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An efficient modeling of the processing occurring at retina level and in the V1 visual cortex has been pro-
posed in [1,2]. The aim of the paper is to show the advantages of using such a modeling in order to
develop efficient and fast bio-inspired modules for low level image processing.

At the retina level, a spatio-temporal filtering ensures accurate structuring of video data (noise and illu-
mination variation removal, static and dynamic contour enhancement). In the V1 cortex, a frequency and
orientation based analysis is performed.

The combined use of retina and V1 cortex modeling allows the development of low level image pro-
cessing modules for contour enhancement, for moving contour extraction, for motion analysis and for
motion event detection. Each module is described and its performances are evaluated.

The retina model has been integrated into a real-time C/C++ optimized program which is also presented
in this paper with the derived computer vision tools.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we propose an image processing approach belong-
ing to what we call ‘‘biological vision based approach”. The basic
idea is to copy the Human Visual System (HVS) by modeling some
of its parts in order to develop low level image processing modules.
Up to now, the most well-known parts of our visual system are the
retina and the V1 cortex area which are the two parts on which we
focus our work. The retina can be considered as a preprocessing
step which conditions the visual data for facilitated high level anal-
ysis. The V1 cortex can be considered as a low level visual informa-
tion describer. From these two ‘‘tools”, we want to show how to
design efficient low level image processing tools.

Biologically inspired methods for image processing are numer-
ous and we choose to focus only on bio-inspired models dedicated
to image processing in order to make the paper easier to read. For
example, the Retinex filter proposed in [3,4] is a method that en-
hances a digital image in terms of dynamic range compression, col-
or independence from the spectral distribution of the scene
illumination, and color/lightness rendering as it is done in the ret-
ina and in the cortex. This algorithm is based on luminance analy-
ll rights reserved.
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sis and its enhancement. It assumes that color perception is related
to ratios of reflected light intensity in specific wavelength bands
computed between adjacent areas. As a consequence, this algo-
rithm is dedicated to color applications. Other models of the HVS
are used, for example, for information coding [5]. These methods
generally use high level information processing such as visual cor-
tex modeling but do not take into account the low level processing
that occurs at retina level.

Since our goal is to demonstrate the interest of using retina and
V1 cortex modeling in order to proceed to low level image process-
ing, the preliminary step of our work, which is to choose the most
appropriate retina and cortex models, is described in the following.
As discussed in [51], the definition of standard models is a rich re-
search field and some approaches allow dedicated image process-
ing implementations to be expected. As far as retina models are
concerned, some have already been proposed with different de-
grees of precision. Mead and Mahowold [6] was a precursor for
the modeling of the neurophysiological properties of vertebrate’s
retinas by considering analogies with electronic circuits. His model
focuses on the link between the retinal architecture and its func-
tionalities. Nevertheless, his work insists more on the spatial filter-
ing properties of the retina than on temporal effects related to
motion analysis. The modeling of the biological retina was also
studied by Franceschini et al. [7] who worked on the retina archi-
tecture of the fly. He built robots working on the same model and
showed their properties for target tracking or for flying in unstable
wind conditions and for collision prevention. Spike based models
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were also studied; an advanced model was presented with the
SpikeNet toolbox [8]. It models the electrical impulse spikes ex-
changed by the neural cells at the retina ganglion cells and V1 cor-
tex levels. It already demonstrates high speed computing
properties for high level image analysis, but low level retina pro-
cessing are not completely described. Other approaches are devel-
oped such as digital retinas. Some of them are methods dedicated
to VLSI (very-large-scale integration) implementations [9,10].
These algorithms are efficient parallel methods generating binary
or floating point output pictures but the models contain only parts
of all the processes carried out in the retina.

The starting point of our work is an accurate model of the hu-
man retina. This model presents a global approach of the retina
processing inspired from an analogy between electronic circuits
and signal processing strategies of the biologic retina. It is based
on Mead’s work and has been improved in terms of spatial and
temporal properties by Herault and Beaudot [1,2,11]. It describes
the different computing carried out in the first cell layers of the ret-
ina (Outer and Inner Plexiform Layers). This model allows fine per-
ception modeling. This emphasizes the different cell network
properties of the retina and its implementation enables fast com-
puting thanks to natural parallel processing properties.

Considering V1 cortex, several studies led to the creation of var-
ious models. Marcelja [12] showed that the cortical cells in the V1
cortex are sensitive to orientations and can be modeled with 1D
Gabor filters. This work was extended to 2D by Daugman [13]. This
modeling leads to a simple representation of scene information in
the spectral domain. In this way, 2D Gabor filters are generally
used in literature for texture classification [14], or saliency area re-
search to extract relevant features in a scene [15]. Because of their
properties in log scale (reliable zoom effects handling), we propose
to use the modeling of the V1 cortex area described in [16] which
uses log polar Gabor filters (GloP) instead of Gabor filters.

With the choice of Herault’s model for retina modeling and the
choice of Guyader’s model for the V1 cortex modeling, we obtain a
model for the parts of the visual system we are interested in. In or-
der to situate the chosen global HVS model with regard to well
known visual system models, we present the main orientations
of these works and ours. The Itti and Koch model [17] focuses on
the analysis of the visual scene in terms of scale and orientation
description. This model exhibits the high level analysis achieved
at the visual cortex level in order to compute saliency maps for vi-
sual attention modeling. These bottom-up orientation and scale
description are indeed specific features of the V1 cortex area which
we also propose to perform with the help of Guyader’s model [16].
The work of Walter [18] also insists on the processing carried out
at the cortex level and adds top-down interactions for visual atten-
tion simulation. Nevertheless, at the retina level, low level process-
ing is not fully considered. Similar approaches have been proposed,
for example by Daly‘s [19], the Irccyn Lab’s model [20] and Gipsa
Lab’s model [63]. These models are suited for image and video
quality evaluation and saliency area extractions. These accurate
models insist more on high level cortex processing (even above
V1 area) dedicated to image description than on the properties of
low level processing done at the retina level. The Contrast Sensitiv-
ity Function (CSF) they use does not include some specific features
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of the retina such as local adaptation and temporal filtering. In
comparison, our approach focuses more on the first low level retina
processing and the V1 cortex in the aim of demonstrating the inter-
est of the low level retina filtering properties. Future work will con-
sist in fusing our model with aforementioned approaches in order
to reach a higher step of complexity with a more accurate low level
processing precision and to describe a wider area of image process-
ing applications.

In order to show the potential of such human visual models for
efficient low level image computing, we present, in this paper, a set
of real-time image processing modules. A first set, based on a ret-
ina model, allows detail and motion information extraction. A sec-
ond set based on the V1 cortex area and a motion event detector
enable to describe the visual scene at a higher semantic level. Keep
in mind that the motion analysis which will be exposed can be con-
sidered as being close to optical flow computation. Nevertheless,
we insist more on the preprocessing aspect of the retina for motion
energy extraction, its noise reduction and local motion information
enhancement. Even if information about motion energy is offered,
the extraction of the optical flow is the next step, as proposed
in [21].

The paper is presented as follows: Section 2 gives a short
description of the model proposed in [1,2] for retina and V1 cortex
processes. Section 3 describes the four low level processing mod-
ules which we developed for contour enhancements, moving con-
tour extraction, image orientation analysis and context aware
motion event detection. Section 4 describes the developed real-
time retina program which has been made available publicly and
which justifies our global approach, consisting in using HVS mod-
eling in order to build up efficient image processing algorithms.
This section also summarizes the previous image processing algo-
rithm which has already been achieved with the help of the pre-
sented models.

2. Human Visual System modeling

Fig. 1 gives a general overview of the parts of the HVS which are
considered here and which have been modeled in [1,2,16]. In the
retina, the spatial and temporal properties of the different cells lay-
ers are considered, from photoreceptors and the connected cell lay-
ers of the so called Outer Plexiform Layer (OPL) followed by the
Inner Plexiform Layer (IPL). These processing steps are described
in Section 2.1. The proposed model allows two information chan-
nels to be modeled. The former, Parvo, being related to details
extraction while the latter, Magno, is dedicated to motion analysis.
In the V1 cortex area (cf. Section 2.2), a frequency and orientation
analysis in the log polar domain is carried out [16]. It is intended to
process the information given by the retina model in order to per-
form low level visual scene properties description.

2.1. Retina modeling

Fig. 2 describes the different retina cells: photoreceptors, hori-
zontal cells, bipolar cells, ganglion cells and amacrine cells. Photo-
receptors are responsible for visual data acquisition and are also
associated with a local logarithmic compression of the image lumi-
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Fig. 2. Biologic architecture of the retina [2].
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Fig. 3. Effect of the photoreceptors compression.
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nance. The retina cells are connected to each other in order to form
two cell layers: the Outer Plexiform Layer (OPL) and the Inner Plex-
iform Layer (IPL). Each layer is modeled with specific filters. Finally,
at the IPL level which constitutes the retina output, different chan-
nels of information can be identified. We focus here on the most
well known: the Parvocellular channel (Parvo) dedicated to detail
extraction and the Magnocellular channel (Magno) dedicated to
motion information extraction. Note that we consider here the par-
vocellular and Magnocellular processing on the whole visual scene.
In the human retina, the parvo cellular channel is most present at
the fovea level (central vision) and the Magnocellular channel is
most important outside of the fovea (peripheral vision), because
of the relative variations of specialized cells [25]. Considering both
pieces of information in the same area of the image can be interest-
ing for computer vision because detail and motion data become
available as parallel information on the same area.

2.1.1. Photoreceptors and illumination variation removal
2.1.1.1. Model. Photoreceptors have the ability to adjust their sen-
sitivity with respect to the luminance of their neighborhood
[1,2]. This is modeled by the Michaelis–Menten [1,50] relation
which is normalized for a luminance range of [0, Vmax]

CðpÞ ¼ RðpÞ
RðpÞ þ R0ðpÞ

� Vmax þ R0ðpÞÞ ð1Þ

R0ðpÞ ¼ V0 � LðpÞ þ Vmaxð1� V0Þ ð2Þ

In this relation, the adjusted luminance C(p) of the photorecep-
tor p depends on the current luminance R(p) and on the compres-
sion parameter R0 (p) which is linearly linked to the local
luminance L(p) (cf. Eq. (2)) of the neighborhood of the photorecep-
tor p. This local luminance (p) is computed by applying a spatial
low pass filter to the input image. This low pass filtering is actually
achieved by the next cellular network: the horizontal cell which is
presented in Section 2.1.2.1.

As shown in Eq. (2), R0 (p) depends on the local luminance L(p).
Moreover, in order to increase flexibility and make the system
more accurate, we add the contribution of a static compression
parameter V0 of value range [0; 1] which allows the local adapta-
tion effect to be adjusted in order to enhance ease of use and pre-
cision. Its value is experimentally set to 0.90. A lower value reduces
the local adaptation effect. This parameter allows a new degree of
freedom for computer vision applications. The value range can be
adjusted between 0.60 and 0.99 for optimal results with eight or
more bits per pixel pictures. Note that Vmax represents the maxi-
mum allowed pixel value in the image. In the case of standard
eight bits images, its value is 255 but it can be very different in case
of different coding (such as High Dynamic Range (HDR) images,
such as openEXR images [37]). In this case, Vmax should be set as
the maximum pixel value of the image or the set of processed
images.
Fig. 3a shows the evolution of sensitivity with respect to param-
eter R0 (p). Sensitivity is reinforced for low values of R0 (p) and is
kept linear for high values. As a result, this model enhances con-
trast visibility in dark areas while maintaining it in bright areas.

2.1.1.2. Properties. Fig. 3b illustrates the effect of such a compres-
sion on a back-lit picture with two different compression parame-
ters V0. The low-lit areas become brighter and more contrasted so
that details appear. On the other hand, bright areas are not signif-
icantly modified. Note that in this example, a lower value of V0 al-
lows the high luminance value saturation to be limited.

The symbol depicted in Fig. 3c is associated with the logarith-
mic compression effect of the photoreceptors.

2.1.2. OPL: spatio-temporal filtering and contour enhancement
2.1.2.1. Model. The cellular interactions of the OPL layer can be
modeled with a nonseparable spatio-temporal filter [1,2] whose
transfer function for 1D signal is defined in Eq. (3) where the var-
iable fs is the spatial frequency and ft is the temporal frequency.

FOPLðfs; ftÞ ¼ Fphðfs; ftÞ � ½1� Fhðfs; ftÞ�
where

Fphðfs; ftÞ
1

1þ bph þ 2aph � ð1� cosð2pfsÞÞ þ j2psphft

Fhðfs; ftÞ ¼
1

1þ bh þ 2ah � ð1� cosð2pfsÞÞ þ j2pspft

ð3Þ

This filter can be considered as a difference between two low-
pass spatio-temporal filters which model the photoreceptor net-
work ph and the horizontal cell network h of the retina. The linked
bipolar cells perform the final subtraction. As shown in [1], the out-
put of the horizontal cell network (Fh) contains only the very low
spatial frequency of the image. It is therefore used as the local
luminance L(p) which feeds back the luminance adaptation stage
described in Section 2.1. Fig. 4a presents the global OPL scheme. In
that figure, we represent the difference between Fph and Fh by two
operators BipON and BipOFF, respectively giving the positive and
negative parts of the difference between the Ph and h images. This
models the action of the bipolar cells which divide the OPL outputs
in two channels, ON and OFF. As these outputs are complementary,
they can be combined in order to visualize the global transfer
function of the OPL (FOPL) shown in Fig. 4b and corresponding to
Eq. (3). This filter has a spatial band-pass effect in low temporal
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frequencies, a wide temporal band-pass effect for low spatial fre-
quencies, a low-pass effect for high temporal frequencies and a
low-pass effect for high spatial frequencies.

The FOPL spatio-temporal filter involves several parameters: bph

is gain of the filter Fph, this parameter is generally set to 0 but it
should be increased if the input dynamic range has to be increased.
hbh is the gain of filter Fh. By setting this parameter to 0, only the
contour information is extracted. Tweaking this parameter allows
to adjust the gain at the null frequency, thus modifying the mean
luminance of the image. sph and sh are temporal filtering constants
allowing the temporal noise to be minimized. aph and ah are spatial
filtering constants setting the spatial filtering capabilities: aph sets
the high cut frequency and ah sets the low cut frequency. An exam-
ple of parameter setting is discussed in Section 4.
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2.1.2.2. Properties. The OPL filter can remove spatio-temporal noise
and enhance contours. These two properties are complementary
because noise generates disturbing contours so that enhancing
contours is often linked to noise enhancement. Fig. 5 illustrates
the effect of the OPL filter. The two sequences were acquired with
a commercial webcam (low quality of the CCD sensors and com-
pression effect) in a situation of standard lighting conditions (see
Fig. 5a) and in case of very low lighting conditions (small signal
to noise ratio) (see Fig. 5c). In both cases, contours were enhanced
and the signal to noise ratio has increased after OPL filtering. In
addition, one of the most relevant effects is spectral whitening
which compensates for the 1/f spectrum tendency of natural
images [49] as shown in Fig. 5b. This acts as a decorrelation of
the image input. Models and physiological reports have previously
emphasized this decorrelation of the visual information processing
in spatial and temporal domains. Some of the most important pa-
pers include [22–24].

As a result, the high spatial frequency contours are enhanced
and the null frequency is lowered (i.e. the mean luminance is can-
celed here with bh = 0). The structure and texture of the scene are
then easily extracted.

2.1.3. IPL and Parvo channel: contours enhancement
2.1.3.1. Model. The ganglion cells of the Parvo channel (these gan-
glion cells are called ‘‘midget”) receive the contour information
coming from the BipON and BipOFF outputs of the OPL. On this
information, they act as a local enhancer CgP which reinforces
the contour data. This is modeled by a Michaelis–Menten law sim-
ilar to the photoreceptors [26] (cf. Fig. 6a).

2.1.3.2. Properties. As the incoming information is about contours,
the result is the enhancement of the contour contrast (cf.
Fig. 6b). Here, the local adaptation law is exactly the same as that
of photoreceptors. Nevertheless, the incoming data is different
here. Indeed, at this point, only contour information is available
with a reduced amount of luminance if bh > 0 up to no luminance
if bh = 0 at the previous filtering step. As a consequence, the con-
Retina OPL filter output

Retina OPL spectrum output

Retina OPL filter output

conditions and (b) in low light/noise conditions.
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tour enhancement is less dependent on local luminance and de-
pends more on contours. Moreover, as the information is divided
into two channels (ON and OFF), each channel is enhanced inde-
pendently in its own context and leads to image local contrast
equalization.
2.1.3.3. Global Parvo channel properties. We propose to illustrate
Parvo filtering including photoreceptors, OPL and IPL Parvo models
in the picture presented in Fig. 7a. In this picture, small black ar-
rows are set out on a background which varies linearly from deep
white to deep black. The retina Parvo filtering applied to this image
(cf. Fig. 7b) with parameter bh = 0, allows all arrows to be extracted
even those hidden in the black background while canceling the
luminance information. In a second step, the picture was corrupted
(cf. Fig. 7c) by high frequency spatio-temporal Gaussian noise
(l = 0, r = 0.01). Fig. 7d presents the effect of the retina Parvo filter
on this noisy picture. Noise has reduced because of the low-pass
temporal frequency effect and the band-pass effect for spatial fre-
quencies (i.e. at null temporal frequencies). The global result is
simultaneous noise reduction and contour enhancement.

A signal to noise analysis gives the results of Table 1, notation
MSE meaning Mean Square Error. The signal to noise ratio is en-
c. Gaussian noise added

a. Input b. Retina Parvo result

d. Retina Parvo result

Fig. 7. Detail analysis with the retina Parvo filtering (bh = 0).
hanced with the retina Parvo model: contours are preserved while
noise and mean luminance are removed. Indeed, the difference be-
tween the image and its noisy counterpart after retina Parvo filter-
ing is lower than the difference between the input image and the
input noisy image, the gain being around 3.1 dB SNR. So the con-
tour response is enhanced even if the input is subject to noise
and background luminance variations. This also explains why com-
puting the MSE and SNR between Parvo filter input and output
would have been meaningless because the filter cancels mean
luminance leading to a totally different image. As a comparison,
the SNR obtained with the well-known Cany-Derich algorithm is
2.8 dB which is slightly lower than the retina processing because
of a lower sensitivity in dark areas.

This Parvo filter is even more interesting when working with
High Dynamic Range images, i.e. natural images. This kind of image
contains a much wider range of luminance values since the image
coding is higher than the standard eight bits per color channel for-
mat; it is typically 32 bits. This allows real life like image storage.
The captured images can contain very bright and very dark areas
with a constant accuracy but all the luminance range cannot be
seen on standard media such as standard displays or printers. Sim-
ilarly, as discussed in [2], natural High Dynamic Range (HDR)
images captured by the human eye cannot be coded by neurons
but local luminance adaptation acts as a data compression tool
and keeps all relevant information. Then, processing such images
exhibits the real potential of the model. Fig. 8 shows a HDR image
(‘‘Memorial”) shown at different exposures in order to make all the
details viewable on the paper. Then, filtering this High Dynamic
Range image with the retina Parvo channel allows all the structural
information in all the areas of the scene to be extracted whatever
the luminance variations there are. Two goals can be reached: de-
tails extraction and luminance compression. Fig. 8b illustrates the
first idea: the Parvo filter with a null horizontal cellular gain value
(parameter bh = 0) eliminates the mean luminance and extracts the
structure and texture of the image. The second idea is shown in
Fig. 8c where the Parvo filter, using a positive value of the gain
(parameter bh = 1), compresses the luminance range while preserv-
ing the global visual scene ambiance. In this example, because of
the nonnull bh value, the low frequencies are drastically attenuated
but not canceled. Then, the local mean luminance variation ampli-
tudes are reduced. As a consequence, the visual scene can be ren-
dered on a lower dynamic range media such as the printed paper
while preserving all the details of the scene in all its areas. This
processing is referenced as a ‘tone mapping’ which is a topic that
is discussed in a more dedicated paper [48].
2.1.4. IPL and Magno channel: motion dedicated filtering
2.1.4.1. Model. On the Magnocellular channel of the IPL, amacrine
cells act as high pass temporal filters [27]. We model this effect
by a first order filter

AðzÞ ¼ b � 1� z�1

1� b � z�1 with b ¼ e�Dt=sA ð4Þ

where Dt = 1 is the discrete time step, and sA is the time constant of
the filter. This filter enhances areas where changes occur in space
and time. Fig. 9a shows the IPL Magno model: the amacrine cells
(A) are connected to the bipolar cells (BipON and BipOFF) and to
the ‘‘parasol” ganglion cells. As on the Parvo channel, the ganglion
cells perform local contrast compression (CgM), but they also act
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as a spatial low pass filter (FgM, a filter similar to the filters of the
OPL model) thanks to their long range connections to their neigh-
bors. The result is a high pass temporal filtering of the contour
Retina Input Retina IPL filter output
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b.
Standard office lightning
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Fig. 9. Effect of the IPL MagnoY filter during a head motion sequence in standard
and low light/noisy condition.
information (A filter) which is smoothed and enhanced (FgM filter
and CgM compression). As a consequence, only low spatial fre-
quency moving contours are extracted and enhanced (especially
contours perpendicular to the motion direction). We focus here
on the MagnoY output which represents the nonlinearity observed
on cat Y-cells [28]. Note that it would be interesting to compare this
model with the physiological measures obtained in [29].

2.1.4.2. Properties. Fig. 9b and c give examples of IPL Magno out-
puts. Fig. 9b presents the case of a pan head motion. Fig. 9c pre-
sents the case of tilt head motion in a noisy and poorly
illuminated scene. Moving contours perpendicular to the motion
direction are accentuated while others are reduced or removed.
The IPL Magno output amplitude is linearly dependent on the
velocity (high response for fast moving areas and null response
for static regions where no change occurs).

We propose to illustrate the effect of the retina Magno filtering
including the photoreceptors, the OPL and the IPL Magno models
on the synthetic video sequence presented in Fig. 10a. In this se-
quence, one object is translating while the other remains static
on a static background. The retina Magno filtering applied to this
image (see Fig. 10b) extracts only the moving object. Moreover,
thanks to the temporal effect, the motion energy is high all over
the moving objects surface. In the second step, the sequence was
corrupted (see Fig. 10c) by high frequency spatio-temporal Gauss-
ian noise (l = 0, r = 0.01). Fig. 10d presents the effect of the retina
Magno filter on this noisy sequence; the noise has been reduced.
More precisely, the SNR between the retina Magno filtering out-
puts applied to the original and noisy sequences is 3.2 dB. As a
comparison, the image difference which is the simplest motion
extraction method gives 0.2 dB because noise is not minimized.
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Fig. 10. Motion energy analysis with the retina MagnoY filtering.
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Then, IPL Magno allows robust motion information extraction with
the advantage of using the benefit of locally adapted contour
extraction even in dark or noisy areas.
2.1.5. Overview of the retina model
Fig. 11a presents the global modeling of the retina with photo-

receptors, OPL and IPL layers. Many retina cells are still unknown
and not all the known cells have been modeled. Nevertheless, this
‘‘incomplete” model shows interesting properties for computer vi-
sion purposes. The combined effect of the photoreceptors and OPL
stage makes up the basis of the system and extracts all the con-
tours. Then, at the IPL level, two information channels exhibit
information about details and motion. Fig. 11b represents the
whole model. Table 2 summarizes the main advantages and draw-
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backs of this model: this model takes the main known advantages
of the biological model and makes them available for image pro-
cessing applications. Nevertheless, some work still remains in or-
der to calibrate precisely its parameters in regard of the
biological model to make it useful for bio-mimetic applications
such as visual substitution. This possible application is currently
under development [44].

One step further, a recent study exhibited the properties of
other specific polyaxonal amacrine cells which are involved in spe-
cific motion background inhibition [65]. This article shows that dif-
ferential motion detection actually begins early, at the retina level.
The association of such properties with the proposed model would
allow high level motion description to be improved for specific
applications (background motion compensation, etc.).

2.2. Primary visual cortex modeling: FFT and log polar transform

2.2.1. Model
Signals filtered by the retina are received by the Lateral Genic-

ulate Nucleus (LGN) and transmitted to the cortex area 17 called
area V1 [30] (the LGN is here considered as an element that only
transmits information from the retina to the cortex). It has been
demonstrated that in the V1 area, the output of the retina is ana-
lyzed by orientation and frequency bands [31,53,54]. An interest-
ing model for the processes occurring at the V1 cortex level is
the combination of the FFT amplitude and log polar transformation
as introduced by Schwartz [52]. The log polar transformation is
generally performed with Gabor filters [14,17,20] which sample
the Cartesian spectrum by orientation and frequency bands.

We propose to consider the model introduced in [16] which
consists of the use of the GLOP filters (Log Polar Gabor Filters) de-
fined by the following transfer function for a single GLOP filter:

Gikðf ; hÞ ¼
1

r
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where the GLOP filter centered on frequency fk in the hi orientation
and with the scale parameter r appears as a separable filter. Fig. 12
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Table 2
Advantages and drawbacks of the described retina model.

Advantages Drawbacks

Cell level model: this ensues on a high biological plausibility Parameters calibration has to been performed to correlate
exactly with the biological modelGlobal approach: nonseparable spatio-temporal filtering, motion analysis and motion changes can also be

detected. Also, the implementation naturally supports parallel processing (fast computing)
All parameters are available and each one tweaks independently a particular property of the retina model.

This allows the model to be easy to adapt to many computer vision problems (motion analysis, details
extraction, luminance compression, etc.)

Easy to upgrade/enhance following the same approach (electric circuits analogy)
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shows four amplitude normalized GLOP filters. These filters act as
frequency and orientation analyzers which report out the energy re-
lated to each specific frequency and orientation band. Compared to
standard Gabor filters, these GloP filters have the advantage of
being symmetrical in frequency log scale which allows a better
zoom effect analysis.

As a final remark, the more angle and frequency samples there
are, the more precision we obtain, but at a higher level of complex-
ity. As a compromise, we currently use a maximum of 15 angles by
15 oriented frequencies to obtain 12� angle resolution and fast
computing time. Note that generally V1 cortex models use approx-
imately seven frequency bands by seven orientations [16,20].
Fig. 13. Log polar spectrum sample of a car.
2.2.2. Properties
In our approach, we only consider the amplitude spectrum sam-

pled by the set of GloP filters, i.e. we sum the energy of each filter
in order to get a sampled spectrum of N orientations by M fre-
quency bands. This simplified sampled spectrum allows an easy
interpretation of the visual scene with good data dimension reduc-
tion and allows information about its main orientations to be ob-
tained. As an example, Fig. 13 shows the log polar spectrum of a
car in front of a uniform black background. Because of the high en-
ergy located on the vertical frequencies of the spectrum (90�), we
can deduce that that the main orientations of the visual scene
are horizontal.

In addition, the log polar spectrum has specific properties for
rotations and zoom effects. In case of an object rotating around
the axis of the camera (roll), the structural characteristics of the
spectrum do not change. However the global spectrum is trans-
lated along the orientation axis. This effect is illustrated in
Fig. 14: a synthetic square rotates in front of the camera. At frame
43, the square has vertical and horizontal diagonals resulting in a
specific spectrum. At frame 52, a 45� rotation has occurred and
the spectrum is translated by 45�.
Fig. 12. Four GloP filters samples, placed on frequencies f1 and f2 with orientations
a1 and a2, the null frequency f0 is centered.
In the case of a zoom effect, the object captured at different dis-
tances from the video acquisition system (eye or camera) always
presents the same contours. But these contours are more concen-
trated or relaxed depending on the viewing distance. Indeed, if a
signal i(x) with the corresponding spectrum S(f) is zoomed with a
a factor, the resulting signal i(a � x) has the following spectrum

1
a2 � S

f
a

� �
ð6Þ

This results in a translation of the spectrum along the log fre-
quency axis

1
a2 � Sðlnðf Þ � lnðaÞÞ ð7Þ

Fig. 15 illustrates this effect with rings captured at different dis-
tances (at frame 70, the rings are closer to the camera than at
frame 81). On the spectrum, the energy has the same orientation
distribution but the mean frequency is higher at frame 81 than
at frame 70.

Here is the advantage using GLOP filters rather than standard
Gabor filters. Because of the symmetrical shape of the GLOP filters
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Fig. 14. Spectrum evolution in case of a rotating object around the camera axis.
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Fig. 16. Symbol of the spectrum analyzer.
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on a logarithmic spatial frequency scale, the energy translation can
be accurately estimated, which is not possible with Gabor filters as
discussed in [16].

This log polar spectrum is used as a structure and texture ana-
lyzer. We assign it the symbol of Fig. 16. Its input is a picture, gen-
erally one of the retina outputs (Parvo or Magno) and the output is
the corresponding sampled log polar spectrum. This analyzer can
actually be considered as close to the SIFT algorithm [47]. Indeed,
these algorithms and possible applications (object recognition, lo-
cal features analysis) are similar; nevertheless, the main difference
is the use of log polar filters which allow a better robustness
against zoom effects. Also, the proposed V1 cortex model works
in combination with the retina model which whitens the spectrum
and allows a better description of the high frequencies.
3. Bio-inspired low level image processing modules

From a biological point of view, all the processing occurring in
the visual cortex is usually related to high level processing. In that
sense, the biological model we are considering combines low level
analysis (retina processing) and high level analysis (V1 cortex pro-
cessing). In parallel, from an image processing point of view, low
level processing is related to pixel level process compared to high
level process which is related to objects. In that sense, all the mod-
ules we are going to present are low level image processing
modules.
Fig. 17. Motion analyzer structure based on the retina pro
The biological model exploits motion information coming from
the retina at the V1 cortex level and computes high level motion
analysis at the MT/V5 cortex level, in the occipito-temporal cortex
[57, 61, 62]. In this area, specific cortical cells sensitive to speed
gradient [55] and transient direction changes [56] have been
pointed out. Such high level motion analysis models have been
modeled in [58–61].

Here, we propose low level motion analysis tools, using a simi-
lar approach and remaining at the first processing steps of human
vision. The combination of Magno retina channel and the V1 cortex
model analyzer is considered (see Fig. 17) in order to perform mo-
tion event detection and direction analysis.

Also the proposed methods rely on a global analysis of the input
video stream. Thus, it works in the case of static cameras. However,
in the case of camera motion, retina Magno channel would give a
high disturbing energy. This issue can be solved using a motion
compensation algorithm as proposed in [63].

3.1. Motion analysis

In the proposed motion analysis tool (cf. Fig. 17), the log polar
spectrum analyzer acts on the Magno output of the retina filter
so that information about motion amplitude, motion direction
and motion type can be extracted.

3.1.1. Motion amplitude analysis
The study of the evolution of the log polar spectrum energy of

the Magno output of a video sequence v.s. motion amplitude shows
that there is a linear relation between speed amplitude and the
spectrum energy [32,33]. This is a known property of the Magno
channel which is confirmed by the model. We generated 10 differ-
ent synthetic head motion sequences (pan, tilt, translations in sev-
eral directions, see captions in Fig. 19), each of them being
recorded at 10 different speeds, from slow to fast motion with a
linear speed factor. Then, for each sequence, we computed the total
Magno energy during the motion and plotted it in Fig. 18. On this
graph, each motion gives a linear energy evolution in regard to the
motion speed. Considering very low speed, the energy evolution is
no longer linear. Since only moving contours contribute to the
spectrum energy, this energy is null when no motion occurs.

3.1.2. Motion direction estimation
The log polar spectrum reports the highest energy at the orien-

tations linked to the contours perpendicular to the motion direc-
tion. In order to estimate the motion direction, we sum the
energy of the log polar spectrum for each orientation [32]. This
leads to a cumulated energy per orientation curve (see Fig. 19a–
d). On this curve, the abscissa of the maximum amplitude corre-
sponds to the orientation of the most energized moving contours
which are perpendicular to the motion direction. More precisely,
Fig. 19 gives frames of a synthetic moving head and the corre-
sponding cumulated energy curves. Fig. 19a–c show that a single
motion induces a single maximum on the cumulated oriented en-
ergy per orientation curve. The abscissa of this energy maximum
corresponds to the orientation of the displacement. In the case of
more complex motions (Fig. 18d), the curve reports two maxi-
mums corresponding to the two rotation axes involved (i.e. hori-
cessing followed by the log polar spectrum analysis.
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zontal and vertical which are related to the two main orientations
of the face). When achieving a complex rotation, these two orien-
tations exhibit energy even if they are not exactly oriented along
the motion direction. This is the well-known aperture problem.
In our case, it becomes an advantage: in Fig. 19d, two maximums
appear, one for each present rotation (tilt rotation related to 182�
and pan rotation related to 89�) occurring at the same time. More-
over, this complex motion can be analyzed observing the ampli-
tude variation of each maximum. In this case, tilt rotation is
faster than pan rotation by considering normalized energies with
regard to all the orientation statistics of the face.

As a final remark, the precision of the estimated motion orien-
tation is linked to the angle resolution of the log polar transforma-
tion and to the frequency characteristics of the object observed. As
a consequence, there is a higher precision if contours oriented per-
pendicular to the motion direction exist.

3.1.3. Motion type detection
Motion type (rotation, zoom or translation) is related to some

simple transformations of the log polar spectrum of the retina
MagnoY output. As explained in Section 2.2.2, zoom and roll mo-
tions induce global translations along the frequency and orienta-
tion axes respectively.

Pan and tilt rotations induce, in the log polar domain, localized
frequency translations along the rotation axis. Indeed, when a pan
or tilt rotation occurs, moving contours are compressed or dilated
along the main rotation axis so that the associated spatial frequen-
cies increase or decrease. Fig. 20 illustrates this effect for horizontal
rotation of a ring textured object. The energy of the log polar spec-
trum is concentrated on vertical contours (i.e. horizontal frequen-
cies) because of the rotation orientation. Between frames 11 and
23, the object does a 25� horizontal rotation and the maximum en-
ergy translates from f11 = 0.16 to f23 = 0.22 normalized frequencies.
The white pixels of the log polar spectrum correspond to high en-
ergy values.

The last motion type is 2D translation, when an object trans-
lates in front of the camera. In such a case, there is no frequency
change because contours are not modified. Fig. 21 illustrates this
effect with the same object translating upwards. Only horizontal
moving contours give a response on the spectrum and the spec-
trum does not change during the motion.
3.2. Context aware event detection

The goal is to detect as accurately as possible all the dynamic
events with slow or fast motions. By considering the global energy
of the IPL output or its global log polar spectrum energy, it is pos-
sible to deduce information about the motion temporal evolution
on a video sequence. Indeed, the IPL output energy is maximum
in case of motion and is minimum when no motion occurs, follow-
ing a linear law. Minimum energy values are related to residual
spatio-temporal noise of the acquired video sequence. When mo-
tion appears, acceleration induces a global spectrum energy in-
crease and when motion stops, deceleration induces a global
spectrum energy decrease.

Fig. 22 gives two examples of periodic motion events: Fig. 22a
illustrates the evolution of the global spectrum energy in the case
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of eye blinks and Fig. 22b illustrates the evolution of the global
spectrum energy in the case of a moving hand gesture.

� On the energy curves, each maximum is related to maximum
speed and each minima is linked to motion stops or motion
transitions.
� The eye blinks example (Fig. 22a) shows that even if eye blinks

are nearly the same from one blink to the other, the global spec-
trum energy is not the same for each blink because the period of
the motion is too short with regard to the frame rate. The acqui-
sition frame rate (30 images per second) is too low to catch the
maximum speed and consequently the expected maximum
energy value of the IPL spectrum is not reached.
� The moving hand example (Fig. 22b) shows that each energy

minimum is related to a hand slow down, i.e. is related to a
motion transition between two different specific hand gestures.

3.2.1. Noise level estimation
The mean noise level lnoise and its standard deviation rnoise

associated to the frame acquisition system are estimated (assum-
ing Gaussian noise). The noise level is computed as the mean of
the residual noise level of the n first frames (currently n = 40) in
which no motion occurs. The value of lnoise can be updated during
the sequence by using the frames with no motion. Indeed, it is
quite easy to detect the frames with no motion since the Magno
IPL energy is close to zero.

The current global spectrum energy E(t) is supposed to highlight
the presence of motion in the scene if:

EðtÞ > Vd; with Vd ¼ lnoise þ 3 � rnoise ð8Þ

The threshold Vd can be considered as the minimal motion change
that can be detected by the analyzer. From a biological point of
view, such threshold brings out the minimal sensitivity of our visual
system. Here, we focus on motion detection sensitivity but this
threshold concept has already been taken into account for other
tasks such as visual contrast sensitivity [19,20]. From a signal pro-
cessing point of view, this allows false alarms to be limited by not
considering small energy variations.

In practice, even for very slow motions (above 0.2 pixel dis-
placement between 2 frames), the global spectrum energy E(t) is
higher than the considered threshold (see Fig. 22a where
Enoise = 0.15 with rnoise = 0.01).

3.2.2. Context aware motion level indicator
Our goal is to propose a temporal filtering acting on motion en-

ergy E(t) in order to validate the presence of motion in the scene or
not. This requires a reference for the decision to be taken, this ref-
erence being here a motion context level called E1(t). We finally
propose the definition of a relative motion level indicator a(t)
whose values exhibit the current motion strength with regard to
the previous motions. The following describes the method chosen.

The reference indicator E1(t) introduced in [32], can be inter-
preted as the output of an electric analog/continuous current con-
verter applied to the total IPL energy E(t). E1(t) reaches each
maximum energy value of E(t) noted E0 at time t0 and decreases
temporally according to an exponential curve law (capacity effect
with temporal constant D):

E1ðtÞ ¼ ðE0 � VdÞ � exp½�ðt � t0Þ=D� ð9Þ

Fig. 23a. illustrates this effect for the eye blink sequence pre-
sented in Fig. 22a and Fig. 24a shows the results on the hand se-
quence of Fig. 22b. The indicator E1(t) can be considered as a
‘‘motion context reference” because its value is the same as the
current motion energy when a motion transition occurs and for-
gets the last energy peak other time as a memory effect.

Finally we build a relative motion indicator a(t) whose goal is to
link the current energy level E(t) to the motion energy context
E1(t). a(t) allows the current energy level reliability w.r.t. the last
motion events (currently D seconds between events) to be esti-
mated. a(t) is defined as:

aðtÞ ¼ ½EðtÞ � Vd�=E1ðtÞ ð10Þ

This can be considered as a motion level indicator in the current
context. Its values remain between 0 and 1. a(t) = 1 when the cur-
rent energy E(t) is high compared to the motion energy context rep-
resented by E1(t) (i.e. the last motion amplitudes) and a(t) = 0 when
the current energy level E(t) is lower than the motion energy con-
text. As a consequence, a(t) gives information about the reliability
of the amplitude of the current motion compared to the previous
motion events.

On Figs. 23b and 24b, the graphs show the temporal evolution
of the indicator a(t). It is minimal when no motion occurs, maximal
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Table 3
Performances of the motion alert detector.

Success rate (%) False alarm rate (%) Missing rate (%)

Standard lighting 97 2 1
Low light 96 2 2
Noise added 90 3 7
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when motion increases and decreases when motion slows down. A
threshold level ma can be used in order to take a decision on the
presence of a motion in the scene: if a(t) > ma then a motion is de-
tected, none if the condition is not validated. A low value of ma
(close to 0) makes the system sensitive to all motions and can also
detect parasitic motions if the previous filters (here, the retina
Magno filter) do not eliminate them. On the contrary, a value close
to 1 makes the system sensitive to very high motions only or iso-
lated motions (a motion preceded by a long no motion period).
For example, a threshold level ma = 0.2 allows all motion ampli-
tudes (even low motions) to be detected. The risk of false detec-
Fig. 25. Samples of event d
tions introduced by the noise level is minimized while
considering only total spectrum energy values higher than Vd
(see 3.2.1).

We evaluate on Table 3 the performances of this indicator with
a webcam device (Logitech Sphere), using 320 � 240 image resolu-
tion. It was tested in standard office lighting conditions (300 lux
ambiance), in low light conditions (10 lux ambiance) which force
the used device sensor to get a lower signal to noise ratio and final-
ly in noisy conditions (20% Gaussian noise added to the standard
lighting videos). Fig. 25 shows some examples of the video se-
quences tested; it is made up of indoor and outdoor sequences in
different lighting conditions. The ground truth is established by a
human expert, it is made of 3500 motion alerts for a total 25 Hz vi-
deo duration of 5 h.

We carried out all tests with the same set of parameters for the
retina model: the spatial cut frequency of the photoreceptors stage
(Fph filter) aph is set to 1.0 pixel which allows high frequency noise
minimization. The second filter Fh has its spatial cut frequency ah

set to 7.0 pixels to allow large object motion detection. The tempo-
ral constants sph and sh are set to 1 frame which minimizes the
high frequency temporal noise. Finally, the temporal constant sA

of the high pass temporal filter at the IPL Magno level is set to five
frames which allows mainly high frequency changes to be ex-
tracted. The system is able to detect motion events in very different
conditions with a mean success rate higher than 90%. We can see
that even if the retina parameters remain the same for the different
capture conditions, the performances of the motion detector re-
main high. This exhibits, on the one hand, the adaptability of the
retina model which allows the signals to be reinforced whatever
the conditions are, and on the other hand, the reliability of the
algorithm applied after the retina step. The lowest performances
are obtained when the noise level is too high. Indeed, the mean
noise energy level becomes close to the motion energy and this
generates a higher missing rate of the motion event detector.

4. Human vision tools software

4.1. General presentation

Demonstration software is made available at [34]. It is possible
to apply the retina filter, V1 cortex model and event detector to
single pictures, image sequences, video files or live video captures
with the help of a webcam. The demonstration also allows High
Dynamic Range images to be compressed to Low Dynamic Range
etector test database.
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as proposed in Section 2.1 and [48]. In addition, color information
can be processed using the demosaicing algorithm proposed by
Chaix de Lavarène et al. [64]. Development libraries are also made
available for academic experiments only.

The data acquisition step of this software is based on OpenCV
[35] which provides an easy and portable image processing library.
The toolbox is developed with C++ programming and the display
allows the processing results to be seen in real-time with the help
of the cross-platform SDL and OpenGL libraries [36].

Considering retina processing, four different outputs are pro-
posed (see Fig. 26a): the first one corresponds to the photoreceptor
output. This output shows the local luminance adaptation with
back-light correction and high frequency spatio-temporal noise fil-
tering. This picture is close to the input but brighter and more con-
trasted in dark areas with an increased SNR. The second output
corresponds to the retina Parvo channel. At this stage, the mean
luminance energy is attenuated, spectrum is whitened and all con-
tours are enhanced. The third output corresponds to the retina
Magno channel which reports only energy on the moving low spa-
tial frequency contours. The last output is displayed in the case of
color processing, following [48] principle. Color image is multi-
plexed using Bayer color sampling before being processed by the
retina. Color image is demultiplexed at the output of the Parvo ret-
ina channel. Depending on retina parameters setup, color image
tone mapping can be performed (cf. Section 2.1.3 and [48]).

V1 cortex model is available and can be applied either to the in-
put frames, retina Parvo or Magno channels and the resulting log
a

b

c

Fig. 26. Screenshots of the retin
polar sampled spectrum can be observed. Finally, event detection
(cf. Section 3.2) is available and allows flexible initialization steps
for situation-adapted event detection.

For a processing efficiency overview, we give in Table 4 the fra-
merate obtained with the single threaded demonstration using dif-
ferent image input sizes, from 160 � 120 pixels to 1024 � 768
pixels. The test has been carried out on a laptop computer based
on an Intel Core 2 2.5 GHz T9300 processor with Windows Vista
operating system. Note that the reported values do not take into
account image acquisition and display computational time in order
to focus exclusively on the model. Also, since the code is regularly
enhanced, better results can be expected on the same configura-
tion while hardware configuration and external libraries versions
can impact on performances (disk access, live frame grabbing effi-
ciency, FFT processing speed, etc.).

In the table, the computational cost of each part of the retina
model, V1 model and the global processing (see. Fig. 11) are given.
Note that for Parvo and Magno filtering, the OPL model (see Fig. 4a)
with its included photoreceptors local adaptation is required pre-
processing step which is taken into account in the reported values.
When dealing with gray level HDR images luminance compression
as illustrated in Fig. 8c, the computational cost is the one of the
Parvo channel since this part of the model achieves the effect.

The retina model and its parts (local luminance adaptation and
OPL) present a linear complexity: their number of operations per
pixel does not change when image size and other parameters are
modified. The event detector also has such properties. This is dem-
d

a demonstration software.



Table 4
Relative computing costs of the retina model demonstrator.

Measured frame rate (fps) using a single threaded application
on a Intel Core 2 Duo processor platform

Relative computing cost in the retina model

Input image size 160 � 120 320 � 240 640 � 480 800 � 600 1024 � 768

Local luminance adaptation with OPL model (cf. fig. 4) 800 171 33 20 9 45%

Parvo channel (cf. Figs. 4 and 6) 415 89 18 11 5 25% (cf. Fig. 6)

Magno channel (cf. Figs. 4 and 9) 371 72 15 9 4 30% (cf. Fig. 9)

Whole retina model (Parvo and Magno) 260 52 11 7 3 100% (Fig. 11)

Whole retina and log polar spectrum analyzer 156 34 7 4 2 –

Event detector + retina Magno channel 370 71 14 9 4 –
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onstrated in Fig. 27 which shows the relation between computa-
tional time and image size (number of pixels to process). We can
see that whatever processing stage is considered, computational
time remains proportional to the number of pixels. Note that when
considering high resolution images, background operating system
applications and system memory management may disturb mod-
els computational time measure and over estimate computation
time by 10%.

Then, since the retina model achieves an efficient local features
extraction with nonseparable spatial and temporal filtering at a
relatively low number of operations per pixel, this approach is well
addressed to common computer vision applications which require
such low level data extraction. However, for higher analysis level
(V1 cortex modeling), the log polar spectrum is higher complexity
since a FFT is used. Indeed, its implementation relies on a Fourier
transform computed by OpenCV followed by a spectrum log polar
transformation. This last step is carried out using pre initialized
transformation tables (lookup tables) which ensures high effi-
ciency and low processing cost.

4.2. Parameters

The demonstration parameters have been settled up in order to
meet generic contour extraction requirements, taking into account
standard problems of image input constraints (noise and back-lit
problems). In that sense, the proposed values are efficient for a
wide range of images and image sequence input. However, the pro-
gram allows all the parameters to be freely modified.
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in regard of input image resolution.
Considering retina default setup, the spatial cut frequency aph

of the photoreceptor Fph filter is set to 1.0 (high frequency noise
minimization). The second filter Fh has its spatial cut frequency
ah set to 7.0. These two values allow static contours to be extracted
with a thickness in the range of (1, 7) pixels. The temporal con-
stants sph and sh are set to 1 frame which allows the high frequency
noise to be minimized.

The temporal constant sA of the high pass temporal filter at the
IPL Magno level is set to five frames, which allows mainly high fre-
quency changes to be extracted.

Fig. 26a shows the graphical user interface of the demonstrator.
Fig. 26b shows an example of standard lighting indoor sequence
processing which illustrates the efficiency of the system in stan-
dard conditions: noise is minimized, static and moving contours
are reliably extracted. Fig. 26c shows the result of the retina pro-
cessing in the case of a night outdoor city eight bit gray level se-
quence. The poor lighting induced a dark and noisy acquisition.
This video stream is enhanced by retina filtering and its outputs
show details which could not be seen on the original frame (moun-
tains and constructions in the background and a moving car with
no lights switched on, in the foreground). Finally, Fig. 26d shows
the general parameters settings window, it allows all retina and
V1 cortex parameters to be adjusted freely by the user.
4.3. Applications and perspectives

Our approach, consisting in taking into account the processing
occurring at the retina level, has the main advantage of preparing
video data appropriately for high level processing. As a result, it
is of great interest to use it for a wide range of applications, from
general visual scene analysis (details and motion extraction) to
more specific applications (cf. Fig. 28). We have already used it
for the purpose of head motion analysis [32,38,39,66] with an
application of hypo vigilance analysis to detect and prevent a dri-
ver from falling asleep [40,41]. Also, the interest of using our low
level image processing modules for head motion analysis in the
context of sign language decoding was demonstrated in [42].

In particular, this retina model is well suited for applications
such as video surveillance because of its ability to enhance visual
information even in the case of back-lit situations and noise. We
are currently working on a moving object tracker and identifier
able to track objects by considering their motion information at
the Magno retina filter output and to identify or classify them by
the use of the log polar spectrum of their contour detail (Parvo ret-
ina output) given by the V1 cortex model. This last step has already
been engaged in [43].

Also, when considering High Dynamic Range images such as the
example proposed in Fig. 8a, this models acts similarly as the hu-
man retina does in terms of image luminance compression (i.e.
‘‘Tone Mapping”): as discussed in [2], since real world scenes are
High Dynamic Range (HDR) but neurons cannot code a so wide
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variety of values (they can be considered as Lower Dynamic Range
coders), the retina compresses this HDR information on a LDR for-
mat and keeps all details in the visual scene as shown in Fig. 8c.
This particular topic of image tone mapping is discussed in [48].

Another application under consideration is the use of this model
as a video preprocessing step for visual prostheses and sensory
substitution [44].

As a final remark, this retina model is designed to be used in any
context where contours and contrasts constitute important infor-
mation. This model can be used either on standard camera or other
kind of images (infrared, Xray images, etc.) since luminance/source
amplitude information is the considered input data. Using the ret-
ina model as a generic preprocessing step for input data enhance-
ment can be a very appropriate solution for any kind of application
which requires low level features extraction in order to enhance
the high level analysis capabilities. This preprocessing mimics hu-
man vision: these low level computational steps are required in or-
der to ensure more efficient higher level visual scene analysis and
interpretation. As a consequence, applying such an approach to
computer vision is expected to allow a new step of reliability and
efficiency to be reached. This kind of preprocessing for higher level
generic scene recognition or classification is the next step which
would show the interest of such an approach. A starting point
should be video sequence analysis and interpretation for sequence
summary synthesis [45]. Such a topic would allow such models to
be evaluated for key frames extraction, objects tracking and recog-
nition and visual scene categorization. Focusing on real life video
and animation sequences [46] should constitute a starting point
to evaluate the robustness of such an approach against the wide
variety of situations which can be addressed.

Fig. 28 summarizes the discussed applications which can poten-
tially benefit from the proposed low level processing. From ‘‘classi-
cal” computer vision applications to more human vision centered
topics, ‘‘retina like” preprocessing is expected to enhance target
applications performances. On the figure, we distinguish low level
image processing applications which can directly be carried out by
the proposed models and higher level analysis which would re-
quire these tools as preprocessing steps.
5. Conclusion

In this paper, we presented modules for low level data process-
ing. All the modules considered are based on the modeling of spe-
cific parts (retina and V1 cortex) of the Human Visual System. The
efficiency of the modules proposed for video data structuring be-
fore high level processing has been shown.

This model can be considered as an image processing kernel ba-
sis which can be extended for more specific applications. From a
biological point of view, it shows interesting properties for image
processing purposes and for its use in different computer vision
applications. Its integration in video-surveillance applications,
head motion analysis or image classification shows its qualities
in terms of image analysis and fast computing time. This defends
our global philosophy of building bio-inspired vision algorithms.

The model presented in this paper focuses on gray level image
processing. Color information integration has been proposed in
[48] for High Dynamic Range processing application, using an
accurate demosaicing algorithm from Chaix de Lavarène et al.
[64] . However, since at the retina level, many cells and their ac-
tions are still biologically unknown, investigations are still re-
quired in order to understand and better model all the vision
processing steps which we naturally perform. For instance, the
introduction of motion compensation for eye/camera motion han-
dling, proposed in [63] , would enlarge the application spectra. Fi-
nally, the next research step is to involve such human retina model
in higher level video sequence analysis, taking full advantages of
the extracted low level features as shown in [66] in the context
of face analysis.
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