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Optimal Control (ELL703) > EndSem Exam

Instructions

# The duration of the exam is 2 hours and the maximum marks are 35.

# Each part of the question Q1 is worth 5 marks. Answer any 7 out of the 8 parts.

# Answers with the essence of the 7 C’s — Closed, Compact, Complete, Connected, Conver-
gent, Continuous, Convex — will be gratefully appreciated.

Q1. It is desired to design a slide for a children’s playground (Figure 1). The shape of the
slide should be such that the time to slide from the top to the bottom is the least possible.

Assume that the motion is only under the influence of earth’s gravity and that there is
no friction. Using the co-ordinates and the notation shown in Figures 1-8, answer the following.

(a) Discretize the desired shape into N line segments AA;, AjA; ... Ay_1B (Figure
2). Denote the co-ordinates of point A;, i = 1,2,...N — 1 as (z;,y;). Find the length of
each segment and the velocity at each point. Assume that the velocity in each segment is the
average of the velocities at the endpoints of the segment. Formulate the problem as one of
minimizing, as a function of the variables (z;,y;), the total time it takes to travel from
A to B along the N segments.

(b) Discretize space into a 2 x 2 grid of squares (Figure 3). As in part (a), assume that the
velocity in each segment is the average of the velocities at the endpoints of the segment. Find
the time it takes to cross each horizontal (left — right) and each vertical (top — bottom) seg-
ment of the grid. Using dynamic programming, find the route of minimum time from A to B.

(c) Show that the Hamilton-Jacobi-Bellman Equation that determines the desired shape
of the slide y(x) is

or 1+ (y)? or*
or y%n{ 2g(h—y)+ 8yy}’

where T* is the minimum time from P to B and ¢y’ = dy/dx (Figure 4).

(d) Reconsider the formulation in part (a) with each segment of infinitesimal length (N — oo,
1+(y')?
29(h—y)
culus of variations (Figure 5), find the necessary conditions (Euler-Lagrange Equations)
for T to be minimum. How are these conditions related to the conditions in part (c)?

Figure 4). Show that the functional to be minimized is T'[y, y'] = fOH

dzx. Using cal-

(e) The dynamics of the sliding child may be modelled as & = vcosf, § = —vsinf, where

v = +/2g(h —y) (Figure 6). Minimize the cost functional fOT dt subject to the above system
dynamics using the method of Lagrange Multipliers. Explicitly state the Hamiltonian.
Derive the costate equations, the stationarity condition, and the boundary conditions.

(f) Show that a straight line cannot be the desired shape of the slide (Figure 7).

(g) Show that the desired shape of the slide is a cycloid, with parametric equations
are (¢) = c1(¢p —sin @) + ca, y(¢) = h — c1(1 — cos ¢) for constants ¢; and ¢y (Figure 8).

(h) Suppose the slope of the slide is restricted to be in the range [— tan 60°, 0] at each point.
Based on the Pontryagin Principle, discuss how the shape of the slide could be obtained.



Draft Solutions

It is desired to design a slide for a children’s playground. The design specification is for
the shape of the slide to be such that the time to slide from the top to the bottom is the least
possible.

This minimum-time problem is a version of the famous brachistochrone problem (Greek:
brachistos = shortest, chronos = time) posed by Johan Bernoulli. It was solved by Johan
Bernoulli himself, his brother Jacob Bernoulli, Leibniz, Isaac Newton, and L’Hospital, possibly
through different methods. The problem derives its importance for multiple reasons, including
the minimality (!) and elegance of its statement, the non-intuitive nature of the solution (not
a straight line!) that can be expressed analytically (a cycloid), as well as the major impetus
that these provided to the development of the calculus of variations and related fields. Some
of these solutions are discussed in numerous textbooks as well as articles and videos available
on the internet. Now, we will explore the solution to this problem.

There are three key assumptions in our exploration of the problem solutions. The first
assumption is the presence of gravity on earth (!). This force makes sliding possible. The second
assumption is the absence of friction. This is primarily motivated by reasons of simplicity. It
is likely that some of the solution approaches will be able to account for this realistic scenario.
A third, implicit assumption is that a solution to the problem exists.

()

A mathematical representation of the desired shape is a function y(z) that assigns a height
y to each point x along the shape. Alternatively, a function z(y) may also be considered. The
function y(x) is an infinite-dimensional unknown because of the uncountable infinite number
of 2’s in the interval [0, h]. An often useful solution approach is to discretize y(z). This is a
form of projection and converts an infinite-dimensional unknown y(z) into a finite dimensional
unknown y; = y(z;), along suitably chosen x; and a discrete set of i.

Consider a discretization into N line segments AA;, A1As ... Ay_1B. The points A, A;,
Ag, ... Ay_1, and B represent a discrete approximation to the desired shape. The length of
each segment is

li = \/((L‘Z — $i_1>2 + (y, - yi_l)z,i = 1,2, . ..N,

where (z9,y0) = (0,h) and (xy,yn) = (h,0). The velocity at any point (x;,y;) can be obtained
from the conservation of energy,

1
mgh = §mv§ + mgy; = vi = /29(h — y;).

We assume that the velocity in each segment is the average velocity at the end-points of the
segment. If we did not have an assumption along these lines, the slide would not start! The
time in each segment t; is the ratio of the length and the velocity. Therefore, the function to

be minimized is
N N }
T = t; = —Z,
; Z (Ui +UZ;1)/2

=1
which is a function of (z;,y;).

This is minimization problem is a problem in differential calculus, albeit of the multivariable
variety. The necessary condition is for the partial derivatives of T" with respect to the 2N — 2
variables (IV — 1 each off z; and y;) to be equal to zero. The solution of these 2N — 2 equations
may be obtained numerically, for example the Newton’s method or its variants. Alternatively,
a dynamic programming perspective could be adopted to solve the problem step-by-step. It
is likely that these approaches are not amenable to an exact solution and may suffer from



numerical errors. It would be interesting to use an interval Newton Algorithm to solve this
problem to rigorously find all solutions in the interval box [0, h]Y~! x [0, A]¥~1. In all of the
above cases, the hope is that as N — oo, the solution would converge to the desired shape.
For N = 2, the necessary condition should give the Snell’s law of refraction, for a ray of light
that crosses from one medium to another at the boundary defined by y = y;. We shall return
to this point in part (e).

(b)

Instead of discretizing the curve, we can discretise space itself. Let us consider a very coarse
discretisation in the form of a 2 x 2 grid of squares.

The length of each horizontal and vertical segment is h/2. As in part (a), we have to
explicitly assume something about the velocity starting from A to get the motion started. We
assume, therefore, that the velocity of each segment is the average of the velocities of the
endpoints. An implicit assumption is that the motion is directed: left — right and top —
bottom. Accordingly, we can write the times to travel each segment as,

tae = h—/2 = 00 = 23
: ,
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This setup is very similar to the routing problem in dynamic programming. This can be used
to find the path of minimum time from A to B,

thg = mintyp = min{tAQ +tip,tas + tZB} =ta4 + min{t45 + t;Bv ty7 + t;B}
= taq + min{tys + min{tss + tsp, tsc + ten}, tar + t7s + tsp}
h/2 2 2

. . 2 1 1 1
= m(2+m1n{1+mm{—\/§+l+ﬁ,1+\/§+1},\/§+1+%+%}>.

Consideration of this expression shows that the minimum time pathis A -4 —7 —- 8 — B.
Because tx5 = 00, there are effectively only two paths from A to B, which can be evaluated
directly as well.

The dependence on h and g seems justifiable. Of course, the 2 x 2 resolution is too coarse to
conclusively obtain the desired shape. Based on this exercise, it is unclear if a straight line is a
possible solution. Nonetheless, an increase in resolution via an M x M grid where M = 3,4, ...
has the potential of conceptually simple and practical way to compute the desired shape. This
formulation also highlights that at each node a decision on the next direction to take has to be
made.

(c)

The decision making process in part (b) can also be formulated in the continuous setting,
in the limit of an infinitely fine grid. The decision input, or control, at each node is the slope
y' = dy/dx.



Let T'(z,y,y’) denote the time to travel from an intermediate point P with co-ordinates
(x,y) to B. Then,

T(x,yy) = T(x+Ax,y+ Ay,y)+ At
= T"(z,y,y) = min{T(x+Azr,y+ Ay,y’) + At},

YrpB

where the time from P to B is broken into the time from P to a point close to it, say P+ AP,
with co-ordinates (x + Az, y + Ay) and the time from P + AP to B. Now

* ! . . , 1+ <y/)2
T"(z,y,y) =  min  min {T($+A-’B,y+Ay,y)+ —Ax},
Yppiap YpiapsB 2g(h —y)
. 1 + <y/)2
= min {7 ey Ay) 5Pl
y%’—)P+AP { ( Y y) QQ(h — y)

Expand T*(z + Az, y + Ay, y’) in a Taylor Series around (x,y) and assume that Az — dx and
Ay — dy, which are infinitesimal quantities.

. or* oT* L+ (y)?
= (xayay> y%&%){ (x,y)+ ox T ox y+ Qg(h_y) x}’
or- . L+ (y)? | o1,
= gt e

This is the desired Hamilton-Jacobi-Bellman equation.

In principle, this partial differential equation is our solution. There are, however, very
few such equations that can be exactly solved. Typically, solutions to such partial differential
equations have to be obtained by a discretization approach. It is just that the discretization
is performed after such an equation is obtained rather than directly, as in parts (a) and (b).
Nonetheless, this approach is important in providing a recipe to choose the optimal decision/
control input.

(d)

Dynamic programming, either in a discrete context or in a continuous setting, aims at arriv-
ing at the best decision at each step or location. In contrast to such a microscopic perspective, a
telescopic perspective, harking back to part (a), albeit in continuous domain, may be adopted.
This, in essence, is the approach of the calculus of variations. If dynamic programming is akin
to specifying a curve as an envelope of tangents, calculus of variations seeks to specify the same
curve from a member of a family of curves. This latter concept needs the ideas of a functional
— a function of a function — and a variation.

The overall time Ty, y'| = ff dt is a functional that is to be minimized over all paths

possible. As in part (c), dt = ,/21;?23{);) dx. Denote L(y,y') = ;;Ei(lylf) Therefore, Ty, y'] =

foh L(y,y')dz is the functional to be minimized.

A necessary condition for 7' to be minimum is that its first variation 67" = 0. To compute
this, we consider a variation in y(z) — y(z) +en(x), where n(z) is a well-behaved function with
n(0) = 0 = n(h). Correspondingly, ¥'(x) — v'(z) + en(z). Consider the time functional over a

set of neighbouring paths,

h
Tly+en,y +en] =/ L(y +en,y' + en')d,
0



and expand in a Taylor Series around e = 0,

" roL oL
= Tly+ "t+en]=1 T+ e +—E "ldz + O(€?).
[y +en,y' + en] [y, ] /0 [ yen y,en] x (€9)

The first variation is the O(€) term in the difference Ty + en, v + en'] — Ty, V'],
h
oL oL
0T = / [—e + —¢ '] dz.
o L0y ! oy’ K
Integrate the second term by parts,

OL d oL

oL h
0 = — h — — —— |endx.
~ 3y’€n(x)|0 +/0 L‘?y dx 8y’]€n o

As n(o) = 0 = n(h), the first variation §7" = 0 for all variations en(x)(= dy) if,

These are the Euler-Lagrange equations. For the above L, these equations may be simplified
to 1+ ()% — 2y"(H — y) = 0. The boundary conditions are y(0) = h and y(h) = 0. As
expected, there are two boundary conditions to completely specify the solution of this second
order differential equation. This is the necessary condition.

Interestingly, this condition is the same as in part (c). To see this, let us revisit the condition
derived on the right-hand side in part (c),

0.

{ 1+ (y)? +8T* /}:>8_L+6T*_
29(h—y) oS T oy T oy
At this equation,
ot L4 or*
or oy v

Now take the derivative of the former equation with respect to x and a partial derivative of the
latter equation with respect to y:

a—L+8T* =0 = ia—LJr@JrazT*y’:o.
dy Oy dr oy 0x0y  Oy?
L+ aT*y’+ or” _ 0 = oL + T + aQT*y’ = 0.
dy ox Jdy Oxdy  0y?

A comparison of these two equations results in the Euler-Lagrange equation,

This is interesting because the results of two different frameworks coincidel!

(e)

Instead of prioritising the minimisation problem, with the constraints already embedded in
the functional to be minimized, it is possible to emphasize the constraints, in the form of system
dynamics, and seek to minimize a property of the system dynamics. This change in emphasis



is one of the differences between calculus of variations and optimal control. The constraints
and the functional to be minimized are combined using the method of Lagrange multipliers.
For the system dynamics & = vcosf, § = —vsinf, where v = /2g(h — y), and the cost

functional fOT dt =T, consider the augmented cost,

T
J:/ 1+ Ai(vecost — &) + Ao(—vsinb — y)]dt,
0

where \; and Ay are the two Lagrange multipliers. Minimization of this augmented cost func-
tional is as ordained by the calculus of variations. The variations are z(t) — x(t) + en (),
y(t) = y(t) + em(t), 0(1) — 0(2) + ens(t), T — T + ey

As in part (d), we seck to set the first variation §J = 0. For this we calculate,

T+ena
J[x+en,y+en, 0+ ens] = / 1+ Al(\/Qg(h —y —eng)cos(0 + ens) — & — enjy)
0

+Xa(—/29(h — y — ena) sin(0 + ens) — 7 — enjp)]dt,
= [14 Mwvcos® — Agusinb)|reny — M\ &|rens — Aog|reny

+/0 1+ M(v/29(h —y — em) cos(0 + ens) — & — eriy)

+Xa(—/2g(h — y — ena) sin(0 + ens) — 7 — enjp)]dt,
= [1 + )\11} cosf — /\Q’U sin 9]|T€774 - )\11.'|T€774 — Agy.|T€7]4

T
+J[z,y,0] + / [Alg—z cos feny + Av(—sin 6)ens
0
ov . ) .
—)\28—y sin feny — Arenjy — Aqv(cos 0)ens — Aqerjs]dt,

Therefore,

d0J = [14 Mwvcos@ — dqusinb)|ren,
_)‘1($|T€774 + 5771(T)) + )\15771(0) - Az(?)‘TGTM + 6772(T)) + )\26772(0)

T
+/ [A1ems + ()\1? cos 6 — )\2? sinf + A\g)eny + (—Avsin — \yv cos 0)ens]dt,
0 Yy Yy

Setting the co-efficients of each differential/ variation to zero gives the desired costate equations,

)‘\1 - O,
—)\2 = )\1@ cosf — )\2@ sin 6,
dy dy
the stationarity condition —Ajv sin @ —A\yv cos @ = 0, and the boundary condition [1+X;v cos§—
Xovsinb||r =0 = H|p, where H = 14 Ajvcosf — \yvsinf is the Hamiltonian.

This definitely has more mathematical expressions than in part (d)! One interesting aspect
that emerges from simplifying these equations further is a version of the Snell’s Law. This is
because the costate \; is constant. As H is not an explicit function of time, 0H/dt = 0 and the
boundary condition implies that H = 0 at all times along the optimal trajectory. This equation
combined with the stationarity condition can be used to solve for A\;, which is a constant, in
terms of the velocity v and 6. The relation is cos /v = constant. An inspection of the way 6
is defined confirms that this is indeed Snell’s Law. In fact, Johan Bernoulli’s original solution
treated the sliding particle as light, which was known to take the path of least time (Fermat’s
Principle). The desired shape was computed as the path of light that passed through a series of



different media with infinitesimal thickness in each of which the velocity was v = \/2g(h — y).
As we know that light bends when crossing from one medium into another, where it has different
velocity, this is a hint that the desired shape is not a straight line.

(f)

A common guess for the desired shape is that it is a straight line. A possible source of this
guess is that the straight line is the shortest distance (in a Euclidean space, another calculus of
variations problem!). However this is not the case, as can be shown through some of the above
approaches.

To see this from part (d), consider the equation of a straight line joining A and B, x+y = h.
This does not satisfy the necessary condition, 1+ (y')? —2y”(h —y) = 0, because 1+ (—1)? # 0.
Therefore, a straight line is not the desired shape.

The same conclusion can be obtained from some of the other approaches as well. The
solution in part (e) necessitates that the desired shape satisfies the relation cos /v = constant,
where v depends on y. As the slope of the desired shape depends on #, which changes depending
on y, the desired shape cannot be a straight line, which has a constant slope. The solution in
part (c¢) has been shown to be the same as in part (d), so the above argument applies.

The solution in part (b) also hinted on a non-straight line solution, but as the solution
approach was a discrete approximation, a rigorous conclusion along these lines cannot be made.
Despite this, solution in part (b) provides good intuition into why a straight line might not be
the desired shape: A larger vertical displacement in the initial part of the curve provides speed
that can minimize the time. Of course, this larger speed needs to be balanced by the possibly
larger distance that needs to be travelled. A tradeoff between the speed and the distance gives
the desired shape.

(8)

If the straight line is not the desired shape, then what is? Is it an arc of a circle (Galileo’s
guess) or something else? The solution approaches in parts (c), (d), and (e) may be explicitly
solved to give the desired shape. The shape is a cycloid, a curve obtained by tracing the path
of a a point on the rim of a rolling circle. Here, we content ourselves with verifying that the
equations of the cycloid satisfy the derived conditions.

The parametric equations of an upside down cycloid are z(¢) = ¢1(¢ — sin¢) + cq, y(¢) =
h —c1(1 — cos ¢) for constants ¢; and co. Let us check if these satisfy the equation of the curve
given by the necessary condition 1 + (y/)* — 2y"(h —y) = 0.

gy _dy/ds _sing
dr  dx/do 1 —cosd’
g a1

dv — dr/dp ¢ (1 —cosp)?

Using these, 1+ (y/)? — 2y”(h — y) = 0. Therefore, the cycloid above can be the desired shape.

To see how the cycloid corresponds to a circle, technically called its evolute, consider the
parametric equations above. The components (—c; sin ¢, ¢; cos ¢) represent the motion along
a circle. The components (¢;¢, h — ¢;) represent an offset of the center of the circle from the
origin. The y-offset is fixed, but the z-offset continually increases with ¢.

(h)

If the slope of the slide is restricted, as could happen to limit the motion that can be
undergone for safety reasons, Pontryagin’s principle could be used. Similar to the Hamilton-
Jacobi-Bellman equation, the optimal slope 3y’ = tan# at each point would be the argument
that minimizes the Hamiltonian H = L(y,y’) + Ajv cos — Ayvsin§. The range would give the
allowable values of the slope over which the minimization is to be performed.



