1. Half adders generate P_i, G_i

2. CLA (1st layer) \rightarrow P_I, G_I

3. CLA (2nd layer) \rightarrow C_0, C_4, C_8, C_{12}

4. CLA (1st layer) \rightarrow C_1, C_2, C_3 etc.

5. Layer of half adders \rightarrow S_i

$$C_4 = G_I + P_I C_0$$

$$C_5 = G_4 + P_4 C_4$$
\[C_4 = G_1 I + P_1 C_0 \]
\[C_8 = G_{II} + P_{II} G_I + P_{II} P_1 C_0 \]
\[C_{12} = G_{III} + P_{III} G_{II} + P_{III} P_{II} G_I + P_{III} P_{II} P_1 C_0 \]
\[C_{16} = G_{IV} + P_{IV} G_{III} + P_{IV} P_{III} G_{II} + P_{IV} P_{III} P_{II} G_I + P_{IV} P_{III} P_{II} P_1 C_0 \]
\[C_{16} = G_{1}^{2} + P_{1}^{2} C_{0} \]

\[C_{32} = G_{2}^{2} + P_{2}^{2} G_{1}^{2} + P_{2}^{2} P_{1}^{2} C_{0} \]

\[C_{48} = G_{3}^{2} + P_{3}^{2} G_{2}^{2} + P_{3}^{2} P_{2}^{2} G_{1}^{2} + P_{3}^{2} P_{2}^{2} P_{1}^{2} C_{0} \]

Shouri Chatterjee
July-December 2009

Department of Electrical Engineering,
Indian Institute of Technology, Delhi,
Hauz Khas, New Delhi 110016
1. Layer of half adders → P_i, G_i
2. Layer 1 of CLA (16x) → P_i, G_i
3. Layer 2 of CLA (4x) → P_i, G_i
4. Layer 3 of CLA (C0) → $C_{16, 32, 48}$
5. Layer 2 of CLA → $C_{4, 8, 12}$
6. Layer 1 of CLA → all other carries → $C_{20, 24, 28}$
7. Half adders → S_i
Multiplexers

2:1 MUX

\[\text{Output} = \begin{cases} \overline{S} & \text{if } S, \quad \text{Output} = A_0 \\ S & \text{if } \overline{S}, \quad \text{Output} = A_1 \end{cases} \]

\[\text{Output} = A_1 S + A_0 \overline{S} \]

4:1 MUX

\[\text{Output} = \overline{S_1 S_0} A_0 + \overline{S_1 S_0} A_1 + S_1 \overline{S_0} A_2 + S_1 S_0 A_3 \]
EEL201: Digital Electronic Circuits

Shouri Chatterjee
July-December 2009

Department of Electrical Engineering,
Indian Institute of Technology, Delhi,
Hauz Khas, New Delhi 110016

\[f = \sum 0, 1, 5, 6, 7 \]