ELL703 > Problems > Calculus of Variations

- 1. [Żak] Variation of a Functional. If $v = \int_0^1 (2x^2(t) + x(t)) dt$, find δv .
- 2. [Żak] Extrema of a Functional. If $v = \int_0^{\pi/2} ((\dot{x})^2 x^2) dt$ with x(0) = 0 and $x(\pi/2) = 1$, find x(t) where $\delta v = 0$.
- 3. [Lewis] Show that the shortest distance between two points is a straight line.
- 4. [Feynman/ Levi/ Lewis] **The Principle of Least Action.** Read Chapter 19 in Volume 2 of Feynman's Lecture in Physics available at, https://www.feynmanlectures.caltech.edu/II_19.html
- a. Define the Lagrangian as the difference of a particles kinetic and potential energies $L(x,\dot{x})=\frac{1}{2}m\dot{x}^2-U(x)$ and the action as $J[x]=\int_0^T L(x,\dot{x})dt$. The initial and final positions of the particle are fixed. Show that $\delta J=0\Rightarrow \frac{d}{dt}\frac{\partial L}{\partial \dot{x}}-\frac{\partial L}{\partial x}$. These are called the Euler-Lagrange equations.
- b. Substitute the definition of the Lagrangian in the Euler-Lagrange equations to recover Newton's Law $m\ddot{x} = -\frac{\partial U}{\partial x}$.
- c. For any solution x of the Euler-Lagrange equation show that $\dot{x}\frac{\partial L}{\partial \dot{x}}-L$ is a constant. This is Noether's theorem and a statement of Conservation of Energy. d. Find the extrema of the above action subject to the constraint $\dot{x}=u$ using a Lagrange multiplier λ . This would involve defining a Hamiltonian $H=L+\lambda u$ in an intermediate step. Show that the stae and costae equations obtained by setting $\delta J=0$ are the Hamilton's equations of motion $\dot{x}=\frac{\partial H}{\partial \lambda}$ and $-\dot{\lambda}=\frac{\partial H}{\partial x}$. Therefore, the state and costate equations may be viewed as a generalization of Hamilton's equations of motion.
- e. Verify the above for a harmonic oscillator $L = \frac{1}{2}m\dot{x}^2 \frac{1}{2}kx^2$.