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The audio of this lecture is based on
classroom recording from CVL 756 class
for batch 2019-20. Use earphone/
amplifier for best audio experience.
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SLOPE DEFLECTION METHOD
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Generalized slope deflection equations
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Matrix Stiffness Approach (MSA) : 

The elements of [K] are obtained by first principles using the definition of 
kij from the deformation pattern of the structure and force-deformation 
relations of the members 

n  = Degrees of freedom (DKI)

Fi = Force along ith degree of freedom

i = Displacement along ith degree of freedom

Forces generated along the various degrees of 
freedom under a unit displacement along the jth

degree of freedom (j = 1), with all other 
degrees of freedom locked (x = 0, where x j )

jth col. of [K]  : Kij =Force generated along ith

degrees of freedom under a unit 
displacement along the jth degree of 
freedom with all other degrees of 
freedom locked.

1 2 3
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The direct stiffness approach (DSA), on 
the other hand, enables computation of 
the overall stiffness of any complicated 
structure using computer program, 
based on finite element formulation, 
without human visualization of the 
overall structure.

1 2 3
Matrix Stiffness Approach (MSA) : Human judgment needed
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ALL COMMERCIAL STRUCTURAL 
ENGINEERING ANALYSIS PACKAGES ARE 
BASED ON THE DIRECT STIFFNESS 
APPROACH.

UNDERSTANDING AND IMPLEMENTING THE CONCEPTS 
WILL HELP YOU IN:

1. MAKING YOUR OWN CUSTOMIZED RESULT ORIENTED 
SOFTWARE WITHOUT SPENDING ANY PENNY.

2. USING THE EXISTING SOFTWARE IN ERROR FREE 
MANNER, WITH UNDERSTANDING, RATHER THAN AS A 
“BLACK BOX” APPROACH.

SIGNIFICANCE OF DIRECT 
STIFFNESS METHOD
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Restricted to frame and truss structures (skeletal structures) only. Members 
assumed as line elements (passing through neutral axis) with lumped 
sectional properties. At first, we restrict analysis to prismatic members only. 

Hooke’s law of elasticity holds.

Small deflections => no change in overall geometry of structure.

1.

DIRECT STIFFNESS  METHOD: ASSUMPTIONS

2.

3.
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Plane sections remain plane after bending.

In bending mode, very small slope

Curvature  = 

If displacement takes place normal to member, no change in length of the 
member. Change in length of an element due to flexural deformation 
(curvature effects) is also negligible. 

   2/32

22

/1

/

dxdy

dxyd

 2

2

dx

yd

DIRECT STIFFNESS  METHOD: ASSUMPTIONS

4.

5.

6.
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Principle of superposition holds good.
• Loads can be superimposed
• Boundary conditions can be superimposed
• Displacements can be superimposed
• BMD, SFD can be superimposed.

7.

DIRECT STIFFNESS  METHOD: ASSUMPTIONS

IMPORTANT:

All assumptions of slope deflection method are repeated 
except one…..

We have discarded the assumption regarding 
inextensibility of the members……

Unlike manual approach, digital computers will not 
have no problem in tackling additional degrees of 
freedom. 
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DIRECT STIFFNESS METHOD FOR 
COMPUTER APPLICATIONS

• Each individual member is treated as structure (called 
element).

• Stiffness matrix of each individual element is obtained.

• Total stiffness matrix of the entire structure is then 
computationally obtained by superimposing the matrices of 
elements, without human intervention.

• Hence, analysis can be broken down into small steps and 
programmed, in a finite element procedure. 
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In short form, {f}= [k] L {d}

[k]L = Element stiffness matrix with respect to
local coordinate system.

2D STRUCTURES
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TRANSFORMATION OF 
COORDINATE SYSTEM

At a joint, members of different orientations may 
meet. 

The forces and displacements at member ends 
cannot be easily related. 

To consider equilibrium of the joint and compatibility 
of member displacements, the member end forces 
and displacements must be transformed to a 
common coordinate system.
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MEMBER FORCES IN GLOBAL & 
LOCAL COORDINATES
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{ f } = [ T ] {F}

Combining equations 1 2and
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HOW IS TRANSFORMATION UTILIZED??

{f} = [k]L {d}

[T] {F} = [k]L[ T ] {D}

{F} = [ T ]T [k]L [ T ] {D}

[K]G
Stiffness matrix of member in global 
coordinates

[K]G =[ T ]T [k]L [ T ]
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SPECIAL CASE: TRUSS STRUCTURES 
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MEMBER FORCES IN GLOBAL & LOCAL COORDINATES
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GENERATION OF TOTAL STRUCTURAL 
STIFFNESS MATRIX

1 2 3

86 7

4

i
i+1

n
n - 1

5

We shall first derive formulations for simple 2D case:
(1)Supports are fixed (2) All joints are rigid with no internal hinges.
(3) Joints can be sequentially numbered as above

We shall introduce complications into analysis one by one.
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NUMBERING SCHEME
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Total structural stiffness matrix should 
relate global structural loads to global 
structural displacements

1 2 3

86 7

4

i
i+1

n
n - 1

5

P1, u1

P2 , u2

P3, u3

P3 i - 2

P3 i - 1

P3 i

Similar pattern for numbering 
of displacements

X3n - 2

X3 n - 1

X3 n

a

b

c

Joints numbered sequentially, restrained joints numbered in end

Degrees of freedom shall include those at supports also

Joint loads and joint displacements
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3 i - 2

3 i - 1

3 i

5

b

a

c

Joint i 1

2
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Joint 
j=i+1
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4
6

cba
i DDDu 11423 COMPATIBILITY

Member degrees of freedom: From element point of view (1..6)
Structural degrees of freedom: From global (overall structures)                                                 

point of view (1..3n)

3 j - 2

3 j

3 j - 1

Each member degree of freedom in global coordinates (1,2,…,6)
corresponds to a particular structural degree of freedom (1,2,….,3n).
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EQUILIBRIUM CONDITIONS

1 2 3

86 7

4

i
i+1

n
n - 1

5

P1, u1

P2 , u2

P3, u3

P3 i - 2

P3 i - 1

P3 i

a

b

c

Let a unit displacement be applied along
d.o.f (3i-2) and all other d.o.f. =0



27

Recall: kmn = Force induced along d.o.f.’m’ due to unit displacement along d.o.f ’n’, all
other displacements maintained zero.

Let a unit displacement be applied along d.o.f (3i-2) and all other d.o.f. =0
By joint equilibrium,

P3i-2 = Sum of member end forces of a, b, c in X-direction
P3i-2 = Fa

4 + F1
b +Fc

1

3 i - 2

3 i - 1

3 i

5

K3i-2, 3i-2 =

b

a

c

Joint i 1
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Joint 
j=i+1
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cba
i DDDu 11423 

Compatibility

+ kc
11ka

44 + kb
11
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K3i-2, 3i-2           =         ka
44 + kb

11 +kc
11

Element of total structural 
stiffness matrix

Elements of member 
stiffness matrices in global 
coordinates

• An element of [K]TS can be obtained by summing the
elements of member stiffness matrices (in global
coordinates) of corresponding d.o.f from members that
frame into that joint.

• In order to carryout smoothly, we follow
Code Number Approach.
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Each member degree of freedom in global coordinates (1,2,…,6) corresponds to a particular structural degree
of freedom (1,2,….,3n). This information can be stored in the association matrix of the member.

3i-2           3i-1           3i          3(i+1)-2    3(i+1)-1      3(i+1)

3(i+1)-2

b
3i-2

3i-1

3i

3(i+1)-1

3(i+1)

b
1

2

3

4

5

6

3 4

K34  of [K]L will correspond 
to K3i, 3(i+1)-2 of [K]TS 

(i.e. will transfer to that 
location)

For member ‘b’, the association matrix is 
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KTS GENERATION: MATRIX STIFFNESS VS 
DIRECT STIFFNESS APPROACH
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KTS GENERATION: MATRIX STIFFNESS VS 
DIRECT STIFFNESS APPROACH
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

KTS (6,9) =??
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 All joints of the structure should be numbered sequentially, 
starting from the unstrained joints. 

 Restrained joints should be numbered in the end. 

 Initialize the total structural stiffness matrix to ‘0’. 

 Consider each member; compute its member stiffness matrix 
in global coordinates. 

 Then send its elements into appropriate location of the global 
stiffness matrix of the entire structure, one at a time. 

 Repeat this process for each member; keep adding its 
elements to the appropriate elements of the total structural 
stiffness matrix. 

 Finally, the total stiffness matrix of the structure will result.

HOW TO GENERATE THE TOTAL STRUCTURAL 
STIFFNESS MATRIX
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STEPWISE PROCEDURE FOR 
PROGRAMMING

1.Label all elements (or members) 1…..m.

2.Label all joints 1….n, first unrestrained, then the     
restrained ones. D.O.F associated with ith node: 3i-2,   
3i-1, 3i. Hence, all d.o.f are also numbered.

3. Compute the size of structural stiffness matrix & 
initialize it to 0.
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STEPWISE PROCEDURE FOR 
PROGRAMMING (Contd…)

4. Repeat for each element (from i=1 to m)

• Compute [k]L
• Compute [R] from end coordinates.
• Compute [k]G = [T]T[k]L[T]
• Establish association matrix (from node number of 

the two  nodes of member.
• Transfer each element of [kG] to appropriate 

location of [K]TS

(kTS)ij = Σ(kG)mn

Extends over all members meeting at a joint.
m: Corresponds to ith dof and n to the jth dof.

Need to do this process 36 times for each 
member, no discount from symmetry….Why?
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STEPWISE PROCEDURE FOR PROGRAMMING 
(Contd…)

5. Obtain nodal loads P
• Direct nodal loads
• Equivalent nodal loads (from member loads such as 

distributed loads)

 +

Fixed ended 
forces (to be 
added in the 
end)

Equivalent joint 
loads

fT fT }{][Equivalent joint load contributed by a member =

(Global coordinates)
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Let {ux} =0 (no support movement )

    {P}= [kpp] {up}
   {up}= [kpp]

-1{P}       and hence      {X}= [kxp] {up}

If not zero 
      {P}= [kpp] {up} + [kpx] {ux} 
        

{up}= [kpp]
-1{P}-[kpx] {ux} 



























X

P

XXXP

PXPP

u

u

KK

KK

X

P

  ux : prescribed displacements    :        corresponding to X (unknown reactions) 
  up : un-prescribed displacements:        corresponding to P (known loads) 

STEPWISE PROCEDURE FOR PROGRAMMING 
(Contd…)

6. Set up equations

Support 
settlement

Reactions {X}=[kxp]{up} + [kxx]{ux} 
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                 For each member (from 1 to m), do- 
a) Using association matrix, get nodal displacements{D}(global 

coordinates) 
                                     Eg, for this member 
                                    D1=u13 
                                     D2=u14 

                                     D3=u15 
                                     D4=u4 
                                     D5=u5 
                                     D6=u6 
 
                                

1 2

5

3

4 6

7 8 9

 +

STEPWISE PROCEDURE FOR PROGRAMMING 
(Contd…)

7. Member end forces (go back to member level)

(b)[d]= [T][D] 
(c){f}= [k]L{d} 
(d) Correction for fixed ended action 

 
 
 
 
 
 
 

{f}=[kL][d]+ [f]f
                                                        

 

Member end forces
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EFFICIENT STORAGE SCHEME FOR KPP
[Kpp] is a huge matrix. For example, for n= 100 unrestrained joints, it
will be 300x300 in size. i.e. 9x104 elements.

However, the fact is that it is symmetric and banded (why??)

All elements outside the band are zero 
Therefore, we only need to generate elements which are within the band. Generally, this 
is achieved by storing right half band in a rotated rectangular matrix. 

An element (i,j) in the original matrix will go to: 
       Row = i 
       Column = c=(j-i+1)  in the banded matrix 
 

Diagonal element kii :  ki1 

R
(i,j)   i <=  j

[K]pp = [B] =
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Correlation between half banded and full [K]  
      Element (i, r)                        (i, c+i-1) 

     Diagonal (i, 1)                             (i, i) 

HOW TO COMPUTE ‘R’ , THE HALF BAND WIDTH

 Depends on structure size and also how we do numbering of joints 
 For each member find – 
           x = (max d.o.f. – min d.o.f) +1 
 The max value of x will be equal to “R”, the half band width. We need to store 

[k]pp, [k]px, [k]xx 
 

Horizontal numbering
[k]pp = 45x45
Half band width = 18

Vertical numbering
[k]pp = 45x45
Half band width = 12

CONCLUSION??

BASIS OF THIS 
FORMULATION ??
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INVERSE OF [K]PP: CHOLESKY’S ALGORITHM

To solve –  

[P] = [kpp] [up]                             (if [ux]=0 
or [P*] = [kpp][up]                       (if [ux] is not equal to 0) 

K u = P          {let us relax notation}

Since K is symmetric
K = VT V
Where V is upper triangular matrix.





















16151413

1211109

8765

4321

KKKK

KKKK

KKKK

KKKK



















10987

654

32

1

0

00

000

VVVV

VVV

VV

V



















10

98

765

4321

000

00

0

V

VV

VVV

VVVV

[K] [VT] [V]
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VT Vu =P 



















10987

54

32

1

00

00

000

VVVV

VV

VV

V



















4

3

2

1

w

w

w

w

=


















4

3

2

1

P

P

P

P
w1 = P1/V1

w2 = (P2-V2w1)/V3

Similarly we can find w3,
w4 ,……wN

Further, Vu= w



















10

98

765

4321

000

00

0

V

VV

VVV

VVVV



















4

3

2

1

u

u

u

u

=


















4

3

2

1

w

w

w

w

On similar lines, we can
find uN ,uN-1 ,……u1

CHOLESKY’S ALGORITHM (contd….)

VT w = P              where           (w = Vu)                     

Ku = P



43

     V11 = K11 

       V1i =k1i/V11 

     Vii = [(Kii - 



1

1

i

m
V2

mi)]            i>1 

     Vij = (kij -  



1

1

i

m
VmiVmj)/Vii        j>i 

     Vij = 0                                       for i>j 

HOW TO OBTAIN [V] THE UPPER         
TRIANGULAR MATRIX

V & VT both will be band matrices, with same bandwidth
as [k]pp. We can over write ‘V’ on [k]pp . Hence, no need to
create a new matrix.
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INTERACTIVE EXERCISE
FORM ALL MATRICES FOR THE STRUCTURE

W

L L

w = 12 kN/m, L = 6m
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HOW TO ANALYSE 3D 
STRUCTURES

Option1: A space frame can be broken down into plane frames.

x

z

y

Member forces to 
be superimposed 
for columns
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OPTION 2: MATRIX FORMULATIONS 
FOR 3D STRUCTURES

Alternatively, the 2D formulations can be extended into 3D 

x’ 1

Displacements

4

Rotations

10

Rotations

7

Displacements







L

GJ
TAdditional term (dof 4, 10)

x

z

y

Local

GlobalEffect of slab in lateral load distribution 
ignored…..

d10-d4



47

















































































L

EI

L

EI

L

EI

L

EI
L

EI

L

EI

L

EI

L

EI
L

GJ

L

GL
L
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L
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L
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L
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L
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L
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L
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L
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L
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x’ → along centroidal axis of the member.
z’→ towards viewer.
y’→ can be ascertained by right hand system rule
(y’ and z’ should be along the principal axes of cross section)

jxik ˆˆˆ 















































y

x

ml

ml

y

x

y

x

22

11

cossin

sincos




COORDINATE TRANSFORMATION

For 2D

l1,m1 : direction cosines of x’ axis w.r.t global system.
l2,m2 : direction cosines of y’ axis w.r.t. global system.

x

z

y
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Direction cosines
l1, m1, n1 : x’
l2, m2, n2 : y’
l3, m3, n3 : z’

















































z

y

x

nml

nml

nml

z

y

x

333

222

111

'

'

'

R

R
R
0

0

R

R

0 0 0
0
0

0
0
0 0 012 x 12
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L = [(x2-x1)2 + (y2-y1)2 + (z2-z1)2]1/2

l1 = (x2-x1)/L
m1 = (y2-y1)/L
n1 = (z2-z1)/L

Unit vector along x’ = l1î +m1ĵ+n1k

We must specify the direction of y-axis

1. Unit vector along y’ = l2î + m2ĵ + n2k

OR

2.  Two points along y’ : (x3,y3,z3) & (x4,y4,z4)so that we 
can find: l2, m2, n2

'î

'j'xi'k ˆˆˆ 

'ĵ

Since x’y’z’ from right handed coordinate system, unit vector along z’ 
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x

z

y
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ANALYSIS STEPS

• Fix member dimensions tentatively.

• Perform analysis.

• Check for adequacy of member sizes at 
key locations.

• Revise dimensions if necessary
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TEMPERATURE VARIATION

L

L

Let there be uniform temperature change 
∆T throughout the member

L

Determinate vs indeterminate structures, 
any difference??
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L

L

Identify and mark the degrees of freedom

1
2

3

4
5

6

7
8

9

10
11

12

13
14

15

16
17

18

L+∆L

L

L

Unconstrained 
length
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L

L

Convert thermal effect into fixed ended forces

1
2

3

4
5

6

7
8

9

10
11

12

13
14

15

16
17

18

∆T

L
L

EA
F f 








fF

TLL   TEAF f  

L

∆T

APPLY OPPOSITE OF THE FEF ON THE STRUCTURE
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TEAF f  








































0

0

0

0

0

0

0

TEA

TEA

P





Solve the matrix equation as before 
and obtain displacements and 
member forces

Final member end forces can be 
obtained by superimposing the fixed 
ended condition with above solution

What would happen in case of 
temperature fall??

F
L fdKf }{}}{{}{ 
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EXTENSION TO LACK OF FIT

L

L

Longer member  : Analogous to temperature rise

L

Longer member by 
construction flaw

Smaller member : Analogous to temperature fall
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HINGED/ GUIDED SUPPORTS

L

L L
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L

L
1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

Let us first consider all supports to 
be fully rigid as treated so far……

P

X

KPP

KXX

6x1

9x1 9x9

6x6

KTS
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L

L
1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

Let us now altogether remove the 
right support……

P

X

KPP

KXX

9x1

6x1 6x6

9x9

P7 = P8 = P9 = 0
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L

L
1

2

3

4
5

6

7

9

8

10

11

12

13

14

15

P

X

KPP

KXX

8x1

7x1 7x7

8x8

P7 = P8 = 0 (if no load acting at those points)

u7 ≠ 0 and u8 ≠ 0

Let us now introduce the hinge



WHAT HAPPENS WHEN THERE IS A 
LOAD ACTING ALONG THE RELEASE?

Mo

How would P change ? 
P8 = Mo

P

X

KPP

KXX

8x1

7x1 7x7

8x8

KXP

KPX

=

uP

ux

8x1

7x1

After solution, corresponding 
member end moment = Mo

62
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UDL IN ADJOINING SPAN

Any change in KTS ?     YES/ NO

Any change in P, X?    YES/ NO

P

X

KPP

KXX

8x1

7x1 7x7

8x8

KXP

KPX

=

uP

ux

8x1

7x1

Upon solving, 
we will get the 
values of u7 and 
u8

EXERCISE:  Form the matrices P and X

Convert the UDL into 
equivalent joint loads

252

wL
PP 

??3 P

??6 P



WHEN EQUIVALENT JOINT LOAD HAS 
COMPONENT ALONG THE RELEASE

Convert UDL into 
equivalent joint loads

W

L12

2wL
12

2wL

2

wL

2

wL

P5 = -wL/2

2

wL

12

2wL

P6 = -wL2/12

P8 = +wL2/12

X9 also gets 
additional term

F
L fdKf }{}}{{}{ In end,

Final moment at right end of member = 0
64



ALTERNATE APPROACH
Convert UDL into equivalent 
joint loads, but considering the 
far end to be hinged.

W

L8

2wL

8

5wL

8

3wL

P5 = -5wL/8

8

5wL

8

2wL

P6 = -wL2/8

P8 = 0F
L fdKf }{}}{{}{ In end,

Caution: Displacement correction needed in end. df to be added to 
the displacement from the output

8

3wL

65
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INTERNAL HINGE

L

h

h

Hinge in beam only (not in column)



67

INTERNAL HINGE

Internal hinge 
is tackled by 
duplication of 
the degree of 
freedom

1

2

3 4

5

6

7

8

9

10
11

12

13

14

15

16
17

18

19

1

4

2
3

5

DOF (7)  : Common for Members 2, 3, 5
DOF (3)  : Common for Members 1, 4
DOF (4)  : Member 2  ONLY
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



























7

6

5

4

2

1

]2[A

INTERNAL HINGE
Terms corresponding to DOF (4) will get contribution 
from member 2 only. 
Take care of the DOF in code number approach format

Association matrices:





























3

2

1

16

15

14

]4[A P

X

KPP

KXX

7x1

12x1 12x12

7x7

KXP

KPX

=

uP

ux

7x1

12x1
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INTERNAL HINGE WITH UDL

W

L 12

2wL2

wL
2

wL

12

2wL

Influence of 
UDL absorbed 
by (4) only

1

2

3 4
5

6

7

8

9

10
11

12

13

14

15

16 17

18

19

1

4

2
3

5

P1 = 0

P2 = -wL/2

P3 = 0

P4 = -wL2/12

P5 = 0

P6 = -wL/2

P7 = +wL2/12
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INTERNAL HINGE WITH UDL

W

L 12

2wL2

wL
2

wL

12

2wL

Influence of 
UDL absorbed 
by (4) only

1

2

3 4
5

6

7

8

9

10
11

12

13

2

14

15

16

17

18

19

1

4

2
3

5

P1 = 0

P2 = -wL/2

P3 = 0

P4 = -wL2/12

P5 = 0

P6 = -wL/2

P7 = +wL2/12

ALTERNATE
APPROACH ONE
SIDE HINGED……
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INTERNAL HINGE WITH UDL

Influence of 
UDL absorbed 
by (4) only

1

2

3 4
5

6

7

8

9

10
11

12

13

2

14

15

17

18

19

1

4

2
3

5

P1 = 0

P2 = -3wL/8

P3 = 0

P4 = -0

P5 = 0

P6 = -5wL/8

P7 = +wL2/8

ALTERNATE
APPROACH ONE
SIDE HINGED……

W

L

F
L fdKf }{}}{{}{ 

4

6

7

1

5
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HINGE THROUGH COLUMN 
AND BEAM

Independent DOF for all 
members meeting at the joint, 
rest of the procedure same.

3

4

5
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INTERNAL HINGE : ALTERNATE 
APPROACH- TO MODIFY [K]L

Permanent hinge

This boundary condition is not to be altered 
while deriving the member stiffness matrix 

1

2

3

5

4
6

Hinge not to be fixed while deriving the 
member stiffness matrix 
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INTERNAL HINGE : ALTERNATE 
APPROACH- TO MODIFY [K]L

L

EI

L

EI

L

EI
L

EI

L

EI
L

EA

L

EA

L

EI
L

EA

33
00

3
0

3
00

3
0

00

000

3
0

22

33

3






[K]L =

Let us derive second column

3rd row and 3rd column: All terms zero
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ALTERNATE APPROACH: 
INTERNAL HINGE

L

h

h

Use the code number approach, but 
here there is no duplication of the 
DOF as in the earlier approach.
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1

2

3 4

4

5

6

7

8

9
10

11

12

2

13

14

15
16

17

18

1

4

2
3

5
KPP

KXX
12x12

6x6

KXP

KPX

Automatically, member 2 will not make any contribution in the third 
row or column of KTS. Members 1 and 4 will make contribution as 
before

The displacement corresponding to DOF 3 remains 
unknown for member 2. Corresponding 
displacement of the column can be obtained
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ALTERNATE APPROACH: HINGE 
THROUGH BEAM AND COLUMNS BOTH

L

h

h
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ALTERNATE APPROACH: HINGE 
THROUGH BEAM AND COLUMNS BOTH

1

2

3

15

4

6

18

7

8

9
10

11

12

13

14

16

17

1

4

2
3

5

5

No duplication of DOF as before……
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All three members 1, 2 and 3 have modified [K]L

After KTS is formed, we will find the third row and third 
column to be zero. WHY???? 

IMPLICATIONS

The diagonal element of KTS (3,3) shall be ZERO. This 
would imply the matrix to be singular, |KTS | =0, hence, we 
will encounter run time error.

To circumvent this situation, eliminate the DOF (3). 
Renumber the DOFs and skip numbering this DOF.
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ALTERNATE APPROACH: HINGE 
THROUGH BEAM AND COLUMNS BOTH

1

2

14

5

4

17

6

7

8
9

10

11

12

13

15

16

1

4

2
3

5

3

Need to skip the DOF corresponding to rotation 
(displacement output will be devoid of the values of these)
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PRACTICE EXERCISE 
<1>

L

L
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PRACTICE EXERCISE 
<1>

L

L
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PRACTICE EXERCISE 
<1>

L

L
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INTERNAL HINGE : ALTERNATE 
APPROACH- TO MODIFY [K]L

Permanent hinge

This boundary condition is not to be altered 
while deriving the member stiffness matrix 

1

2

3

5

4
6

Hinge not to be fixed while deriving the 
member stiffness matrix 
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PRACTICE EXERCISE 
<2>

L

L L

500 kN
500 kNm
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PRACTICE EXERCISE 
<3>

L

h

h
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PRACTICE EXERCISE 
<4>

4m 4m4m

200 kN

15 kN/m 15 kN/m
= =
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PRACTICE EXERCISE 
<4>

4m 4m4m

200 kN

15 kN/m 15 kN/m
= =
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PRACTICE EXERCISE 
<5>

L

L

K
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P

X

KPP

KXX

6x1

6x1 6x6

6x6
up

ux

6x1

6x1

=

k

X
u 11

11




Alternate approach:
Add one more member (a 
link element)
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TREATMENT OF                   
NON-PRISMATIC MEMEBERS
Case I: Determinate Structures



P

For a determinate structure, both 
member end forces as well as 

deflections can be directly 
calculated…..
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SOLUTION BY PRINICIPLE OF 
VIRTUAL WORK

)(xM

1

)(xm

BMD for the 
actual load

BMD for unit (virtual) load at 
the point of displacement

dx
EI

xmxM


)()(
.1 

To take care of the non-prismatic 
nature of the member



P

Conclusion: For determinate structures, both member end forces and deflections can 
be easily computed by incorporating the variation of EI

Int. Virtual Work = Ext. Virtual Work



93

TREATMENT OF                   
NON-PRISMATIC MEMEBERS

Case II: Indeterminate Structures

How to determine KL?? 
Any issue?
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TREATMENT OF                   
NON-PRISMATIC MEMEBERS

Case II: Indeterminate Structures

M Θ = 1

In order to derive stiffness matrix, as per first principles, we 
need to apply unit displacement along a particular DOF 

keeping all other displacements zero

1

2

3
4

5

6

???

Basic slope-deflection formulations 
no longer valid. Use of classical 
force method too tedious.. 

Being indeterminate, principle of 
Virtual Work cannot be applied
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TREATMENT OF                   
NON-PRISMATIC MEMEBERS

Case II: Indeterminate Structures

How to determine KL?? Solution?
We have to use indirect approach, 

employing flexibility method
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Unlike the stiffness approach (which emphasizes on 
locking remaining displacements), this process creates 
a determinate structure…

How this is done?....see the next step.

Fij =

Displacement along the line of action of the 
ith force when we apply unit force along the 
line of action of the jth force….such that…

(no force acting along the lines of action of 
other designated forces=> no restraint)

WE WILL UTILIZE THE 
FLEXIBILITY METHOD
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USE OF FLEXIBILITY METHOD

Apply unit force along “3”, no force to be applied along
other force lines.

Hence, no other force is generated, except reactions. The
structure is determinate, so that we may easily apply the
principle of virtual work

1
F33

F63
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APPLY PRINCIPLE OF VIRTUAL WORK

1

Real 
system

Virtual 
system 1

F33

)(xM

)(1 xm

1

1

1

F63

dx
EI

xmxM
F

L


0

33
)()(

.1 dx
EI

xm
F

L


0

2
1

33
)]([

Int. Virtual Work = Ext. Virtual Work
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APPLY PRINCIPLE OF VIRTUAL WORK

1

Real 
system

Virtual 
system 2

F33

)()( 1 xmxM 

)(2 xm

1

1

1

F63

dx
EI

xmxM
F

L


0

63

)()(
.1 dx

EI

xmxm
F

L


0

21
63

)()(
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SIMILARLY….

66F dx
EI

xm
L


0

2
2 )]([

Real 
systemF36

1
F66

dx
EI

xmxm
L


0

21 )()(

36F
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BUT THIS IS NOT WHAT 
WE FINALLY WANT

Can we use 
superposition??
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WE USE THE PRINCIPLE OF 
SUPERPOSITION TO GET FINAL SOLUTION

1
F33

F63

1
F36

F66

A B
Combine (A) and (B) in following fashion:

B
F

F
A 










66

63
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1











66

6336
33 F

FF
F 










66

63

F

F













66

6336
33

33
1

F

FF
F

K

Hence, by definition

2
366633

66

FFF

F



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Similarly,

2
366633

33
66

FFF

F
K




2
366633

63
63

FFF

F
K





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HOW TO DERIVE K22

A B

CONSIDER COMBINATION OF

Choose multipliers such that the net angle of 
rotation on the left end of the beam is ZERO

1 


1

K22
INDETERMINATE

Determine by 
virtual work method

K33θ
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OTHER ELEMENTS OF [K]L

1

K22

K62

Similarly derive K55, K35
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HOW TO DERIVE K11

P

Δ

External Virtual Work   =  External Virtual Work

.1 
L

RV dxF
0



 







L

R
V dx

AE

F
F

0

V=1

From actual 
loads
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NON-PRISMATIC MEMEBERS
How to obtain fixed ended forces?

θ2

Release the restraints and convert the structure 
into a determinate system

θ1

Both rotations can 
be obtained using 

the principle of 
virtual work



109

θ1 BK33θ1
K63θ1

θ2

K36θ2

K66θ2

C

θ2
θ1 A

Superimpose the A, B, C:
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A+B+C
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PRACTICE EXERCISE

I

Derive the stiffness matrix

A
2I

2A



112

INCLUSION OF SHEAR 
DEFORMATION EFFECT

Necessary for deep sections L/D <= 6

Shear walls and lift cores 
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INCLUSION OF SHEAR 
DEFORMATION EFFECT

Treatment shall be restricted to prismatic 
sections only

In any deformed member, strain energy is 
given by

dVU
V


2

1
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N

y

A*

A Ib

VQ



*

)(
A

dAyyQ First moment of part of 
cross-section above the 

section considered

The shear stress varies across the height of
the cross-section.

WHY FORM FACTOR

b
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To simplify the computation, shear stress is
assumed to be uniform across the cross
section, which is strictly not correct.











A

V
suniform S> 1

Form factor is introduced to apply correction
for non-uniform shear stress, such that
equivalent uniform stress gives same results
as with actual non-uniform shear shear
stress.

eff
uniform A

V

sA

V











/

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Alternately, the shear area of the member
can defined as the area of the section
which is effective in resisting shear
deformation.

Form factor is defined as the ratio of the
gross area of the section to the shear area
of the section

effA

A
s  S> 1

FORM FACTOR (DEF.)
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dVU
V


2

1

dx
EI

M
U

L










 

2

2

1
dx

EA

F

L










 

2

2

1

dx
GA

V
s

L








 

2

2

1

s = Form factor or shear correction factor    
or shear deformation coefficient 
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dA
b

Q

I

A
s

A








  2

2

2

N A

y
A*

s = 1.2

s = 10/9

s = 2

Practice: Find ‘s’ for a rectangular section bx2D

b
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1

2

3
4

5

6

DEEP

119

)(1 xm

1 F33

BMD SFD L/1

)(2 xm

1
F66

BMD SFD L/1



120

dx
EI

xmxm
F

L


)()( 11
33

Applying the principle of Virtual Work,







 

L

x
xm 1)(1

L
xV

1
)(1 

Similarly,

dx
GA

xVxV
sdx

EI

xmxm
F

LL
 

)()()()( 2121
63

dx
GA

xVxV
s

L


)()( 11
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dx
GA

xVxV
sdx

EI

xmxm
F

LL
 

)()()()( 2222
66

Similarly get F66

L

x
xm )(2

L
xV

1
)(2 

and

dx
GA

xVxV
sdx

EI

xmxm
F

LL
 

)()()()( 2121
63
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











66

6336
33

33
1

F

FF
F

K

dx
GA

xVxV
sdx

EI

xmxm
F

LL
 

)()()()( 2222
66
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In computer program, we need not store entire [T],
we may simply store [R]

[k]G= [T]T[k]L[T] = 







T

T

R

R

0

0









CB

BA

KK

KK








R

R

0

0










RKRRKR

RKRRKR

C
T

B
T

B
T

A
T

[KL]

From slide18



124


