
Some Brief Thoughts on Philosophical Questions in Systems
Biology

(or, my reaction to Sydney Brenner and other critics)

Is Systems Biology useless because it attempts to tackle ill-posed ‘inverse
problems’?

Jacques Hadamard, over a century ago, set out the conditions he believed were required for a mathe-
matical problem to be well-posed [6]. In essence, the three requirements of a solution to such a problem
were existence, uniqueness and smoothness. Sydney Brenner points out that the problems Systems Bi-
ology purports to solve are of an inverse nature (i.e., they seek to go from behaviour/function/output to
mechanism/structure/model, rather than the other way round), and are thus ill-posed in the Hadamar-
dian sense [2]. He says that because in inverse problems one has to overcome an information gap (the
observed data does not in general uniquely specify the underlying system), these problems can only
be solved by including some sort of prior information or assumptions. Others like Lewis Wolpert have
also raised similar doubts about the efficacy of Systems Biology approaches.

This argument seems to involve an implicit (and in my view, erroneous) assumption that if a problem
is ill-posed, no useful solution or model can be obtained by attempting to solve it. It seems to me that
nature is proficient at solving inverse problems. Evolution itself is solving a kind of inverse problem,
that of constructing organisms which best fit the prevailing environmental circumstances. All of human
and animal cognitive learning involves the solution of inverse problems. One of the most dramatic ex-
amples is human language acquisition. It is generally accepted that the amount and type of linguistic
input a child receives is insufficient to precisely specify a given grammar: this is often referred to as
the “poverty of stimulus” and the consequent “paradox of language acquisition”. It has been proven
mathematically that any formal language that has hierarchical structure capable of infinite recursion
is unlearnable from positive evidence alone [4]. And yet, we learn; indeed, as studies of cultures such
as the Kaluli of Papua New Guinea and the Warlpiri of Australia have shown, infants are even capable
of acquiring language without ever being directly spoken to [12]. Linguists have varying theories for
how this happens. We may be hard-wired to search within some sort of restricted class of grammars
(e.g., Chomsky’s universal grammar hypothesis [3]). We may simply be able to come to good heuristic
approximations such that we all have slightly differing grammars which overlap sufficiently to allow
for communication. There is little consensus on the cognitive algorithms or mechanisms, but what is
clear is that children do solve the inverse problem of learning language, very efficiently and very usefully.

This question also seems to touch upon a broader philosophical issue, which is the nature of scien-
tific reasoning and the role of induction. It seems to me that the forward/inverse problem distinction
closely mirrors the distinction between deductive logic and inductive inference. So perhaps there is a
parallel between Brenner’s rejection of the utility of solving inverse problems and Popper’s rejection of
inductive reasoning as a justifiable scientific method [14]. Nevertheless, despite its logical unsoundness,
inductive generalisation of one form or another has surely been at the heart of all scientific progress.
The problem of induction has long intrigued philosophers; the classical treatment was by Hume, who
advocated a practical approach based on common sense, recognising the inevitability of inductive rea-
soning in our daily lives [9]. In recent decades, work in statistical learning theory has for the first time
allowed us to give a mathematical underpinning to Hume’s notion of ‘common sense’. Approaches
such as Bayesian inference allow us to quantify uncertainty and construct a reasonable framework
for reliable reasoning [7]. Popper’s ‘falsifiability’ criterion has been controversial, but work by Vapnik
and Chervonenkis suggests that a modified version of it can be resurrected in a statistical learning



theory framework, with the notion of VC dimension serving as an analogue for Popper’s ‘degree of
falsifiability’ [8,16]. Thus it would appear that in practice, a scientific method founded on falsifiability
cannot really be separated from induction.

At a more practical level, one may ask: “OK, so nature can do all sorts of wonderful things, we
can come up with philosophical justifications and so on, but in Systems Biology, it’s essentially com-
puters that need to be able to solve inverse problems. So how do we know that our technology and
algorithms are good enough to do that?”. I think advances in Computer Science, in particular in
Machine Learning, provide considerable grounds for optimism. Brenner himself suggests the sorts of
conditions needed to be able to solve inverse problems: you need some extra information, in the form
of a priori assumptions [2]. Machine Learning methods allow us to do this via the process of regulari-
sation, a technique developed initially by Tychonoff precisely in order to deal with ill-posed or inverse
problems [15]. Essentially regularisation just means invoking some sort of smoothness or simplicity
assumption, i.e., penalising overly complex models. It can be seen as an implementation of Occam’s
razor; in a Bayesian context, it corresponds to specifying a prior distribution over model parameters.
Regularisation, combined with heuristic optimisation methods, actually make it feasible for computers
to search over infinitely large spaces (e.g., of possible molecular structures) and come up with good
models. Of course, such methods do not always work well, but there are already a large number of
success stories from a wide range of scientific domains.

None of this is to belittle the importance of detailed experimental investigation in order to build
models in the ‘forward’ direction. However, such work is generally expensive and time-consuming; at
the very least, Systems Biology approaches can be useful in focusing experimental efforts along po-
tentially fruitful directions, a point Brenner seems not to acknowledge. To me, Systems Biology is
fundamentally about the symbiotic cyclic interplay between the forward and inverse problems; com-
putational models undoubtedly need to be continuously refined based on experiment, but the models
can in turn help to make the use of limited experimental resources more efficient.

Is all the high-throughput data Systems Biologists like to use too noisy to
tell us anything meaningful?

Noise certainly is a problem. However, as we saw in the previous section, inverse problems already
involve the inference of missing information, even if the data is entirely reliable. So the addition of
noise does not fundamentally change the situation; it just adds an extra source of uncertainty to what
was already an ill-posed problem. This uncertainty has to be dealt with within a statistical framework,
and the approaches outlined above provide a way of doing so; any reasonable machine learning method
allows for the incorporation of an error term to account for noise in the observations. The wider area
of statistical signal processing has long been concerned with the problem of extracting signal from
noise, so this is a well-studied issue that is certainly not unique to biology. Of course there is a certain
threshold of noise beyond which the data will become useless, but surely not all high-throughput data
should be discarded just because we expect it to be noisy.

Brenner also makes the related point that not everything we are measuring may be of significance;
biologically, there are likely to be many ‘don’t-care conditions’, i.e., variables whose values may fluc-
tuate substantially because they are not functionally or evolutionarily constrained [2]. Again, this is
not something that need be a problem: it corresponds to the feature selection problem which has been
extensively studied in the Machine Learning community. One can use statistical concepts like entropy
to quantify the degree of uncertainty in one’s observations of any given variable, and a large number
of methods exist to rank and select variables based on their information value for the system and
circumstances being studied.



Does Systems Biology seek to avoid questions of causality? Does it seek to
release us from having to think by somehow automating science?

I’m not sure I understand this criticism entirely, but presumably it stems from the ‘black-box’ nature
of many computational models; they may be able to reproduce the data we observe, but it is not always
easy to understand how they do so and what correspondence that bears to reality. This is certainly true
in some cases, although not always; for instance, certain machine learning approaches like Inductive
Logic Programming [11] have been designed specifically to produce interpretable, rule-based models,
and have been successfully applied to a number of biological problems such as drug design [10]. More
generally, however, I don’t think the outputs of the large-scale computational modelling methods used
in Systems Biology should be necessarily seen as ends in themselves. As I have said earlier, it is the
iterative cycle of modelling and experiment that leads us to more and more refined understanding of
the system being studied.

On the broader issue of causality, this has of course been one of the most vexed notions in philos-
ophy at least since Aristotle. Whilst I certainly don’t have any novel insights into the fundamental
questions, I do think that we should be careful not to subscribe to a sort of ‘causality fundamentalism’:
the idea that we can find a proximate cause for every phenomenon we observe. Perhaps our notion of
causality tends to be too simplistic at times; this seems to be something that has been ingrained into
our psychology for evolutionary reasons, and it is probably one of the factors underlying the invention
of religion [5]. There is a large body of literature on emergent phenomena in complex systems [1], and
while not all of this work may be of the highest standard, I don’t think one can dismiss it entirely,
as Brenner seems to do [2]. It would appear that causality can in fact be quite complicated at times.
I like Denis Noble’s conception of The Music of Life [13]: the vision of a biological system as a kind
of orchestra, producing beautiful music as a result of all the parts functioning in perfect harmony.
However, the biological orchestra has no conductor: it somehow manages to conduct itself.
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