ELL 788 Computational Perception & Cognition

Module 12

Memorability of images

What makes a photo memorable?

- Personal context
 - Photo of a friend
 - Photo of the house where you live
 - Photo of an event witnessed, etc.
- Are there some intrinsic parameters, that makes a photo 'memorable' even without a personal context?
- Can the memorability be predicted (computationally) from the image features?

Why study of memorability is important ?

- Memoribility \rightarrow utility of a photo in everyday usage
- Can help in creating memorable
 - Educational diagrams
 - Logos and advertisements
 - Desktop icons
 - Book / CD covers
 - Labels for medicine jars

Definition of memoribility

- Probability that an observer will detect repetition of a photo when presented amidst a stream of photos
 - With different delays
- Can vary across observers, depending on motivation, attention, etc.
 - Use relative (rank) scores

Psychological experiment: Visual Memory game

- ~10,000 images from public dataset (SUN)
 - ~2000 'target' images + ~8000 'fillers'
 - All images scaled / cropped to 256 x 256 size

Sample entries from image database

... contd

- Crowd-sourced on Amazon Mechanical Turk
 - Random crowd no demographic control
- One 'level' 120 images 4.8 minutes
 - Each image shown for 1 sec, gap of 1.4 sec before next image
 - Max 30 levels for each subject
- Target images repeated at intervals
 - Vigilant repeats (filler images) to confirm attention
- People asked to spot 'repeat' images
 - Correct hits, false hits and misses are counted
- Game abandoned if user makes many errors

The visual memory game

Source: Isola

Some general observations

- Average memorability of all target images ~ 67%
- Low false alarm rate ~ 10%
- False alarms do not correlate with hit rates
- False memory does not significantly affect the memorability score

Specific observations

Is memorability consistent across observers?

- Do all people tend to remember / forget the same photos
- Averages for two independent groups were found to be quite consistent
- Should be possible to computationally predict memorability

Is memorability consistent over time?

- Memorability consistently decreases over time
- More memorable photos (than others) in shorter term were found to be more memorable in longer term

• Does memorability depend on context ?

- Intercahnging sequence did not affect memorability scores
- Inconclusive? Nature of collection mattered?

Subjective judgments do not predict memorability

- Participants were asked to 'judge' memorability:
 - Two trials with differently worded expectation
- Judgment compared with memory game result

a) Predicted by participants as being most memorable images

b) Predicted by participants as being least memorable images

- Memorability scores were consistent
- Judgments scores were consistent
- Judgment scores and memorability scores did not correlate

What makes a photo memorable?

- Experiments prove that there are some intrinsic image features towards memorability
 - What are them?
- Try to predict with various features
- Use regression technique
- Divide images in two equal sets training and testing
- Divide subjects in two groups to check consistency of features across groups

Aesthetics, interestingness?

Image features ? Objects ?

10

11

12

 $\rho = 0.05$ $\rho = -0.16$ $\rho = 0.08$ score memorability score score 0.2 memorability memorability Color 0.2 °ò 0 0⁰ mean value mean hue mean saturation $\rho = -0.01$ $\rho = -0.05$ $\rho = -0.04$ memorability score memorability score memorability score Intensity 0 0 0 50 100 150 200 250 intensity mean intensity skewness 5000 10000 Ő. <u>–</u>5 intensity variance $\rho = -0.09$ $\rho = -0.06$ $\rho = 0.07$ memorability score score memorability score 0.8 memorability 5 Object statistics 0 log mean class coverage log number of objects 9 log max class coverage

Scene semantics

- Object labels and other semantic attributes
- 127 semantic attributes

- ...

- Spatial layout (open, close, ...)
- Emotions (e.g., frightening, funny, ...),
- Actions (e.g., people walking, standing, sitting, ...)
- Demographics (e.g., clothing, accessories, ...)
- Labelled 'Multiscale Object Area'
 - Concatenating pixel coverage on the entire image with pixel coverage per quadrant
- Provided good correlation with memorability

Visualizing objects that contribute to memorability

Effect of a semantic object a_i on memorability

$$m_1 = f(a_1, \cdots, a_i, \cdots, a_n)$$

$$m_2 = f(a_1, \cdots, 0, \cdots, a_n)$$

$$s_i = m_1 - m_2$$

Object occupies a significant area on the image

m: memorability score *f*: learnt regression function *a*_i: labelled multi-scale object area
for object *i*

a) Predicted as highly memorable (79%)

c) Predicted as unmemorable (52%)

Predicting memorability (with machine extracted features)

- Several global / local features that characterize scene, color distribution, local changes, etc. Were used
- Good correlation for top memorable photos
- Different performance for photos of different types
 - Humans
 - Nature
 - General

Modifying memorability of face

 \downarrow memorability original image

 \uparrow memorability

• Maintaining other characteristics, e.g. Identity, emotion, etc.

MIT 2013

Memorability of faces

- Faces are more memorable than scenes
 - Also has a high false alarm rate
- *True* hit count measure

$$- \qquad T = \frac{H - F}{N}$$

N: Number of subjectsH: Hit rateF: False hit rate

- Adjusted to lie in range [0,1]
- Provides better results for trained SVR

Additional annotations

- Additional annotations
 - Facial landmark locations (77)
 - Which are to be moved for generating new images through warping (with changed memorability)
 - Facial attribute (e.g., attractiveness, emotion) ratings that need to kept constant.

10k US Adult Faces

Modifying memorability

- Given an image $I^{\hat{}}$
 - Goal is to synthesize a new image I
 - That has a specified memorability score of M, and
 - That preserves the identity and other facial attributes of I^{\uparrow}
- Define high-level features (*x*), like *is_male*, *have_makeup*, etc.
 - find memorability sore $m_i(x)$ for each.

Attribute-feature correlation

	Color	LBP	HOG	SIFT	Shape
	[25]	[20]	[6]	[19]	Shape
age (0)	0.52	0.64	0.72	0.77	0.68
attractive (0)	0.46	0.51	0.59	0.62	0.54
emoteMag (0)	0.49	0.64	0.80	0.83	0.88
makeup (3)	0.80	0.81	0.84	0.84	0.80
is male (2)	0.86	0.89	0.93	0.94	0.91
teeth (3)	0.56	0.58	0.71	0.72	0.77
memorability	0.27	0.23	0.51	0.49	0.36

Global features like HOG and SIFT outperforms the other features for most of the attributes.

Modifying face memorability

- Face representation (x)
 - Shape (x_s) and appearence (x_a)
- Cost functions
 - C_{id} : Cost of modifying the identity of the person
 - C_{mem} : Cost of not achieving the desired memorability score,
 - C_{attr} : Cost of modifying other attributes
- Modeled as a minimization problem with OF
 - $\min_{x} (C_{id}(x) + \lambda C_{mem}(x) + \gamma C_{attr}(x))$
 - Optimization (hill-climbing algorithm) used

Results

- Mean memorability score 'memorability increase' images is significantly higher than that of the 'memorability decrease' images.
- We find that the expected increase in memorability occurs in about 74% of the images.

References

- Isola, et al. What makes a photograph memorable? IEEE Trans PAMI
- Khosla, et al. Modifying the Memorability of Face Photographs. ICCV 2013