DIRECT STIFFNESS METHOD FOR ANALYSIS OF SKELETAL STRUCTURES

http://web.iitd.ac.in/~sbhalla/cvl756.html

Dr. Suresh Bhalla

Professor
Department of Civil Engineering Indian Institute of Technology Delhi

The audio of this lecture is based on classroom recording from CVL 756 class for batch 2019-20. Use earphone/ amplifier for best audio experience.

SLOPE DEFLECTION METHOD

Applied moment M

$$
\frac{4 E I}{L} \theta
$$

Generalized slope deflection equations

$\mathbf{M}_{\mathbf{2}} \quad M_{2}=\frac{2 E I}{L}\left[\theta_{1}+2 \theta_{2}-\frac{3\left(\delta_{2}-\delta_{1}\right)}{L}\right]$

$$
F_{1}=\frac{2 E I}{L^{2}}\left[3 \theta_{1}+3 \theta_{2}-\frac{6\left(\delta_{2}-\delta_{1}\right)}{L}\right] \quad F_{2}=-\frac{2 E I}{L^{2}}\left[3 \theta_{1}+3 \theta_{2}-\frac{6\left(\delta_{2}-\delta_{1}\right)}{L}\right]
$$

PUT IN MATRIX FORM

$$
\begin{aligned}
& {\left[\begin{array}{c}
F_{1} \\
M_{1} \\
F_{2}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} & -\frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} \\
\frac{6 E I}{L^{2}} & \frac{4 E I}{L} & -\frac{6 E I}{L^{2}} & \frac{2 E I}{L} \\
12 E I & 6 E I & 12 E I & 6 E I
\end{array}\left[\begin{array}{c}
\delta_{1} \\
\theta_{1} \\
\delta_{2}
\end{array}\right]\right. \text { Symmetric }} \\
& \left.\begin{array}{c}
F_{2} \\
M_{2}
\end{array}\right]=\left[\begin{array}{cccc}
-\frac{12 E I}{L^{3}} & -\frac{6 E I}{L^{2}} & \frac{12 E I}{L^{3}} & -\frac{6 E I}{L^{2}} \\
\frac{6 E I}{L^{2}} & \frac{2 E I}{L} & -\frac{6 E I}{L^{2}} & \frac{4 E I}{L}
\end{array}\right]\left[\begin{array}{l}
\delta_{2} \\
\theta_{2}
\end{array}\right] \\
& \{\mathrm{F}\}=[\mathrm{K} \mid\{8\} \\
& \text { Force } \\
& \text { vector } \\
& \text { Stiffness } \\
& \text { matrix } \\
& \text { (symmetric) } \\
& \text { Displacement } \\
& \text { vector }
\end{aligned}
$$

$\left[\begin{array}{c}F_{1} \\ F_{2} \\ \cdot \\ F_{n}\end{array}\right]=\left[\begin{array}{cccc|c}K_{11} & K_{12} & \cdot & K_{1 n} \\ K_{21} & K_{22} & \cdot & K_{2 n} \\ \cdot & \cdot & \cdot & \cdot \\ K_{n 1} & K_{n 1} & \cdot & K_{n n}\end{array}\right]\left[\begin{array}{c}\delta_{1} \\ \delta_{2} \\ \cdot \\ \delta_{n}\end{array}\right]$
$\mathrm{n}=$ Degrees of freedom (DKI)
$F_{i}=$ Force along $\mathrm{i}^{\text {th }}$ degree of freedom
$\delta_{i}=$ Displacement along $\mathrm{i}^{\text {th }}$ degree of freedom

$$
\mathrm{j}^{\text {th }} \text { col. of }[\mathrm{K}]:
$$

Forces generated along the various degrees of freedom under a unit displacement along the $\mathrm{j}^{\text {th }}$ degree of freedom $\left(\delta_{\mathrm{j}}=1\right)$, with all other degrees of freedom locked $\left(\delta_{x}=0\right.$, where $x \neq j$)

$\mathrm{K}_{\mathrm{ij}}=$ Force generated along $\mathrm{i}^{\text {th }}$ degrees of freedom under a unit displacement along the $j^{\text {th }}$ degree of freedom with all other degrees of freedom locked.

Matrix Stiffness Approach (MSA) :

The elements of $[\mathrm{K}]$ are obtained by first principles using the definition of k_{ij} from the deformation pattern of the structure and force-deformation relations of the members

SIGNIFICANCE OF DIRECT STIFFNESS METHOD

ALL COMMERCIAL STRUCTURAL ENGINEERING ANALYSIS PACKAGES ARE BASED ON THE DIRECT STIFFNESS APPROACH.

UNDERSTANDING AND IMPLEMENTING THE CONCEPTS WILL HELP YOU IN:

1. MAKING YOUR OWN CUSTOMIZED RESULT ORIENTED SOFTWARE WITHOUT SPENDING ANY PENNY.
2. USING THE EXISTING SOFTWARE IN ERROR FREE MANNER, WITH UNDERSTANDING, RATHER THAN AS A "BLACK BOX" APPROACH.

DIRECT STIFFNESS METHOD: ASSUMPTIONS

1. Restricted to frame and truss structures (skeletal structures) only. Members assumed as line elements (passing through neutral axis) with lumped sectional properties. At first, we restrict analysis to prismatic members only.
2. Hooke's law of elasticity holds.
3.

Geometric non-limearity introduced.

DIRECT STIFFNESS METHOD: ASSUMPTIONS

4. Plane sections remain plane after bending.
5. In bending mode, very small slope

$$
\text { Curvature }=\frac{d^{2} y / d x^{2}}{\left[1+(d y / d x)^{2}\right]^{3 / 2}} \approx \frac{d^{2} y}{d x^{2}}
$$

6. If displacement takes place normal to member, no change in length of the member. Change in length of an element due to flexural deformation (curvature effects) is also negligible.

effects in cleperdent

DIRECT STIFFNESS METHOD: ASSUMPTIONS

7. Principle of superposition holds good.

- Loads can be superimposed
- Boundary conditions can be superimposed
- Displacements can be superimposed
- BMD, SFD can be superimposed.

IMPORTANT:

All assumptions of slope deflection method are repeated except one.....

We have discarded the assumption regarding inextensibility of the members......

Unlike manual approach, digital computers will not have no problem in tackling additional degrees of freedom.

DIRECT STIFFNESS METHOD FOR COMPUTER APPLICATIONS

- Each individual member is treated as structure (called element).
- Stiffness matrix of each individual element is obtained.
- Total stiffness matrix of the entire structure is then computationally obtained by superimposing the matrices of elements, without human intervention.
- Hence, analysis can be broken down into small steps and programmed, in a finite element procedure.

GENERATION OF ELEMENT STIFFNESS MATRIX

2D STRUCTURES

$\frac{4 E I}{L}$
0
$-\frac{6 E I}{L^{2}}$
$\frac{2 E I}{L}$

$$
\underbrace{\frac{E A}{L}}_{0}
$$

z axis normal to plane of board towards viewer

$$
\text { In short form, } \quad\{f\}=[k]_{L}\{d\}
$$

$[k]_{L}=$ Element stiffness matrix with respect to local coordinate system.

TRANSFORMATION OF COORDINATE SYSTEM

$>$ At a joint, members of different orientations may meet.
$>$ The forces and displacements at member ends cannot be easily related.
$>$ To consider equilibrium of the joint and compatibility of member displacements, the member end forces and displacements must be transformed to a common coordinate system.
$\vec{V}=$ A vector (force or displacement)

$$
\begin{aligned}
& \text { Direction } \\
& \text { cosines } \\
& \begin{aligned}
\vec{V} & =V_{x} \hat{\boldsymbol{\imath}}+V_{y} \hat{\boldsymbol{\jmath}} \\
& =(\mathrm{V} \cos \varphi) \hat{\mathbf{\imath}}+(\mathrm{V} \sin \varphi) \hat{\boldsymbol{\jmath}}
\end{aligned} \\
& \vec{V}=V_{x}^{\prime}{ }^{\prime} \\
& =\operatorname{Vcos}(\varphi-\theta) \hat{\mathrm{i}} \\
& v_{y} \text { ' }{ }^{\prime} \text { ' } \\
& \left.=v \operatorname{vos} \varphi \cos \theta+v \sin \varphi \sin \theta] i^{\prime}+v \sin \varphi \cos \theta-\cos \varphi \varphi n \theta\right] j^{\prime} \\
& \left.=\left[\mathrm{V}_{\mathrm{x}} \cos \theta+\mathrm{V}_{\mathrm{y}} \sin \theta\right] \hat{\hat{c}}+\mathrm{v}^{\prime}+\mathrm{V}_{\mathrm{x}} \sin \theta+\mathrm{V}_{\mathrm{y}} \cos \theta\right] \hat{\mathrm{y}}, \\
& (V \sin \varphi) \hat{\mathbf{\jmath}} \\
& +\left[-\mathrm{V}_{\mathrm{x}} \sin \theta+\mathrm{V}_{\mathrm{y}} \cos \theta\right] \hat{\mathrm{s}}, \\
& \text { Hence } \quad \begin{array}{cc}
V_{x}{ }^{\prime}= & \mathbf{V}_{\mathrm{x}} \cos \theta+\mathbf{V}_{\mathbf{y}} \sin \theta \\
\boldsymbol{V}_{\mathbf{y}}{ }^{\prime}= & -\mathbf{V}_{\mathrm{x}} \sin \theta+\mathbf{V}_{\mathrm{y}} \cos \theta
\end{array}
\end{aligned}
$$

MEMBER FORCES IN GLOBAL \& LOCAL COORDINATES

Local coordinate system

Global coordinate system

Member end forces in global coordinates

Member end forces

in local coordinates

$$
\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
F_{1} \\
F_{2} \\
F_{3}
\end{array}\right] \quad\left[\begin{array}{l}
f_{4} \\
f_{5} \\
f_{6}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
F_{4} \\
F_{5} \\
F_{6}
\end{array}\right]
$$

$$
R^{-1}=R^{\top}
$$

R is an orthogonal matrix.
R = JOINT TRANSFORMATION MATRIX
Similarly

$$
\mathrm{R}\left[\begin{array}{l}
R_{i} \\
r_{i} \\
n_{n}
\end{array}\right]
$$

HOW WILL PROGRAM OBTAIN THE NECCESARY

 INFORMATION FOR COORDINATE TRANSFORMATION??User should provide the coordinates of all joints....

HOW IS TRANSFORMATION UTILIZED??

$$
\begin{aligned}
\{f\} & =[k]_{L}\{d\} \\
{[T]\{F\} } & =[k]_{L}[T]\{D\}
\end{aligned}
$$

$$
\{F\}=[T]^{T}[k]_{L}[T]\{D\}
$$

$[K]_{G}=[T]^{\top}[k]_{L}[T]$

SPECIAL CASE: TRUSS STRUCTURES

MEMBER FORCES IN GLOBAL \& LOCAL COORDINATES

Local coordinate system

Member end forces

> Global coordinate system

Member end forces in global coordinates
in local coordinates

$$
\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
F_{1} \\
F_{2} \\
F_{3}
\end{array}\right] \quad\left[\begin{array}{l}
f_{4} \\
f_{5} \\
f_{6}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
F_{4} \\
F_{5} \\
F_{6}
\end{array}\right]
$$

GENERATION OF TOTAL STRUCTURAL STIFFNESS MATRIX

We shall first derive formulations for simple 2D case:
(1)Supports are fixed (2) All joints are rigid with no internal hinges.
(3) Joints can be sequentially numbered as above

We shall introduce complications into analysis one by one.

NUMBERING SCHEME

Degrees of freedom shall include those at supports also

Member degrees of freedom: From element point of view (1..6) Structural degrees of freedom: From global (overall structures) point of view (1..3n)
Each member degree of freedom in global coordinates ($1,2, \ldots, 6$) corresponds to a particular structural degree of freedom ($1,2, \ldots, 3 n$).

$$
\text { COMPATIBILITY } u_{3 i-2}=D_{4}^{a}=D_{1}^{b}=D_{1}^{c}
$$

EQUILIBRIUM CONDITIONS

Let a unit displacement be applied along d.o.f (3i-2) and all other d.o.f. $=0$

Let a unit displacement be applied along d.o.f (3i-2) and all other d.o.f. $=0$ By joint equilibrium,

$$
\begin{aligned}
& P_{3 i-2}=\text { Sum of member end forces of } \mathrm{a}, \mathrm{~b}, \mathrm{c} \text { in X-direction } \\
& P_{3 i-2}=F_{4}{ }_{4}+F_{1}{ }^{b}+F_{1}^{c}
\end{aligned}
$$

Recall: $\boldsymbol{k}_{m n}=$ Force induced along d.o.f.'m' due to unit displacement along d.o.f 'n', all other displacements maintained zero.

$$
K_{3 i-2,}{ }_{3 i-2}=k_{44}^{a}+k^{b}{ }_{11}+k_{11}^{c}
$$

$$
\begin{array}{|ll|}
\hline K_{3 i-2, ~ 3 i-2} & = \\
\begin{array}{l}
\text { Element of total structural } \\
\text { stiffness matrix }
\end{array} & \begin{array}{l}
\text { Elements of member } \\
\text { stiffness matrices in global } \\
\text { coordinates }
\end{array}
\end{array}
$$

- An element of $[K]_{T S}$ can be obtained by summing the elements of member stiffness matrices (in global coordinates) of corresponding d.o.f from members that frame into that joint.
- In order to carryout smoothly, we follow Code Number Approach.

Each member degree of freedom in global coordinates ($1,2, \ldots, 6$) corresponds to a particular structural degree of freedom ($1,2, \ldots, 3 n$). This information can be stored in the association matrix of the member.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{TS}}(\mathbf{9}, 9)=? ? \\
& =k_{L_{66}}^{(\text {man6 }-3)}+k_{L_{66}}(\text { man }-3)
\end{aligned}
$$

$\mathrm{K}_{\text {TS }}$ GENERATION: MATRIX STIFFNESS VS DIRECT STIFFNESS APPROACH

HOW TO GENERATE THE TOTAL STRUCTURAL STIFFNESS MATRIX

- All joints of the structure should be numbered sequentially, starting from the unstrained joints.
- Restrained joints should be numbered in the end.
- Initialize the total structural stiffness matrix to ' 0 '.
- Consider each member; compute its member stiffness matrix in global coordinates.
- Then send its elements into appropriate location of the global stiffness matrix of the entire structure, one at a time.
- Repeat this process for each member; keep adding its elements to the appropriate elements of the total structural stiffness matrix.
- Finally, the total stiffness matrix of the structure will result.

STEPWISE PROCEDURE FOR PROGRAMMING

1.Label all elements (or members) 1.....m.
2.Label all joints $1 \ldots . . n$, first unrestrained, then the restrained ones. D.O.F associated with $\mathrm{i}^{\text {th }}$ node: 3i-2, $3 i-1,3 i$. Hence, all d.o.f are also numbered.
3. Compute the size of structural stiffness matrix \& initialize it to 0 .

STEPWISE PROCEDURE FOR PROGRAMMING (Contd...)

4. Repeat for each element (from $\mathrm{i}=1$ to m)

- Compute $[k]_{L}$
- Compute $[R]$ from end coordinates.
- Compute $[k]_{G}=[T]^{\top}[k]_{L}[T]$
- Establish association matrix (from node number of the two nodes of member.
Transfer each element of $\left[k_{G}\right]$ to appropriate location of $[K]_{T S}$

$$
\left(k_{T S}\right)_{i j}=\Sigma\left(k_{G}\right)_{m n}
$$

Extends over all members meeting at a joint.
m : Corresponds to $\mathrm{i}^{\text {th }}$ dof and n to the $\mathrm{j}^{\text {th }}$ dof.

Need to do this process 36 times for each member, no discount from symmetry....Why?

STEPWISE PROCEDURE FOR PROGRAMMING

(Contd...)

$$
k_{T S}=\underset{6 \times 6}{6 \times 6 \times 6} \text { To be andysed }
$$

5. Obtain nodal loads $P^{12 \times 12}$

- Direct nodal loads

STEPWISE PROCEDURE FOR PROGRAMMING
(Contd...)
knowr know
6. Set up equations

u_{x} : prescribed displacements : corresponding to X (unknown reactions)
u_{p} : un-prescribed displacements: corresponding to P (known loads)

Let $\left\{\mathrm{u}_{\mathrm{x}}\right\}=0$ (no support movement)

$$
\{P\}=\left[k_{p p}\right\}\left\{u_{p}\right\}
$$

$\therefore\left\{\mathrm{u}_{\mathrm{p}}\right\}=\left[\mathrm{k}_{\mathrm{pp}}\right]^{-1}\{\mathrm{P}\}$
and hence
$\{\mathrm{X}\}=\left[\mathrm{k}_{\mathrm{xp}}\right]\left\{\mathrm{u}_{\mathrm{p}}\right\}$

If not zero
$\{\mathrm{P}\}=\left[\mathrm{k}_{\mathrm{pp}}\right]\left\{\mathrm{u}_{\mathrm{p}}\right\}+\left[\mathrm{k}_{\mathrm{px}}\right]\left\{\mathrm{u}_{\mathrm{x}}\right\}$
$\left.\left\{\mathrm{u}_{\mathrm{p}}\right\}=\left[\mathrm{k}_{\mathrm{pp}}\right]^{-1}\{\mathrm{P}\}-\left[\mathrm{k}_{\mathrm{px}}\right]\left\{\mathrm{u}_{\mathrm{x}}\right\}\right]$

Support

 settlementReactions $\{\mathrm{X}\}=\left[\mathrm{k}_{\mathrm{xp}}\right]\left\{\mathrm{u}_{\mathrm{p}}\right\}+\left[\mathrm{k}_{\mathrm{xx}}\right]\left\{\mathrm{u}_{\mathrm{x}}\right\}$

STEPWISE PROCEDURE FOR PROGRAMMING (Contd...)

EFFICIENT STORAGE SCHEME FOR $K_{P P}$

 $\left[K_{p p}\right]$ is a huge matrix. For example, for $n=100$ unrestrained joints, it will be 300×300 in size. i.e. 9×10^{4} elements.However, the fact is that it is symmetric and banded (why??)

All elements outside the band are zero
Therefore, we only need to generate elements which are within the band. Generally, this is achieved by storing right half band in a rotated rectangular matrix.

An element (i, j) in the original matrix will go to:
Row $=\mathrm{i}$
Column $=\mathrm{c}=(\mathrm{j}-\mathrm{i}+1) \quad$ in the banded matrix
Diagonal element $\mathrm{k}_{\mathrm{ii}}: \mathrm{k}_{\mathrm{il}}$

Correlation between half banded and full [K]
Element (i, r)

Diagonal $(\mathrm{i}, 1) \longrightarrow$$\quad$| $(\mathrm{i}, \mathrm{c}+\mathrm{i}-1)$ |
| :--- |
| (i, i) |

HOW TO COMPUTE ‘R’, THE HALF BAND WIDTH

- Depends on structure size and also how we do numbering of joints
- For each member find
$x=(\max$ d.o.f. $-\min$ d.o.f $)+1$
- The max value of x will be equal to " R ", the half band width. We need to store $[k]_{\mathrm{pp}},[\mathrm{k}]_{\mathrm{px}},[\mathrm{k}]_{\mathrm{xx}}$

BASIS OF THIS FORMULATION ??

Horizontal numbering $[\mathrm{k}]_{\mathrm{pp}}=45 \times 45$
Half band width $=18$

Vertical numbering

$[\mathrm{k}]_{\mathrm{pp}}=45 \times 45$
Half band width $=12$
CONCLUSION??

INVERSE OF [K] $]_{\text {pp }}$: CHOLESKY'S ALGORITHM

To solve -

$$
\begin{aligned}
& {[P]=\left[k_{p p}\right]\left[u_{p}\right]} \\
& \text { or }[P *]=\left[k_{p p}\right] /\left[u_{p}\right]
\end{aligned}
$$

(if $\left[u_{x}\right]=0$
(if $\left[u_{x}\right]$ is not equal to 0)
$K u=P \quad\{$ let us relax notation $\}$
Since K is symmetric
$K=V^{T} V$
Where V is upper triangular matrix.

$$
\left[\begin{array}{llll}
K_{1} & K_{2} & K_{3} & K_{4} \\
K_{5} & K_{6} & K_{7} & K_{8} \\
K_{9} & K_{10} & K_{11} & K_{12} \\
K_{13} & K_{14} & K_{15} & K_{16}
\end{array}\right]=\left[\begin{array}{cccc}
V_{1} & 0 & 0 & 0 \\
V_{2} & V_{3} & 0 & 0 \\
V_{4} & V_{5} & V_{6} & 0 \\
V_{7} & V_{8} & V_{9} & V_{10}
\end{array}\right]\left[\begin{array}{cccc}
V_{1} & V_{2} & V_{3} & V_{4} \\
0 & V_{5} & V_{6} & V_{7} \\
0 & 0 & V_{8} & V_{9} \\
0 & 0 & 0 & V_{10}
\end{array}\right]
$$

$$
[\mathrm{K}] \quad\left[\mathrm{V}^{\mathrm{T}}\right] \quad[\mathrm{V}]
$$

CHOLESKY'S ALGORITHM (contd....)

$$
\begin{array}{ll}
K u=P & \\
V^{T} \boldsymbol{V} \boldsymbol{u}=P & \\
\boldsymbol{V}^{T} w=P \quad \text { where } \quad(w=\boldsymbol{V} \boldsymbol{u})
\end{array}
$$

$$
\left[\begin{array}{cccc}
V_{1} & 0 & 0 & 0 \\
V_{2} & V_{3} & 0 & 0 \\
V_{4} & V_{5} & 0 & 0 \\
V_{7} & V_{8} & V_{9} & V_{10}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3} \\
w_{4}
\end{array}\right]=\left[\begin{array}{c}
P_{1} \\
P_{2} \\
P_{3} \\
P_{4}
\end{array}\right]
$$

$$
\begin{aligned}
& w_{1}=P_{1} / V_{1} \\
& w_{2}=\left(P_{2}-V_{2} w_{1}\right) / V_{3}
\end{aligned}
$$

Similarly we can find w_{3}, $w_{4}, \ldots \ldots w_{N}$

Further,
$\mathbf{V} \boldsymbol{u}=\boldsymbol{w}$

$$
\left[\begin{array}{cccc}
V_{1} & V_{2} & V_{3} & V_{4} \\
0 & V_{5} & V_{6} & V_{7} \\
0 & 0 & V_{8} & V_{9} \\
0 & 0 & 0 & V_{10}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{l}
w_{1} \\
w_{2} \\
w_{3} \\
w_{4}
\end{array}\right]
$$

On similar lines, we can find $u_{N}, u_{N-1}, \ldots . . u_{1}$

HOW TO OBTAIN [V] THE UPPER TRIANGULAR MATRIX

$$
\begin{array}{lr}
V_{l l}=\sqrt{K_{l l}} & \\
V_{l i}=k_{l i} / V_{l l} & \\
V_{i i}= \begin{cases}\left(\mathrm{K}_{\mathrm{ii}}-\sum_{m=1}^{i-1}\right. & \left.\left.V_{m i}^{2}\right)\right]\end{cases} & \mathrm{i}>1 \\
V_{i j} & =\left(k_{i j}-\sum_{m=1}^{i-1}\right. \\
\left.V_{m i} V_{m j}\right) / V_{i i} & j>i \\
V_{i j}=0 & \\
\text { for } i>j
\end{array}
$$

V \& V^{\top} both will be band matrices, with same bandwidth as $[k]_{p p}$. We can over write ' V ' on $[k]_{p p}$. Hence, no need to create a new matrix.

INTERACTIVE EXERCISE FORM ALL MATRICES FOR THE STRUCTURE

1) Initialize $K_{\text {TS }}=0$
2) Shift $W=12 \mathrm{kN} / \mathrm{m}, L=6 m\left\{\begin{array}{l}P \\ x\end{array}\right\}$

HOW TO ANALYSE 3D STRUCTURES

Option1: A space frame can be broken down into plane frames.

OPTION 2: MATRIX FORMULATIONS FOR 3D STRUCTURES

$x^{\prime} \rightarrow$ along centroidal axis of the member.
$z^{\prime} \rightarrow$ towards viewer.
$y^{\prime} \rightarrow$ can be ascertained by right hand system rule
(y^{\prime} and z^{\prime} should be along the principal axes of cross section)

$$
\begin{array}{ll}
\hat{k}=\hat{i} x \hat{j} & x^{\prime}:(1,0,0) \\
& y^{\prime}:(0,1,0) \\
z^{\prime}:(0,0,1)
\end{array}
$$

COORDINATE TRANSFORMATION

For 2D

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
l_{1} & m_{1} \\
l_{2} & m_{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

I_{1}, m_{1} : direction cosines of x^{\prime} axis w.r.t global system.
I_{2}, m_{2} : direction cosines of y ' axis w.r.t. global system.

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
l_{1} & m_{1} & n_{1} \\
l_{2} & m_{2} & n_{2} \\
l_{3} & m_{3} & n_{3}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad \begin{aligned}
& \text { Direction cosi } \\
& l_{1}, m_{1}, n_{1}: x^{\prime} \\
& l_{2}, m_{2}, n_{2}: y^{\prime} \\
& l_{3,}, m_{3}, n_{3}: z^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& L=\left[\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}\right]^{1 / 2} \\
& I_{1}=\left(x_{2}-x_{1}\right) / L \\
& m_{1}=\left(y_{2}-y_{1}\right) / L \\
& n_{1}=\left(z_{2}-z_{1}\right) / L
\end{aligned}
$$

Unit vector along $x^{\prime}=l_{1} \hat{\imath}+m_{1} \hat{\jmath}+n_{1} k=\hat{i}^{\prime}$
We must specify the direction of y-axis

1. Unit vector along $y^{\prime}=I_{2} \hat{\imath}+m_{2} \hat{\jmath}+n_{2} k=\hat{j}^{\prime}$ $O R$
2. Two points along $y^{\prime}:\left(x_{3}, y_{3}, z_{3}\right) \&\left(x_{4}, y_{4}, z_{4}\right)$ so that we can find: I_{2}, m_{2}, n_{2}

Since $x^{\prime} y^{\prime} z^{\prime}$ from right handed Coordinate system, unit vector along z'

$$
\hat{k}^{\prime}=\hat{i}^{\prime} x \hat{j}^{\prime}=l_{3} \hat{i}+m_{3} \hat{j}+n_{3} \hat{k}
$$

ANALYSIS STEPS

- Fix member dimensions tentatively.
- Perform analysis.
- Check for adequacy of member sizes at key locations.
- Revise dimensions if necessary

TEMPERATURE VARIATION

Let there be uniform temperature change $\Delta \mathrm{T}$ throughout the member
Determinate vs indeterminate structures, any difference??

Identify and mark the degrees of freedom

Convert thermal effect into fixed ended forces

EXTENSION TO LACK OF FIT

Longer member by construction flaw

Longer member: Analogous to temperature rise Smaller member: Analogous to temperature fall

HINGED/ GUIDED SUPPORTS

Let us first consider all supports to be fully rigid as treated so far......

Let us now altogether remove the right support......

$$
P_{7}=P_{8}=P_{9}=0
$$

Let us now introduce the hinge

WHAT HAPPENS WHEN THERE IS A LOAD ACTING ALONG THE RELEASE?

How would P change? After solution, corresponding $P_{8}=M_{0} \quad$ member end moment $=M_{o}$

Any change in K_{TS} ? YES/ NO
Any change in P, X ? YES/ NO

EXERCISE: Form the matrices P and X

In end, $\{f\}=\left\{K_{L}\right\}\{d\}+\{f\}^{F}$
Final moment at right end of member $\frac{\omega}{}=0$
X_{9} also gets
additional term

ALTERNATE APPROACH

Caution: Displacement correction needed in end. d^{f} to be added to the displacement from the output

INTERNAL HINGE

Hinge in beam only (not in column)

DOF (7) : Common for Members 2, 3, 5
DOF (3): Common for Members 1, 4
DOF (4) : Member 2 ONLY

INTERNAL HINGE

Terms corresponding to DOF (4) will get contribution from member 2 only.
Take care of the DOF in code number approach format
 $A[1]=(1,2,3,8,9,10)$

Association matrices:

INTERNAL HINGE,WITH UDL

$P_{5}=0$
$P_{6}=-w L / 2$
$P_{7}=+w L^{2} / 12$

INTERNAL HINGE, WITH UDL

INTERNAL HINGE,WITH UDL

HINGE THROUGH COLUMN AND BEAM

Independent DOF for all members meeting at the joint, rest of the procedure same.

INTERNAL HINGE : ALTERNATE APPROACH-TO MODIFY [K]

This boundary condition is not to be altered while deriving the member stiffness matrix Hinge not to be fixed while deriving the member stiffness matrix

INTERNAL HINGE : ALTERNATE APPROACH-TO MODIFY [K]L

$[\mathrm{K}]_{\mathrm{L}}=$

$\frac{E A}{L}$				
0	$\frac{3 E I}{L^{3}}$			
0	0	0		
$-\frac{E A}{L}$	0	0	$\frac{E A}{L}$	
0	$-\frac{3 E I}{L^{3}}$	0	0	$\frac{3 E I}{L^{3}}$
0	$\frac{3 E I}{L^{2}}$	0	0	$-\frac{3 E I}{L^{2}}$

$3^{\text {rd }}$ row and $3^{\text {rd }}$ column: All terms zero
Let us derive second column

ALTERNATE APPROACH: INTERNAL HINGE

Use the code number approach, but here there is no duplication of the DOF as in the earlier approach.

Automatically, member 2 will not make any contribution in the third row or column of $K_{\text {Ts. }}$. Members 1 and 4 will make contribution as before

The displacement corresponding to DOF 3 remains unknown for member 2. Corresponding
displacement of the column can be obtained

ALTERNATE APPROACH: HINGE THROUGH BEAM AND COLUMNS BOTH

No duplication of DOF as before......

IMPLICATIONS

All three members 1, 2 and 3 have modified $[K]_{L}$ After $K_{T S}$ is formed, we will find the third row and third column to be zero. WHY????

The diagonal element of $K_{T S}(3,3)$ shall be ZERO. This would imply the matrix to be singular, $\left|K_{T S}\right|=0$, hence, we will encounter run time error.

To circumvent this situation, eliminate the DOF (3). Renumber the DOFs and skip numbering this DOF.

$K_{T S} \rightarrow 17 \times 17$

ALTERNATE APPROACH: HINGE
THROUGH BEAM AND COLUMNS BOTH

Need to skip the DOF corresponding to rotation (displacement output will be devoid of the values of these)

Duplication PRACTICE EXERCISE

$$
k_{1}^{a}(4,4) \longrightarrow G_{0} \text { to }(1,1) \text { in } k_{T s}
$$

Solve pps $\left\{U_{P}\right\} \rightarrow\{D\} \rightarrow\{d\}=\left[T T\{D\} \rightarrow\{P\}\left[K_{L}\right]\{d\}\right.$
$M_{000} f_{y}[k]_{L}$ PRACTICE EXERCISE

INTERNAL HINGE : ALTERNATE APPROACH-TO MODIFY $\left[\mathrm{K}_{\mathrm{L}} 5^{\text {the }}\right.$

This boundary condition is not to be altered while deriving the member stiffness matrix Hinge not to be fixed while deriving the member stiffness matrix

PRACTICE EXERCISE

PRACTICE EXERCISE

PRACTICE EXERCISE

TREATMENT OF NON-PRISMATIC MEMEBERS
 Case I: Determinate Structures

For a determinate structure, both member end forces as well as deflections can be directly
calculated.....

BMD for unit (virtual) load at the point of displacement

$$
\begin{aligned}
& \text { Int. Virtual Work = Ext. Virtual Work } \\
& 1 . \delta=\int \frac{M(x) m(x)}{E I} d x \quad \text { To take care of the non-prismatic } \\
& \text { nature of the member }
\end{aligned}
$$

Conclusion: For determinate structures, both member end forces and deflections can

TREATMENT OF NON-PRISMATIC MEMEBERS
 Case II: Indeterminate Structures

TREATMENT OF NON-PRISMATIC MEMEBERS Case II: Indeterminate Structures

In order to derive stiffness matrix, as per first principles, we need to apply unit displacement along a particular DOF keeping all other displacements zero

Basic slope-deflection formulations
 no longer valid. Use of classical ???

Being indeterminate, principle of
Virtual Work cannot be applied

TREATMENT OF NON-PRISMATIC MEMEBERS
 Case II: Indeterminate Structures

We have to use indirect approach, employing flexibility method

WE WILL UTILIZE THE FLEXIBILITY METHOD

$\mathrm{F}_{\mathrm{ij}}=$
Displacement along the line of action of the $i^{\text {th }}$ force when we apply unit force along the line of action of the $j^{\text {th }}$ force....such that... (no force acting along the lines of action of other designated forces=> no restraint)

Unlike the stiffness approach (which emphasizes on locking remaining displacements), this process creates a determinate structure...

How this is done?....see the next step.

USE OF FLEXIBILITY METHOD

Apply unit force along " 3 ", no force to be applied along other force lines.

Hence, no other force is generated, except reactions. The structure is determinate, so that we may easily apply the principle of virtual work

APPLY PRINCIPLE OF VIRTUAL WORK

 Virtual system 2

$$
\text { 1. } F_{63}=\int_{0}^{L} \frac{M(x) m(x)}{E I} d x
$$

$$
F_{63}=\int_{0}^{L} \frac{m_{1}(x) m_{2}(x)}{E I} d x
$$

BUT THIS IS NOT WHAT WE FINALLY WANT

WE USE THE PRINCIPLE OF SUPERPOSITION TO GET FINAL SOLUTION

Combine (A) and (B) in following fashion:

Similarly,

$$
\begin{aligned}
& K_{66}=\frac{F_{33}}{F_{33} F_{66}-F_{36}^{2}} \\
& K_{63}=\frac{-F_{63}}{F_{33} F_{66}-F_{36}^{2}}
\end{aligned}
$$

CONSIDER COMBINATION OF

Choose multipliers such that the net angle of rotation on the left end of the beam is ZERO

OTHER ELEMENTS OF [K] ${ }_{\mathrm{L}}$

Similarly derive $\mathrm{K}_{55}, \mathrm{~K}_{35}$

Apply the Principle of Virtuat Work
External Virtual Work $=$ External Virtual Work

NON-PRISMATIC MEMEBERS

 How to obtain fixed ended forces?

Release the restraints and convert the structure into a determinate system

Superimpose the A, B, C:

PRACTICE EXERCISE

Derive the stiffness matrix

INCLUSION OF SHEAR DEFORMATION EFFECT

Necessary for deep sections L/D <= 6

Shear wallss and lift cores

INCLUSION OF SHEAR DEFORMATION EFFECT

Treatment shall be restricted to prismatic sections only

In any deformed member, strain energy is given by

$$
U=\iiint_{V} \frac{1}{2} \sigma \varepsilon d V
$$

WHY FORM FACTOR

The shear stress varies across the height of the cross-section.

To simplify the computation, shear stress is assumed to be uniform across the cross section, which is strictly not correct.

Form factor is introduced to apply correction for non-uniform shear stress, such that equivalent uniform stress gives same results as with actual non-uniform shear shear stress.

$$
\begin{aligned}
\tau_{\text {uniform }}= & s\left(\frac{V}{A}\right) s>1 \\
& \tau_{\text {uniform }}=\left(\frac{V}{A / s}\right)=\frac{V}{A_{e f f}}
\end{aligned}
$$

FORM FACTOR (DEF.)

Form factor is defined as the ratio of the gross area of the section to the shear area of the section

$$
s=\frac{A}{A_{e f f}} \quad s>1
$$

Alternately, the shear area of the member can defined as the area of the section which is effective in resisting shear deformation.

$$
\begin{aligned}
U & =\iiint_{V} \frac{1}{2} \sigma \varepsilon d V \\
U & =\int_{L} \frac{1}{2}\left(\frac{M^{2}}{E I}\right) d x+\int_{L} \frac{1}{2}\left(\frac{F^{2}}{E A}\right) d x \\
& +S \int_{L} \frac{1}{2}\left(\frac{V^{2}}{G A}\right) d x
\end{aligned}
$$

$\mathrm{s}=$ Form factor or shear correction factor or shear deformation coefficient

$$
s=\frac{A}{I^{2}} \int_{A}\left(\frac{Q^{2}}{b^{2}}\right) d A
$$

Practice: Find ' s ' for a rectangular section bx2D

Applying the principle of Virtual Work,

$$
\begin{gathered}
F_{33}=\int_{L} \frac{m_{1}(x) m_{1}(x)}{E I} d x+s \int_{L} \frac{V_{1}(x) V_{1}(x)}{G A} d x \\
m_{1}(x)=\left(1-\frac{x}{L}\right)
\end{gathered}
$$

Similarly,

$$
F_{63}=\int_{L} \frac{m_{1}(x) m_{2}(x)}{E I} d x+s \int_{L} \frac{V_{1}(x) V_{2}(x)}{G A} d x
$$

Similarly get F_{66}

$$
\begin{gathered}
F_{66}=\int_{L} \frac{m_{2}(x) m_{2}(x)}{E I} d x+s \int_{L} \frac{V_{2}(x) V_{2}(x)}{G A} d x \\
m_{2}(x)=\frac{x}{L} \quad V_{2}(x)=\frac{1}{L}
\end{gathered}
$$

and

$$
F_{63}=\int_{L} \frac{m_{1}(x) m_{2}(x)}{E I} d x+s \int_{L} \frac{V_{1}(x) V_{2}(x)}{G A} d x
$$

$$
F_{66}=\int_{L} \frac{m_{2}(x) m_{2}(x)}{E I} d x+s \int_{L} \frac{V_{2}(x) V_{2}(x)}{G A} d x
$$

From slide18

In computer program, we need not store entire [T], we may simply store $[R]$

$$
[k]_{G}=[T]^{T}[k]_{L}[T]=\left[\begin{array}{cc}
R^{T} & 0 \\
0 & R^{T}
\end{array}\right]\left[\begin{array}{ll}
K_{A} & K_{B} \\
K_{B} & K_{C}
\end{array}\right]\left[\begin{array}{ll}
R & 0 \\
0 & R
\end{array}\right]=\left[\begin{array}{cc}
R^{T} K_{A} R & R^{T} K_{B} R \\
R^{T} K_{B} R & R^{T} K_{c} R
\end{array}\right]
$$

$Q(y)=b(x-y) \times\left[y+\frac{D-y}{2}\right]$

$$
\begin{aligned}
& A=2 b D \\
& I=\frac{b(2 D)^{3}}{12}=\frac{2}{3} b D^{3} \\
& I^{2}=\frac{4}{9} b^{2} D^{6}
\end{aligned}
$$

$$
=\frac{b\left(D^{2}-y^{2}\right)}{2 \quad D} \quad \frac{Q^{2}(y)}{b^{2}}=\frac{1}{4}\left(D^{2}-y^{2}\right)^{2}=\frac{D^{4}+y^{4}-2 D^{2} y^{2}}{4}
$$

$$
\begin{aligned}
& \int_{A} \frac{Q^{2}}{b^{2}} \sqrt{d A}=\frac{2 b}{4} \int_{0}^{D}\left(D^{4}+y^{4}-2 D^{2} y^{2}\right) d y=\frac{b}{4}\left[D^{4} y+\frac{y^{5}}{5}-\frac{2 D^{2} y^{3}}{3}\right] \\
& S=0 \quad 5=D
\end{aligned}
$$

$$
s=1.2
$$

