ELL703 > Problems > Continuous-Time Optimal Control

1. [Lewis] A model of an automobile suspension system is given by $m\ddot{y} + ky = u$ where m is the mass, k is the spring constant, u is the upward force on the frame, and y the vertical position.

To conduct a durability test, we repetitively apply a force u(t) and suddenly remove it until failiure occurs. To compute the force, we can solve the following problem. Fin u(t) to move the automobile from y(0) = 0, $\dot{y}(0) = 0$ to a final position of y(T) = h, $\dot{y}(T) = 0$ at a given final time T. Minimize the control energy $J = \frac{1}{2} \int_0^T u^2 dt$.

- a. Write the state equation if the state is $x = [y, \dot{y}]^T$.
- b. Write the state and costate equations, stationarity condition, and boundary conditions. Eliminate u from the state and costate equations.
- c. Solve for the costate in terms of the as yet unkown $\lambda(0)$. Solve for the state in terms of the unkown $\lambda(0)$ and the known $\lambda(0)$.
- d. Use the boundary conditions to find $\lambda(0)$. Let m = k = 1, T = 2, h = -4 (i.e., down) for the remainder of the problem.
- e. Find optimal control and omptimal state trajectory. f. Verify that $x^*(T) [h, 0]^T$ as required.
- 2. [Lewis] **Optimal Control of a Bilinear System.** Let $\dot{x} = Ax + Dxu + bu$, where $x \in \mathbb{R}^n$, $u \in \mathbb{R}$, and $J = \frac{1}{2}x'(T)S_Tx(T) + \frac{1}{2}\int_0^T (x'Qx + ru^2)dt$. Show that the optimal control consists of a state-costate inner product. Find state and costate equations after eliminating u. These cubic differential equations are very hard to solve.
- 3. [Lewis] **Temperature Control in a Room.** It is desired to heat a room using the least possible energy. If $\theta(t)$ is the temperature in the room, θ_a the ambient air temperature outisde (a constant), and u(t) the rate of heat supply to the room, then the dynamics are $\dot{\theta} = -a(\theta \theta_a) + bu$ for some constants a and b, which depend on the room insulation and so on. Define a reasonable performance index and find the optimal control input.
- 4. [Lewis] Open-Loop Control of Motion Obeying Newton's Laws. A particle obeying Newton's laws satisfies $\ddot{x} = u$, where x is position, \dot{x} is velocity, and u is normalized force. Find an analytical expression for the control required to drive any given x(0) to any desired x(T), while minimizing $y(0) = \frac{1}{2} \in T^{-1} u^2 dt$.
- 5. [Lewis] **Optimal Feedback Control of a Scalar System.** Let the scalar plant be $\dot{x} = ax + bu$ with the performance index $J(t_0 = \frac{1}{2}s_Tx^2(T) + \frac{1}{2}\int_{t_0}^T (qx^2 + ru^2)dt$. Find the optimal control when only the initial state is fixed.