
1

DIRECT STIFFNESS METHOD FOR ANALYSIS OF 
SKELETAL STRUCTURES (PART 2)

Dr. Suresh Bhalla
Professor 

Department of Civil Engineering

Indian Institute of Technology Delhi

http://web.iitd.ac.in/~sbhalla/cvl756.html



The complete matrix may include d.o.f more than required

Stiffness matrix Kpp can be condensed by eliminating the 
unwanted d.o.f

Unwanted  disps. are expressed in terms of prominent d.o.f

1(3EI/L)M 
2

M

20 Its effect is automatically included

STATIC CONDENSATION:
ANALOGY WITH MODIFIED SLOPE 

DEFLECTION EQUATIONS

In general, 



STATIC CONDENSATION

ux=0

u1
P1

u3

u2

P2= P3= 0

K* u1 = P1*  

K11 K12

K22K21

K31  

K13

K23
K32  K33 

u1

u2
u3

=
P1

P2
P3

Zero

K11 K12

K22K21

u1

u2

P1

P2

= Zero
(usually) 

u2   =  K22
-1 (P2 - K21u1) 3

Such that effects of other 
stiffness terms and disps. are 
automatically taken care of

K11u1 + K12u2 =   P1 1

2K21u1 + K22u2 =   P2

From              K22u2         =  (P2 - K21u1)2

CONDENSATION MEANS TO ACHIEVE

Can we eliminate u2 from above equations?



Substitute equation        into       ---3 1

K11u1 +  K12 K22
-1  (P2 - K21u1)    =   P1

(K11 - K12 K22
-1  K21 )  u1 =   P1 - K12 K22

-1  P2

K11* u1 =   P1*  

K11* P1*

Modified 
force 

vector

P1*= P1
if P2,3= 0

K22 K23

K33K32

K21

K31

K12 K13K11
-1 

K11* = 
u2   =  u3 = 0o  o

Locking of 
dof is 

Not condensation
The resulting matrix is compact and suitable 
for dynamic analysis in this particular case

Preferred 
DOF

Dependent 
DOF
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METHOD OF SUBSTRUCTURES
1)   Ring like structures

2)   Sudden change of layout

32

26

4 6

2521 2220
27

b = 12 – 1 + 1 =  12

b = 12 – 1 + 1 =  24

2

7

1

6

3

5

4

Band width 

b = 12 – 1 + 1 =  12

Join joints         and          1 7

11 2

12
1

3)   Very large structure to be analyzed on a small computer

New  b  =  42 - 1  +  1  = 42
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24

KPP

METHOD OF SUBSTRUCTURES

2

26

4 6

2521 2220
27

b = 12 – 1 + 1 =  12

b = 12 – 1 + 1 =  24

Method of substructures means that instead of 
solving the entire structure in one go, we divide the 
structure into sub-parts, analyze individually, and 
then integrate, but without any approximation or 
loss of accuracy in final results



Compatibility    uc1 = uc2  = uc
Equilibrium      Pc1 = -Pc2

COMPUTATIONAL APPROACH

Substr.

I

II

PN1

PC1

=  

uN2

uC2

KNN KNC

KCCKCN

PN2

PC2

=  
22

22

Internal forces @ common nodes





? ? 
Unknown 

?? (Unknown)

C  :  Common nodes
N  :  Nodes other than common

KPP

uN1

uC1

1KNN KNC

KCCKCN
1

1

1

I IIN

N

C

C

By process of static 
condensation, we 
eliminate uN1 and uN2



Since  PC1 and PC2  get 
cancelled out

1 1
KNNuN1 +  KNC uC1 =   PN1

1 1
KCN uN1 + KCC uC1 =   PC1

11
uN1 = (KNN )-1 PN1 - KNC uC1  

1 1 1

Kcc1 =  Kcc - KCN (KNN )-1 KNC
1 1

PC1 = PC1 - KCN (KNN )-1 PN1

PC1 + PC2 = known

Similarly, we can compute uN2

Solve for uN1

Solving  uC = ??

(KCC1 + KCC2 ) uC =   PC1 + PC2

KNNuN1 +  KNC uC1 =   PN1

1 1

uC

?

uC

KCC1   uC1 =   PC1

KCC2  uC2 =   PC2

1

2

uC

Add         and1 2

Similarly,

2
PC2 = (-PC1 ) - KCN  (KNN )-1 PN2



How to obtain Internal forces at common nodes??

Similarly PC2 can also be computed

PC1      = PC1 - KCN

PC1 =   KCC1  uC

L PN1

1 1

determine

KNN

Known



ANALYSIS OF BUILDING FRAMES

1) 8-10 storeys :          Simple frames (gravity + lateral 
loads)  

2)    8-10 storeys onwards      :           Frames + Shear walls 
(upto 20 storeys)                           (Lift core)

3)   Very tall structures

Lift 
core

Shear 
wall

Tube 
structure
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MATRIX FORMULATIONS FOR 3D 
STRUCTURES (DONE TILL NOW)

The 2D formulations can be extended into 3D 

x’ 1

Displacements

4

Rotations

10

Rotations

7

Displacements






L

GJ
TAdditional term (dof 4, 10)

x

z

y

Local

GlobalEffect of slab in lateral load distribution has 
been ignored so far…..



GENERAL 3D ANALYSIS

1) Distribution of vertical and lateral loads is automatically taken care of.
2) Rigorous
3)   Output very compact

Structural functions of floor system

1) Distribution of vertical loads to beams 
through bending.

2) Distribution of lateral loads by in plane 
action.

3) Compatibility condition

slab

Usual 3D analysis

Ignores presence of slab



F

Under vertical loads
Under horizontal loads

Forces will be distributed in 
proportion to stiffness of frames

Symmetrical Building without slab

HOW DOES THE PRESENCE OR ABSENCE OF 
SLAB AFFECT THE VERTICAL AND LATERAL 

LOAD ANALYSIS??

F

Uniform translation
No rotation of floor

Symmetrical Building with slab

What will happen in above two cases if the force “F” 
were acting unsymmetrically

(Axial forces in beams, non-uniform 
distribution, special compatibility condition)



F

1

2

3

Uniform translation
No rotation of floor

1 2 3

Rigid link elements
F

Forces will be distributed in 
proportion to stiffness of frames

Not valid 1

2

Unsymmetrical lateral loading (Torsion)

Building/structural system is not symmetrical 

y
x

Symmetrical Building

A SIMPLIFIED ANALYSIS APPROACH
(symmetrical building and symmetrical loading)

Need full 3D 
analysis rigorously 
taking the effect of 
slab



3D ANALYSIS TAKING RIGIDY OF FLOOR SLAB INTO ACCOUNT

ASSUMPTIONS

1

3

4

5

2

Slab is monolithic with beam and cols.

Continuous slab        NO LARGE CUTOUTS

All joints (unrestrained joints) lie on floor slabs

Slab sufficiently thick so that rigid diaphragm action results

All other assumption of direct stiffness approach

Implications:
Points lying on slab undergo rigid
body translation and rotation.

Beams cannot have any bending
in plane of slab.

No axial deformation in beams.

1

2

3

y

x

Formulations will implement (1) to (3)

HOW??

Valid for RC 
structures with 
floor slab (Not 
valid for steel 
frames with 
sheet based
roof)

Basically need the translation 
and rotation at a reference 
point
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31-36
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z
y

x

JOINT DOF

o2

o1

Ref.point

Floor 
dof

y

x

NUMBERING APPROACH TO 
TAKE CARE OF SLAB ACTION

MARKING EXERCISE…
Soln. in next slide
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Choice of references O1 and O2 is arbitrary…All displacements and 
forces shall be transformed to this point…

NUMBERING APPROACH TO 
TAKE CARE OF SLAB ACTION



TOTAL DEGREES OF FREEDOM OF STRUCTURE
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x
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26
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Floor 
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No. of
unrestrained joints No. of floors

DOF = 3Nu + 3F+6Nr < 6N   Regular 3D
No. of
restrained joints



GEOMETRIC TRANSFORMATION 
FOR SLAB ACTION

Ref.point

o1

(Origin)

(xj,yj)


R

yj

xjy

x
j     

 =   Rigid body rotation

All displacements and forces corresponding
to floor degrees of freedom need to be
transformed to the floor reference point O1

O1 should not be confused as the centre of
rotation of the floor



GEOMETRIC TRANSFORMATION 
FOR SLAB ACTION (AT JOINT)

x dir

y dir

Rotation (Z)



Ref.point

o1

(Origin)

(xj,yj)


R

yj

xjy

x
j     

EXPRESSING DISPLACEMENTS OF POINT “j” IN TERMS OF 
DISPLACEMENTS OF REFERENCE PONT “. O1” 

Joint j     Ref. O1

D1j= - yjD1
*

D2j= +xj

D6j=

D2
*



 =   Rigid body rotation

=  D6*

Similar transformations 
needed at other end of 
the member
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j

i

o1

26

25
27

o2

29

2830

2

(P28)j

z
y

x
Global

D6 D5

D4

i

j

D3

D1

D2

Member dof

D12 D11

D10

D9 D8

D7

D1 =    u28 - yi u30
D2 =    u29 +  xi u30
D6 =    u30

TRANSFORMATION FOR A BEAM ELEMENT

D7 =   u28 - yj u30
D8 =    u29 +  xj u30
D12 =    u30

u22

u23

u30

u15

u14

u13

Structural dof

u30

u24

u28

u29

u28

u29

D1
*

D2
*

D6
*

D12
*












































30

24

23
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29

28

30

15

14

13

29

28

D7
*

D8
*

Association 
matrix of 
member 1



TRANSFORMATION OF DISPLACEMENTS FOR BEAM

1 0 0 0 0 -yi 0 0 0 0 0 0

0 1 0 0 0 xi 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 -yj

0 0 0 0 0 0 0 1 0 0 0 xj

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

D1
*

D2
*

D3

D4

D5

D6
*

D7
*

D8
*

D9

D10

D11

D12
*

D1

D2

D3

D4

D5

D6

D7

D8

D9

D10

D11

D12

= D*D C

u28

u29

u28

u29

u30

u30

*Indicates that the    
Displacement has 
been transformed 
to the reference 
point 

This inplane rigidity is 
automatically considered now

Axial force=0
My(lateral BM)=0

29

2830



BEAM MEMBER FORCE TRANSFORMATION

Member end forces corresponding 
too floor degrees of freedom 
should also be transformed 
to point ‘O’ (reference point)

F1
* =    F1

F2
* =    F2      

F6
* =    F6 - yi F1 +  xi F2                                                     

F1

F2 

F6

F7

F8

F12

xi

yi
O1

F7
* =    F7

F8
* =    F8

F12
* =    F12 - yj F7 +  xj F8



TRANSFORMATION OF FORCES FOR BEAM

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

-yi xi 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 -yj xj 0 0 0 1

F1
*

F2
*

F3

F4

F5

F6
*

F7
*

F8
*

F9

F10

F11

F12
*

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

=F* FC
T



RIGID BODY MOVEMENT FOR BEAMS
1)    No axial force
2)    No lateral bending moment     

0      
L ;  L)3EI/L(22M AAB


  B



A B






2 



D=CD*
12x12 Transformation matrix

For beam

F*

L
12x12

=

=

=

=

=

F*

F

D D*

K g
D

C

C

C

C

K D*

C

K g

T
D*

g

T
F

=
L

K
T

T T
GK

K

2

1

3
3

K g * Transform             to take 
presence of slab into account

K gImportant



4
5

6

1
3

2
B

Beam    Member  effectively has  6 d.o.f

However, we are achieving this effect  on 12 x12 
matrix through geometric transformation 
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Ref.point

Floor 
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4
5

6B

IMPLICATIONS ON BEAM

TORSION 
EXISTS….

i j



TRANSFORMATION FOR COLUMNS
End points lie on different floors…..hence, unlike beams, 
they shall be subjected to biaxial moments in addition 
to axial forces

Member end forces and displacements need 
to be transformed to the reference points. 

C CK g

T

K g *

COLUMN IS A VERTICAL MEMBER….WHAT IS UNIQUE IN 
TRANFORMATION????
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IMPLICATIONS ON COLUMS

xi and xj same……. yi and yj same……. 

i

j
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j

i

o1

26
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o2
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2830

2

(P28)i

(P28)j

z
y

x
Global

TRANSFORMATION FOR 
DIRECT JOINT LOADS

Similar to transformation of 
member end forces to the 
reference point.



TRANSFORMATION OF DIRECT JOINT LOADS RELATED TO 
FLOOR D.O.F

O2

yxz

yy

xx

PXPY-M *M

P *P

P *P

iiZ 



Px

Py
Mz

x

y
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BANDWIDTH 

FIND THE 
BANDWIDTH 
DICTATED BY 
THIS MEMBER

KPP

Band width is very large 

We must follow alternate approach………….

KTS

KPP



IMPLICATIONS ON 
SOLUTION PROCEDURE

KPXKPPP

uJ

uF

KJJ KJF

KFFKFJ

uP

uX

PJ

PF

=  
KXXKXP

J: Joint degrees of freedom
F: Floor degrees of freedom

X

P= KPP=

uP=
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Ref.point
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SOLUTION :

=

This approach SHALL  NOT BE effective/efficient

WHY???

P

X

KPP KPX

KXXKXP

uP

ux

KJJ KJFKPP  = KFFKFJ

Banded

P=  KPPuP +  KPx ux

Prescribed disps.

P= KPPuP if ux =0P- KPx ux = KPPuP

P *   =   KPPuP

uP = KPP
-1 P Displacements

Very large bandwidth……..hence computation not 
effective
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NUMBERING APPROACH TO 
TAKE CARE OF SLAB ACTION

FIND THE 
BANDWIDTH 
DICTATED BY 
THIS MEMBER

KPP

KJJ

To take advantage of banded nature of KJJ K(ad not KPP) , we must use CONDENSATION, 
i.e. condense the joint degrees of freedom into floor degrees of freedom

KTS

KPP



APPLICATION OF CONDENSATION FOR 3D 
BUILDING WITH RIGID SLAB

KPXKPPP

uJ

uF

KJJ KJF

KFFKFJ

uP

uX

(P - KPxux)    =   KPPuP

uJ = KJJ
-1  (P*J - KJFuF)

Known

P* =   KPPuP

P*J

P*F

=  

=  

To be eliminated

P*F  = KFJKJJ
-1  (P*J - KJFuF) +  KFF uFF

( P*F - KFJKJJ
-1 P*J ) = (KFF - KFJKJJ

-1 KJF ) uF

PF **      =        K*FF uF

KXXKXP

J: Joint degrees of freedom

F: Floor degrees of freedom

X

P*=

Can we eliminate uJ from above equations?
The whole matrix is 
condensed in terms of 
the horizontal degrees 
of freedom of structure. 
Suitable for dynamic 
analysis of structure.
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X = ith col of A-1

Solve using Chosleski’s
algorithm

ith row



SUMMARY: SOLUTION APPROACH

1

2

3

4

5

6

7 8

 uJ = KJJ
-1 (P*J - KJF uF)

K*FF = (KFF - KFJKJJ
-1 KJF ) 

 uF = KFF*-1 Pf**

 PF **= KFF* uF

PF**  = P*F - KFJKJJ
-1 P*J

KJJ
-1 KJJ               Banded

use  Cholesky’s algorithm, How? Already explained 

Condensed matrix
(corresponding to floor dof)

Use code number approach      D = CD*

d  =  TD 

can take advantage 
and make banded 

matrix 

f  =  KLd  +   fF



HOW TO OBTAIN INVERSE OF KJJ

P   = KJJ X

In order to get the ith column of the inverse , solve 
the following equation using Cholesky’s approach 
for unknowns X 









































0

.

.

0

1

.

.

0

0

0

Pwhere
At ith row

X will be the jth

column of KJJ
-1

Convince yourself 
mathematically! 
Multiply a matrix 
with ith col its 
inverse (begin with 
i = 1)

Multiply a matrix with its inverse…..as an example
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USE OF STANDARD SOFTWARE TO 
RIGOROUSLY CONSIDER SLAB ACTION



z
y

x

7

USE OF STANDARD SOFTWARE TO 
RIGOROUSLY CONSIDER SLAB ACTION

OPTION 1: INCLUDE PLATE ELEMENT IN ANALYSIS
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USE OF STANDARD SOFTWARE TO 
RIGOROUSLY CONSIDER SLAB ACTION

OPTION 2: ADD LINK ELEMENTS AS HORIZONTAL BRACES IN 
ALL BAYS (ASSIGN HIGH STIFFNESS)

Link 
elements 
to have 
very high 
stiffness 
as 
compared 
to beams


