ELL703 > Problems > Discrete-Time Optimal Control

- 1. [Lewis] **Optimal Control of a Bilinear System.** Let the scalar plant $x_{k+1} = x_k u_k + 1$ have performance index $J = \frac{1}{2} \sum_{k=0}^{N-1} u_k^2$, with final time N = 2. Given x_0 , it is desired to make $x_2 = 0$.
- a. Write state and costate equations with u_k eliminated.
- b. Assume the final costate λ_2 is known. Solve for λ_0 , λ_1 in terms of λ_2 and the state. Use this to express x_2 in terms of λ_2 and x_0 . Hence find a quadratic equation for λ_2 in terms of initial state x_0 .
- c. If $x_0 = 1$, find the optimal state and costate sequences, the optimal control, and the optimal value of the performance index.
- 2. [Lewis] Control of a Scalar System. Let $x_{k+1} = 2x_k + u_k$.
- a. Find the homogeneous solution x_k for k = 0, 5 if $x_0 = 3$.
- b. Find the minimum-energy control sequence u_k required to drive $x_0 = 3$ to $x_5 = 0$. Check your answer by finding the resulting state trajectory.
- c. Find the optimal feedback gain sequence K_k to minimize the performance index $J_0 = 5x_5^2 + \frac{1}{2} \sum_{k=0}^4 (x_k^2 + u_k^2)$. Find the tesulting state trajectory and the costs to go J_k^* for k = 0, 5.