DIRECT STIFFNESS METHOD FOR ANALYSIS OF SKELETAL STRUCTURES (PART 2)

STATIC CONDENSATION: ANALOGY WITH MODIFIED SLOPE DEFLECTION EQUATIONS

In general, $\quad \mathrm{M}_{\mathrm{AB}}=(2 \mathrm{EI} / \mathrm{L})\left[2 \theta_{1}+\theta_{2}\right]$

$\longrightarrow \quad$ The complete matrix may include d.o.f more than required
\longrightarrow Stiffness matrix $K_{p p}$ can be condensed by eliminating the unwanted d.o.f
\longrightarrow Unwanted disps. are expressed in terms of prominent d.o.f

STATIC CONDENSATION

Can we eliminate u_{2} from above equations?

$$
\text { From (2) } \rightarrow \mathrm{K}_{22} \overline{\mathrm{u}}_{2}=\left(\overline{\mathrm{P}}_{2}-\overline{\mathrm{K}}_{21} \mathrm{u}_{1}\right) \quad \overline{\mathrm{u}}_{2}=\overline{\mathrm{K}}_{22}{ }^{-1}\left(\overline{\mathrm{P}}_{2}-\overline{\mathrm{K}}_{21} \mathrm{u}_{1}\right) \rightarrow \text { (3) }
$$

METHOD OF SUBSTRUCTURES

1) Ring like structures

Join joints (1) and (7) New $b=42-1+1=42$

2) Sudden change of layout

3) Very large structure to be analyzed on a small computer

METHOD OF SUBSTRUCTURES

Method of substructures means that instead of solving the entire structure in one go, we divide the structure into sub-parts, analyze individually, and then integrate, but without any approximation or loss of accuracy in final results

COMPUTATIONAL APPROACH

Substr.

C: Common nodes
N : Nodes other than common

By process of static condensation, we eliminate $\mathbf{u}_{\mathrm{N} 1}$ and $\mathbf{u}_{\mathrm{N} 2}$

Condensed Differs matrix I

Add (1) and (2) $\rightarrow\left(\overline{\mathrm{K}}_{\mathrm{cC1}}+\overline{\mathrm{K}}_{\mathrm{CC2}}\right) \mathrm{u}_{\mathrm{c}}=\overline{\mathrm{P}}_{\mathrm{C} 1}+\overline{\mathrm{P}}_{\mathrm{C} 2}$

Solving $u_{c}=$??

$$
\mathrm{K}_{\mathrm{NN}} \mathrm{u}_{\mathrm{N} 1}+\mathrm{K}_{\mathrm{NC}} \mathrm{II}_{\mathrm{II}}^{\mathrm{u}_{\mathrm{C}}}=\mathrm{P}_{\mathrm{N} 1}
$$

Solve for $\mathrm{u}_{\mathrm{N} 1}$
Similarly, we can compute $\mathrm{u}_{\mathrm{N} 2}$

How to obtain Internal forces at common nodes??

ANALYSIS OF BUILDING FRAMES

MATRIX FORMULATIONS FOR 3D STRUCTURES (DONE TILL NOW)

The 2D formulations can be extended into 3D

GENERAL 3D ANALYSIS

1) Distribution of vertical and lateral loads is automatically taken care of.
2) Rigorous
3) Output very compact

Structural functions of floor system

1) Distribution of vertical loads to beams through bending.
2) Distribution of lateral loads by in plane action.
3) Compatibility condition

HOW DOES THE PRESENCE OR ABSENCE OF SLAB AFFECT THE VERTICAL AND LATERAL LOAD ANALYSIS??

Symmetrical Building without slab
\checkmark Under vertical loads
\checkmark Under horizontal loads
(Axial forces in beams, non-uniform
distribution, special compatibility condition)

\checkmark Uniform translation
\checkmark No rotation of floor

What will happen in above two cases if the force " F " were acting unsymmetrically

\checkmark Uniform translation \checkmark No rotation of floor
\checkmark Forces will be distributed in proportion to stiffness of frames

A SIMPLIFIED ANALYSIS APPROACH

3D ANALYSIS TAKING RIGIDY OF FLOOR SLAB INTO ACCOUNT

NUMBERING APPROACH TO TAKE CARE OF SLAB ACTION

NUMBERING APPROACH TO TAKE CARE OF SLAB ACTION

Choice of references O_{1} and O_{2} is arbitrary...All displacements and forces shall be transformed to this point...

TOTAL DEGREES OF FREEDOM OF STRUCTURE

GEOMETRIC TRANSFORMATION

 FOR SLAB ACTION
 $\phi=$ Rigid body rotation

All displacements and forces corresponding to floor degrees of freedom need to be transformed to the floor reference point O_{1}
O_{1} should not be confused as the centre of rotation of the floor

GEOMETRIC TRANSFORMATION FOR SLAB ACTION (AT JOINT)

 $\phi=$ Rigid body rotation

EXPRESSING DISPLACEMENTS OF POINT " j " IN TERMS OF DISPLACEMENTS OF REFERENCE PONT ". O_{1} "
x dir

$$
D_{1 j}=D_{1}^{*}-y_{j} \phi
$$

Similar transformations
y dir

$$
D_{2 j}=D_{2}^{*}+x_{j} \phi \text { needed at oth the member }
$$

Rotation (Z) $\quad D_{6 j}=\phi=D_{6}{ }^{*}$

TRANSFORMATION FOR A BEAM ELEMENT

Association

$\left.\{D\}=[C]\} D^{*}\right\}$

This inplane rigidity is
automatically considered now

BEAM MEMBER FORCE TRANSFORMATION

Member end forces corresponding too floor degrees of freedom should also be transformed to point ' O ' (reference point)

$$
\begin{aligned}
& \mathrm{F}_{1}{ }^{*}=\mathrm{F}_{1} \\
& \mathrm{~F}_{2}^{*}=\mathrm{F}_{2} \\
& \mathrm{~F}_{6}{ }^{*}=\mathrm{F}_{6}-y_{i} F_{1}+x_{i} F_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{F}_{7}{ }^{*}=\mathrm{F}_{7} \\
& \mathrm{~F}_{8}{ }^{*}=\mathrm{F}_{8} \\
& \mathrm{~F}_{12}{ }^{*}=\mathrm{F}_{12}-\mathrm{y}_{\mathrm{j}} \mathrm{~F}_{7}+\mathrm{x}_{\mathrm{j}} \mathrm{~F}_{8}
\end{aligned}
$$

TRANSFORMATION OF FORCES FOR BEAM

RIGID BODY MOVEMENT FOR BEAMS

1) No axial force
2) No lateral bending moment

$\mathrm{M}_{\mathrm{AB}}=2 \mathrm{EI} / \mathrm{L}\left(2 \theta_{\mathrm{A}}+\theta_{B}-3 \Delta / \mathrm{L}\right) ; \Delta=\theta \mathrm{L}$

$$
=0
$$

$\mathrm{D}=\mathrm{CD}$ *

12×12 Transformation matrix

For beam

IMPLICATIONS ON BEAM

TRANSFORMATION FOR COLUMNS

End points lie on different floors.....hence, unlike beams, they shall be subjected to biaxial moments in addition to axial forces

Member end forces and displacements need to be transformed to the reference points.

COLUMN IS A VERTICAL MEMBER....WHAT IS UNIQUE IN TRANFORMATION????

IMPLICATIONS ON COLUMS

TRANSFORMATION FOR DIRECT JOINT LOADS

Similar to transformation of member end forces to the reference point.

e

TRANSFORMATION OF DIRECT JOINT LOADS RELATED TO FLOOR D.O.F

BANDWIDTH

We must follow alternate approach.

IMPLICATIONS ON SOLUTION PROCEDURE

SOLUTION :

$$
\begin{aligned}
& P=K_{P P} u_{P}+K_{P x}\left(u_{x}\right) \text { Prescribed disps. } \\
& \underbrace{\left(P-K_{P x} u_{x}\right)}=K_{P p} u_{p} \quad\left\{p=K_{p p} u_{p} \text { if } u_{x}=0\right\}
\end{aligned}
$$

This approach SHALL NOT BE effective/efficient

WHY???

Very large bandwidth........hence computation not effective

NUMBERING APPROACH TO TAKE CARE OF SLAB ACTION

To take advantage of banded nature of $\mathrm{K}_{\mathrm{j}} \mathrm{K}\left(\right.$ ad not $\left.\mathrm{K}_{\mathrm{pp}}\right)$, we must use CONDENSATION, i.e. condense the joint degrees of freedom into floor degrees of freedom

APPLICATION OF CONDENSATION FOR BD

BUILDING WITH RIGID SLAB

Known

$$
\left(P-K_{P x} u_{x}\right)=K_{p p} u_{p}
$$

$$
P^{*}=K_{p p} u_{p}
$$

To be eliminated

J: Joint degrees of freedom
F: Floor degrees of freedom

Can we eliminate u_{1} from above equations?

$$
\begin{gathered}
u_{J}=K_{J J}^{-1}\left(P_{J}^{*}-K_{J F} u_{F}\right) \\
P_{F}^{*}=K_{F J} K_{J J}^{-1}\left(P_{\lrcorner}^{*}-K_{J F} u_{F}\right)+K_{F F} u_{F F}
\end{gathered}
$$

Condors

$$
\begin{aligned}
& \text { minders } \\
& \text { for se vector } \quad\left(\mathrm{P}_{\mathrm{F}}^{*}-\mathrm{K}_{\mathrm{FJ}} \mathrm{~K}_{\mathrm{JJ}}^{-1} \mathrm{P}_{\mathrm{J}}^{*}\right)=\left(\mathrm{K}_{\mathrm{FF}}-\mathrm{K}_{\mathrm{FJ}} \mathrm{~K}_{\mathrm{JJ}}{ }^{-1} \mathrm{~K}_{\mathrm{JF}}\right) \mathrm{u}_{\mathrm{F}} \\
& V *
\end{aligned}
$$

INVERSE OF KנJ

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

0
\ldots
1
0

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]\left[\begin{array}{llll}
b_{11} & b_{12} & b_{13} & b_{14} \\
b_{21} & b_{22} & b_{23} & b_{24} \\
b_{31} & b_{32} & b_{33} & b_{34} \\
b_{41} & b_{42} & b_{43} & b_{44}
\end{array}\right] /\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Solve using Chosleski's algorithm

$X=i^{\text {th }} \operatorname{col}$ of A^{-1}
Repeat $i=1$ to N

SUMMARY: SOLUTION APPROACH

HOW TO OBTAIN INVERSE OF Kر」

Multiply a matrix with its inverse.....as an example
In order to get the $i^{\text {th }}$ column of the inverse, solve the following equation using Cholesky's approach for unknowns X

USE OF STANDARD SOFTWARE TO RIGOROUSLY CONSIDER SLAB ACTION

USE OF STANDARD SOFTWARE TO RIGOROUSLY CONSIDER SLAB ACTION

 OPTION 1: INCLUDE PLATE ELEMENT IN ANALYSIS

USE OF STANDARD SOFTWARE TO RIGOROUSLY CONSIDER SLAB ACTION

OPTION 2: ADD LINK ELEMENTS AS HORIZONTAL BRACES IN ALL BAYS (ASSIGN HIGH STIFFNESS)

