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6. Rule models 6.1 Learning ordered rule lists
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6. Rule models 6.1 Learning ordered rule lists

Example 6.1, p.159 Learning a rule list I

Consider again our small dolphins data set with positive examples
p1: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p2: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p3: Length= 3 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few
p4: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth=many
p5: Length= 5 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few

and negatives
n1: Length= 5 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many
n2: Length= 4 ∧ Gills= yes ∧ Beak= yes ∧ Teeth=many
n3: Length= 5 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many
n4: Length= 4 ∧ Gills= yes ∧ Beak= no ∧ Teeth=many
n5: Length= 4 ∧ Gills= no ∧ Beak= yes ∧ Teeth= few
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6. Rule models 6.1 Learning ordered rule lists

Example 6.1, p.159 Learning a rule list II

t The nine possible literals are shown with their coverage counts in Figure 6.2
(left).

t Three of these are pure; in the impurity isometrics plot in Figure 6.2 (right)
they end up on the x-axis and y-axis.

t One of the literals covers two positives and two negatives, and therefore
has the same impurity as the overall data set; this literal ends up on the
ascending diagonal in the coverage plot.
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6. Rule models 6.1 Learning ordered rule lists

Figure 6.2, p.160 Searching for literals
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(left) All literals with their coverage counts on the data in Example 6.1. The ones in

green (red) are pure for the positive (negative) class. (right) The nine literals plotted as

points in coverage space, with their impurity values indicated by impurity isometrics

(away from the ascending diagonal is better). Impurity values are colour-coded: towards

green if ṗ > 1/2, towards red if ṗ < 1/2, and orange if ṗ = 1/2 (on a 45 degree

isometric). The violet arrow indicates the selected literal, which excludes all five positives

and one negative.
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6. Rule models 6.1 Learning ordered rule lists

Figure 6.1, p.158 Equivalence of search heuristics
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ROC isometrics for entropy (rescaled to have a maximum value of 1/2), Gini index and

minority class. The grey dotted symmetry line is defined by ṗ = 1/2: each isometric has

two parts, one above the symmetry line (where impurity decreases with increasing

empirical probability ṗ) and its mirror image below the symmetry line (where impurity is

proportional to ṗ).
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6. Rule models 6.1 Learning ordered rule lists

Figure 6.3, p.161 Constructing the second rule
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(left) Revised coverage counts after removing the four negative examples covered by the

first rule found (literals not covering any examples are omitted). (right) We are now

operating in the right-most ‘slice’ of Figure 6.2.
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6. Rule models 6.1 Learning ordered rule lists

Figure 6.4, p.162 Constructing the third rule
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(left) The third rule covers the one remaining negative example, so that the remaining

positives can be swept up by a default rule. (right) This will collapse the coverage space.
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6. Rule models 6.1 Learning ordered rule lists

Algorithm 6.1, p.163 Learning an ordered list of rules

Algorithm LearnRuleList(D) – learn an ordered list of rules.

Input : labelled training data D .
Output : rule list R.

1 R ←;;
2 while D 6= ; do
3 r ←LearnRule(D) ; // LearnRule: see Algorithm 6.2
4 append r to the end of R;
5 D ←D \ {x ∈ D|x is covered by r };
6 end
7 return R
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6. Rule models 6.1 Learning ordered rule lists

Algorithm 6.2, p.164 Learning a single rule

Algorithm LearnRule(D) – learn a single rule.

Input : labelled training data D .
Output : rule r .

1 b ←true;
2 L ←set of available literals;
3 while not Homogeneous(D) do
4 l ←BestLiteral(D,L) ; // e.g., highest purity; see text
5 b ←b ∧ l ;
6 D ← {x ∈ D|x is covered by b};
7 L ← L \ {l ′ ∈ L|l ′ uses same feature as l };
8 end
9 C ←Label(D) ; // e.g., majority class

10 r ←·if b then Class=C ·;
11 return r
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6. Rule models 6.1 Learning ordered rule lists

Figure 6.5, p.164 Rule list as a tree
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(left) A right-branching feature tree corresponding to a list of single-literal rules. (right)
The construction of this feature tree depicted in coverage space. The leaves of the tree

are either purely positive (in green) or purely negative (in red). Reordering these leaves

on their empirical probability results in the blue coverage curve. As the rule list separates

the classes this is a perfect coverage curve.
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6. Rule models 6.1 Learning ordered rule lists

Important point to remember

Rule lists inherit the property of decision trees that their training set coverage
curve is always convex.
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6. Rule models 6.2 Learning unordered rule sets
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6. Rule models 6.2 Learning unordered rule sets

Example 6.3, p.167 Learning a rule set for class ⊕
Figure 6.7 shows that the first rule learned for the positive class is

·if Length= 3 then Class=⊕·

The two examples covered by this rule are removed, and a new rule is learned.
We now encounter a new situation, as none of the candidates is pure (Figure
6.8). We thus start a second-level search, from which the following pure rule
emerges:

·if Gills= no ∧ Length= 5 then Class=⊕·
To cover the remaining positive, we again need a rule with two conditions (Figure
6.9):

·if Gills= no ∧ Teeth=many then Class=⊕·
Notice that, even though these rules are overlapping, their overlap only covers
positive examples (since each of them is pure) and so there is no need to
organise them in an if-then-else list.
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6. Rule models 6.2 Learning unordered rule sets

Figure 6.7, p.168 Learning a rule set
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(left) The first rule is learned for the positive class. (right) Precision isometrics look

identical to impurity isometrics (Figure 6.2); however, the difference is that precision is

lowest on the x-axis and highest on the y-axis, while purity is lowest on the ascending

diagonal and highest on both the x-axis and the y-axis.
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6. Rule models 6.2 Learning unordered rule sets

Figure 6.8, p.169 Learning the second rule
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(left) The second rule needs two literals: we use maximum precision to select both.

(right) The coverage space is smaller because the two positives covered by the first rule

are removed. The blue box on the left indicates an even smaller coverage space in which

the search for the second literal is carried out, after the condition Gills= no filters out

four negatives. Inside the blue box precision isometrics overlap with those in the outer

box (this is not necessarily the case with search heuristics other than precision).
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6. Rule models 6.2 Learning unordered rule sets

Figure 6.9, p.170 Learning the third rule
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(left) The third and final rule again needs two literals. (right) The first literal excludes

four negatives, the second excludes the one remaining negative.
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6. Rule models 6.2 Learning unordered rule sets

Algorithm 6.3, p.171 Learning an unordered set of rules

Algorithm LearnRuleSet(D) – learn an unordered set of rules.

Input : labelled training data D .
Output : rule set R.

1 R ←;;
2 for every class Ci do
3 Di ←D ;
4 while Di contains examples of class Ci do
5 r ←LearnRuleForClass(Di ,Ci ) ; // LearnRuleForClass: see Algorithm

6.4
6 R ←R ∪ {r };
7 Di ←Di \ {x ∈Ci |x is covered by r } ; // remove only positives

8 end
9 end

10 return R
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6. Rule models 6.2 Learning unordered rule sets

Algorithm 6.4, p.171 Learning a single rule for a given class

Algorithm LearnRuleForClass(D,Ci ) – learn a single rule for a given class.

Input : labelled training data D ; class Ci .
Output : rule r .

1 b ←true;
2 L ←set of available literals ; // can be initialised by seed example
3 while not Homogeneous(D) do
4 l ←BestLiteral(D,L,Ci ) ; // e.g. maximising precision on class Ci

5 b ←b ∧ l ;
6 D ← {x ∈ D|x is covered by b};
7 L ← L \ {l ′ ∈ L|l ′ uses same feature as l };
8 end
9 r ←·if b then Class=Ci ·;

10 return r
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6. Rule models 6.2 Learning unordered rule sets

The need for probability smoothing

One issue with using precision as search heuristic is that it tends to focus a bit
too much on finding pure rules, thereby occasionally missing near-pure rules that
can be specialised into a more general pure rule.

t Consider Figure 6.10 (left): precision favours the rule
·if Length= 3 then Class=⊕·, even though the near-pure literal Gills= no
leads to the pure rule ·if Gills= no ∧ Teeth=many then Class=⊕·.

t A convenient way to deal with this ‘myopia’ of precision is the Laplace
correction, which ensures that [5+,1−] is ‘corrected’ to [6+,2−] and thus
considered to be of the same quality as [2+,0−] aka [3+,1−] (Figure 6.10
(right)).
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6. Rule models 6.2 Learning unordered rule sets

Figure 6.10, p.172 Using the Laplace correction
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(left) Using Laplace-corrected precision allows learning a better rule in the first iteration.

(right) Laplace correction adds one positive and one negative pseudo-count, which

means that the isometrics now rotate around (−1,−1) in coverage space, resulting in a

preference for more general rules.
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