ELL 788 Computational Perception & Cognition

Module 13

Haptic / tactile displays

Haptic / Tactile rendering

- Haptic rendering
 - Force based rendering (Kinesthetic stimuli)
 - Force feedback on surgical probe
- Tactile rendering
- Touch based rendering (Cutaneous stimuli)
 - Vibrational feedback on touchscreen / keyboard

Haptic display

- Single point of contact
- 3 DoF

• Equivalent to feeling and exploring a 3D object through a stylus in the real world.

Haptic display

- Significantly more complex than visual rendering
 - Bilateral process: display (rendering) cannot be divorced from manipulation
 - Tracking the inputs of the user as well as displaying the haptic response
- Computationally demanding due to the high sampling rates required.
 - Requires signals to be refreshed faster than 1 ms.
 - > Vibration ~ 1000 kHz is required
 - to simulate fast motion over fine texture,
 - for sharp, impulsive rendering of a changing contact condition.

Model of haptic device

Virtual coupler

- Mechanical (Spring) model
- Electrical (Admittance / Impedence) model

Rendering 3D objects

Schematic

Rendering 3D objects

HIP: Haptic Interface Point IHIP: Ideal Haptic Interface Point Also known as Surface Contact Point (SCP)

Effect of sampling

Update (sampling) rate: ~ 1 kHz

Note: energy gain / loss (hysteresis)

Synchronization with visual feedback

- Visual feedback dominates
- In a psychological experiment
 - Delaying haptic feedback had no effect on either performance or the participant's perception of task difficulty,
 - Nor did keeping it in real time aid participants when visual feedback was delayed

Geometric models

- Surface Model
 - Polygonal surfaces
 - Parametric surfaces
 - B-Splines
 - Implicit surfaces
 - Defined by a function
 - $f(\overline{x}) = 0$: on the surface, $f(\overline{x}) < 0$: inside, $f(\overline{x}) > 0$: outside
- Volumetric model
 - Use of "voxels"
 - Stacked "Slices" (as in CT-Scan)

Add surface details (e.g. Texture) for more realistic feeling

Extensions

- 6 DoF rendering
 - Add torques
 - More suitable for deformable objects

• Full-hand interaction

Vibro-tactile perception

Neural Channel ^a	SA I (NP III)	RA (FA I, NP I)	SA II (NP II)	PC (FA II, P)
End Organ	Merkel Disk	Meissner Corpuscle	Ruffini Ending	Pacinian Corpuscle
Sensory Adaptation ^b	Slow	Fast	Slow	Fast
Receptive Field ^c	Small	Small	Large	Large
Frequency Range (Hz)d	< 5	3-100	15-400	10-500
Perceiving Property	Pressure, Fine Details	Flutter	Stretch	Vibration

4-channel theory of tactile perception for Glabrous (non-hairy) skin

Can the user perceive a vibro-tactile cue?

- Absolute (detection) threshold:
 - The weakest stimulus intensity that can be perceived by humans
 - Depends on channel and frequency
- U-shaped curve for variation with frequency for every channel
- These absolute thresholds are affected by ... body site, stimulus waveform, skin temperature, the presence of other masking stimuli, and age
 - Contact area and duration have additive effects
- A stimulus may be perceived by multiple channels

Can the user distinguish between the different vibrotactile cues ?

- Discrimination threshold
 - The smallest difference between two stimuli that leads to reliable discrimination
 - Recall weber law: $\Delta p = k \frac{\Delta S}{S}$
 - k = Weber constant
- Typical values of *k*
 - 10-30% for vibration intensity
 - 15-30% for vibration frequency
 - 20-30% change required for robust discrimination

How strong does a vibrotactile cue feel ?

• Perceptual strength of a stimulus I

$$\psi(I) = k \cdot I^e$$

- Steven's law
- -e=0.35-0.86,
 - Depends on stimulation conditions, stimulus frequency
- Both amplitude and frequency affect the perceived pitch of a vibration
- Identical sensation contours

How good are users at judging the timing of vibrotactile cues?

- High temporal acuity.
 - We can distinguish successive pulses with a time gap as small as 5 ms
 - Better than that for vision (25 ms)
 - Worse than auditory acuity (0.01 ms)
- Further temporal variations can be brought into by changing its amplitude over time (envelop)
 - Rhythm

Can vibro-tactile cues elicit any other perceptual effects?

- Frequency
 - Very slow frequency (< 3 Hz): slow kinesthetic motion
 - Low fequency (10 70 Hz): Rough motion / fluttering
 - High frequency (100 300 Hz): Smooth vibration
- Qualitative difference for two ranges
 - 40 100 Hz
 - 100 250 Hz
- In practical vibro-tactile displays
 - Low frequency vibrations are used to modulate high-frequency vibrations to provide different cues

Multiple body sites

- Can a user distinguish vibrotactile cues applied to neighboring locations on the body ?
 - Recall
 - Two point threshold: 4 45 mm
 - Localization threshold: 2 12 mm
 - Depend on part of the body
 - The localization accuracy of 250-Hz vibrotactile stimuli around the waist was
 - 74% with 12 equidistant tactile actuators (tactors),
 - 92% with 8 tactors
 - 97% with 6 tactors
- Intutive mapping
 - A tap on the left shoulder makes one to turn right

Vibro-tactile actuators

- Linear Electromagnetic Actuators
 - Same principle as audio-speaker
 - Very small ~ 1 cm
- Rotary Electromagnetic Actuators
 - A dc motor with an off-centre load
- Nonelectromagnetic Actuators
 - Piezo-electric

Vibro-tactile displays

- Monolithic display
 - The whole device vibrates as a whole
- Localized display
 - Many displays are integrated in the device (or a suit)
 - Contact points of individual displays are important

Applications

Physical information delivery

- Material property (texture)
 - Virtual texture of fabric on screen
 - Virtual ride on a gravel road
- Contact Location
 - Body contact in a VR environment

Abstract information delivery

- Communication for physically challenged
 - OPtical to TActile CONverter (Optacon)
- Navigation aid
 - For visually challenged, helicopter pilots
- Human-Machine Interaction
 - Mobile devices

References

- Choi and Kuchenbecker. Vibrotactile Display: Perception, Technology, and Applications. 2012
- Basdogan, et al. 3 DOF Haptic rendering