ELL 788 Computational Perception & Cognition

Module 11

Audio Engineering: Perceptual coding

Coding and decoding

Coding

- For digitizing (recording / transmission)
- Signal to be "satisfactorily" reproduced
- Compact (Compression)
- Time-efficient processing
- Aims at reproducing an **audio event**
 - > NOT reproducing the original signal

Principle – perceptual coding

Approach

- Use the psycho-accoustic model
 - Cochlear time-frequency resolution
 - Discard frequencies that we cannot hear
 - Auditory masking (Simultaneous and Temporal)
 - Allow noise to the extent that cannot be perceived
 - Stereo-coding issue just two channels do not help
 - Not optimal
 - Localization problem (Random uncorrelated noise)
 - Sophisticated methods vs. Commercial systems
 - Commodity encoder / decoder

Time-frequency based audio coding

- <u>Analysis filter-banks</u>: decompose the input signal into a time sequence of vectors with as many elements as spectral components
- <u>Perceptual model</u>: actual (time- and frequency-dependent) masking threshold is computed using rules derived from psychoacoustics
- <u>Quantization and coding</u>: goal is to keep the resulting error signal (usually referred to as quantization noise) below the masking threshold
- <u>Bit stream multiplex</u>: quantized and coded spectral coefficients and some side information + metadata

Sub-band coding

- Modified DCT (MDCT) used to realize polyphase filter-banks
 - DCT is like DFT; uses only cosine functions
 - MDCT operates on overlapping blocks avoids artefacts arising out of block boundaries
 - High frequency resolution poor time resolution
- A set of time samples \rightarrow a vector of spectral energy components
 - These spectral components are orthogonal -- Avoids redundancy
- Retain only that human ear will recognize
 - Filter-banks cover range of human auditory system
 - Apply masking in close frequencies

Key for perceptual compression

Quantization and coding

- The energy co-efficients at different frequencies need to be quantized and coded
- Quantization error introduces noise
 - Should be below hearing threshold *varies with frequency*
- Each quantized level is represented with a symbol
 - Entropy coding: Allocate less bits for frequently used symbols
 - e.g. Huffman coding
- Arithmetic coding, or range coding
 - Represents entire signal segment with one number
 - More optimal than Entropy coding

Fixed rate and variable rate coding

- Bit-rate depends on
 - Filter banks
 - Quantization
 - Coding
- Entropy coding leads to variable rate coding
- Fixed rate transmission is often desirable
 - VBR coding can still be used if delay is allowed
 - Typically in one-way transmission, e.g. music system, broadcasting, etc.
 - *NOT for telephony*
 - Buffer control is important

Perceptual audio codecs: MP3

- Sampling frequencies: 32, 44.1 and 48 kHz Sampling frequencies
 - Frame-length 24 ms @ 48 kHz sampling frequency \rightarrow 1152 time samples
- Auditory masking to remove redundant signal
 - MDCT for coding
 - 2 filter-bank blocks with 576 sub-bands each
 - Quantization based on power law (loudness)
- Huffman coding: a set of predefined tables
- Bit-rate: 32 320 kbps, or VBR
- High encoding complexity but low decoding complexity
- Bit-reservoir and back frames
 - Bits preserved during coding of silent frames can be used to encode audio frames with more audio content
- 2-channel stereo

Quality

• Trade-off between bit-rate and the sound quality

- Depends on nature of audio being compressed
- Random sound is difficult to compress
 - Compression artifacts

Advance Audio Coding (AAC) Family

- Improved audio quality for coding at low bit rates
 - < 48 kb/s per channel</p>
- Spectral Band Replication (SBR) for bandwidth extension
 - Low frequency components of signal are transmitted
 - High frequency components are reconstructed
 - Results in major savings in bit-rate
- 5.1 channel stereo

Sprectral Band Reconstruction (SBR)

- Based on the principles
 - Generally, there is a large dependency between the lower and higher frequency parts of an audio signal.
 - The psychoacoustic part of the human brain tends to analyse higher frequencies with less accuracy
- Encoder codes only the low and mid frequencies
 - The high frequency part is can be efficiently reconstructed from the low frequency part
 - Some low bit rate SBR control data is needed

Hi-frequency reconstruction using SBR

Figure 7: Spectrum after high frequency adjustment

SBR encoder and decoder (Basic block diagrams)

Encoder

Decoder

Delays

Codec	Typical Delay (HW or DSP)	Typical Application
MP3	140 ms	Music Player
AAC	210 ms	Music Player, Broadcasting
HE-AAC	360 ms	Mobile Music, Satellite Radio

Not suitable for 2-way / multi-party applications

- Telephony, A/V conferencing, Telepresence
- Requirement: max delay ~20 ms

Codecs with low delay: AAC-LD

- Uses shorter transform size
 - 480 or 512 subband MDC (vs. 1024 for AAC)
- Avoid look-ahead
 - Bit reservoir is avoided / restricted to only a small number of bits (around 100)
- Less compression
 - Can be used over normal telephone lines / ISDN
 - 32 / 64 kbps or higher
- The achieved coding quality scales up with bitrate
 - The audio quality of AAC LD is slightly better compared to MP3 at the same bitrate.

Spatial audio-coding (Channel-based spatial coding: stereo / 5.1)

- Encoding each channel separately is suboptimal
 - Also, quality is poor because of uncorrelated noise
- The multi-channel signals are coded as a "downmix"
 - All signal components (disregarding spatial aspects) present in all channels
 - parameters describing "perceptually relevant differences" (in terms of spatial hearing) between the original audio channels
 - Very low bit-rate (order of 2 lower)
- In the decoder, the channels are synthesized from the downmix
 - Close to the original audio channels

References

- Brandenburg, et al. Perceptual Coding of High-Quality Digital Audio. Proc. IEEE, Sept 2013
- Wang and Vilermo. Modified discrete cosine transform ...
- Dietz, et al. Spectral Band Replication, a novel approach in audio coding
- Lutzky, et.al. A guideline to audio codec delay