic Indeterminacy (DKI) **SB1** Suresh Bhalla, 26-09-2020

STABILITY AND DETERMINACY NECESSARY AND SUFFICIENT CONDITIONS

For overall stability (2D STRUCTURE):

(1) r >= 3 r = No. of reactions

$$\Sigma F_x = 0, \Sigma F_y = 0, \Sigma M_z = 0$$

(2) No geometric instability

For 3D structure : (1) $r \ge 6$ ($\sum F_{x,y,z} = 0, \sum M_{x,y,z} = 0$) (2) No geometric instability

FORCE METHOD DEGREE OF STATIC INDETERMINACY (DSI)

It is the number of unknown forces, over and above the minimum required, to satisfy the conditions of equilibrium and stability for a structure.

$$\overrightarrow{A}$$

STABILITY AND DETERMINACY (BEAMS)

- r = No. of reactions,c = Conditions of construction
- **r** < **c** + **3** Statically unstable
- r = c + 3 Statically determinate provided no geometric instability .
- r > c + 3 Statically indeterminate provided no geometric instability UNKNOWNS VS NUMBER OF EQUATIONS

Link

Two equations of conditions :

r Vs c + 3 3 2 c +3 = 5 r < 3 + c

Hence unstable

- 1. Cannot resist moment at link.
- 2. Link is 2 force element, therefore cannot resist forces perpendicular to link.

After readjustment r 3 + c4 3 + 1 = 4

Each element behaves as link element. Therefore, cannot resist any force normal to itself.....Both members shall rotate about respective hinges....essentially large radius

Stable and determinate ????

Number of reactions are adequate but the beam is still unstable not due to inadequate arrangement of supports but an instability within the structure

EXAMPLE 2

Hence, this is called as internal geometrical instability

Note: Structure will undergo large inelastic deformation but total collapse

Stable and indeterminate to first degree

STABILITY AND DETERMINACY (TRUSS)

UNKNOWNS VS NUMBER OF EQUATIONS

- **b** = No of bars, **r** = no of reactions, **j** = no of joints
 - **b+r < 2j** Statically unstable

Unknowns = b+r Equations = 2j

- b+r = 2j Statically determinate provided no geometric instability
- b+r > 2j Statically indeterminate provided no geometric instability
 - $\sum M_z$ not independent

Stable and indeterminate to first degree.

How to make stable and determinate????

Remove one bar only such that truss action not disturbed

7 + 4 2x5

2j

b + r

11 >10

Stable and determinate ????

No.... Structure has Internal Geometrical Instability...

Rework converting the right support into roller

STABILITY AND DETERMINACY (RIGID FRAMES)

b = No of elements, r = no of reactions, j = no of joints, c = No of conditions of construction

UNKNOWNS VS NUMBER OF EQUATIONS

3b+r < 3j+c Statically unstable

3b+r = 3j+c Statically determinate provided no geometric instability

3b+r > 3j+c Statically indeterminate provided no geometrical instability Unknowns = 3b+r Equations = 3j+c

X

3b+r VS 3j+c Hinge $M_{BC}=0$ $M_{BA}=0$ F

 $M_{BE} = 0$ not required since $\sum M_B = 0$ (overall moment equilibrium of joint) is already considered and $M_{BE} = 0$ automatically results Independent conditions of
construction: $M_{BC} = 0, M_{BA} = 0.$ i.e C = 23b+r3j + c3b+r3j + c3x6+63x6+2ANY
GEOMETRIC
INSTABILITY24203b+r3j + c21 + c27

Stable and indeterminate to 4th degree

FORCE METHOD

b = No of bars/ members, j = No. of joints

Redundant forces and reaction are unknowns

HOW TO ANALYSE???

Choose redundants

Form compatibility and equilibrium equations

•Solve

FORCE METHOD

Compatibility condition: $\theta_1 = \theta_2$ This enables determination of redundant "X"

Unknown reactions obtained by using Equilibrium condition.

17

Displacements are considered as unknowns

Degree of kinematic indeterminacy (DKI)

No. of independent displacements (degrees of freedom) possessed by the structure.

All other displacements can be expressed in terms of these key displacements.

DEGREE OF KINEMATIC INDETERMINACY (DKI): TRUSSES

SPACE TRUSS: DKI = 3j - r

DEGREE OF KINEMATIC INDETERMINACY (DKI): 2D FRAMES

20

DEGREE OF KINEMATIC INDETERMINACY (DKI): 2D FRAMES WITH INEXTENSIBLE MEMBERS

PLANE FRAME: $DKI = 3j - r - C_i$

C_i = No. of conditions of inextensibility, generally equal to the number of inextensible members DKI = 3x4 - 6 - 3= 3SPACE FRAME: $DKI = 6j - r - C_i$

DEGREE OF KINEMATIC INDETERMINACY (DKI): 2D FRAMES WITH INEXTENSIBLE MEMBERS AND RELEASES

PLANE FRAME: DKI = $3j - r - C_i + f$ f = No. of releases f = No. of releases f = N-1,N = No of members meeting at the joint

SPACE FRAME: $DKI = 6j - r - C_i + f$

22

23

For space frames, f = 3N-3

THANK YOU

FOR DISCUSSION AND QUERIES: PLEASE JOIN MS TEAM CHANNEL