8/29/2012

Software Development

Development Process

e Analysis

— Requirement Analysis
* Functional and Performance

— Systems Analysis
* Break-down between Hardware and Software
* High Level Architecture
* Control Scheme

— Object Analysis
* Object Structural Analysis
* Object Behavioral Application

8/29/2012

Development Process

* Design
— Architectural
— Mechanistic
— Detailed Design

* Optimize with low level information
* Translation
— Creating an executable application

e Testing

UML

Object Model
Use cases and Scenarios
Behavioral model

Representation of tasking and task
synchronisation

Models of physical topology

8/29/2012

Iterative Rapid Development

Overview of UML

Structural view Implementation vie
omponent diagrams

User view
Use case

Behavioral view
sequence diagrams
collaboration diagrams|
statechart diagrams|
activity diagrams|

Environment vie
Deployment diagrams

8/29/2012

Visual Modelling and the UML

Basic Concepts

e A Class:

— A class is a description used to instantiate
objects

* An Object:

— Is an instance of a class, it has a name,
attributes and their values, and methods

— An object models an idea found in reality,
(tangible or abstract)

8/29/2012

Basic Concepts (cont’d)

Attributes
Methods (Services, Messages)

Information hiding and Encapsulation: A
technique in which an object reveals as
little as possible about its inner workings.

Inheritance
Polymorphism, Overloading, Templates

Object Oriented Analysis
OOA

1. Discovering Objects

— The Data Perspective
¢ In the problem space or external systems
* Physical devices
e Events that need to be recorded (ex. Measurements)
* Physical or geographical locations
e Organizational units (departments, etc.)

8/29/2012

OOA (cont’d)

— The Functional Perspective
* What responsibilities does the object have?
» Ex. An event handler, a controller
— The Behavioral Perspective
* Who does the object interact with? How?
* Describe the object behavior

Identifying Objects

— An object may appear as a noun (ex.
Measurement) or disguised in a verb (to measure)

— A method might appear as a verb (ex. Investigate)
or disguised in a noun (investigation)

— Attributes describe some kind of characteristics for
the object (adjectives). Attributes can be simple or
complex. Complex attributes may lead to forming a
new object. Attributes can also be nouns.

8/29/2012

Object Types

— External Entities: Sensors, actuators, control
panel, devices

— Information Items : Displays, Commands, etc.

— Entities which establishes the context of the
problem : Controller, monitors, schedulers

OOA (cont’d)

2. Class Hierarchies
— Generalization
* A manager, a commission worker --> Employee
— Specialization (IS_A)
e Employee --> A commission worker

8/29/2012

OOA (cont’d)

. Relationships
— Types
* Association
— General form of dependency
* Aggregation
— An object may consist of other objects
* Inheritance
— Cardinality (Multiplicity)
e (Binary, Many, ..)

OOA (cont’d)

. Object Attributes

— Discovering attributes and placing in class
hierarchy

— Attribute types
* Naming : Ex. SensorlD, Account
e Descriptive Ex. Card expiration date
» Referential Ex. Referring to other objects

8/29/2012

OOA (cont’d)

5. Object Behavior

— Discovering states, changes in state, and
conditions and actions

— Building the state diagrams of objects

OOA (cont’d)

6. Object Services

— Implicit Services (create, modify, search, delete,
etc.) ex. constructors

— Services associated with messages
— Services associated with object relationships

— Services associated with attributes (accessor
methods ex. get, set . ..)

8/29/2012

Object Oriented Design OOD

1. Notation (Unified Modeling Language)

— Structural description (class diagrams)

— Dynamics (Collaboration and interaction diagrams)
2. Detailed Class and object description

— Visibility (Private, protected, ..)

— Containment (ex. Packages or Components)
— Concurrency

10

What is the UML?

® UML stands for Unified Modeling Language

® The UML is the standard language for
visualizing, specifying, constructing, and
documenting the artifacts of a software-
intensive system

® |t can be used with all processes, throughout

the development life cycle, and across
different implementation technologies.

8/29/2012

11

8/29/2012

UML Concepts

® The UML may be used to:

— Display the boundary of a system & its major
functions using use cases and actors

— Illustrate use case realizations with interaction
diagrams

— Represent a static structure of a system using class
diagrams

— Model the behavior of objects with state transition
diagrams

— Reveal the physical implementation architecture
with component & deployment diagrams

— Extend your functionality with stereotypes

Putting the UML to Work

® The ESU University wants to computerize their registration
system
— The Registrar sets up the curriculum for a semester
¢ One course may have multiple course offerings
Students select 4 primary courses and 2 alternate courses

Once a student registers for a semester, the billing system is
notified so the student may be billed for the semester

Students may use the system to add/drop courses for a period of
time after registration

Professors use the system to receive their course offering rosters

Users of the registration system are assigned passwords which are
used at logon validation

12

8/29/2012

Actors

® An actor is someone or some thing that must interact with
the system under development

Use Cases

® Ause case is a pattern of behavior the system exhibits

— Each use case is a sequence of related transactions performed by an
actor and the system in a dialogue

® Actors are examined to determine their needs
— Registrar -- maintain the curriculum
— Professor -- request roster
— Student -- maintain schedule

— Billing System -- receive billing information from registration

13

8/29/2012

Documenting Use Cases

* A flow of events document is created for each
use cases

— Written from an actor point of view

® Details what the system must provide to the
actor when the use cases is executed

® Typical contents
— How the use case starts and ends
— Normal flow of events
— Alternate flow of events
— Exceptional flow of events

Maintain Curriculum
Flow of Events

® This use case begins when the Registrar logs onto the

Registration System and enters his/her password. The system
verifies that the password is valid (E-1) and prompts the
Registrar to select the current semester or a future semester
(E-2). The Registrar enters the desired semester. The system
prompts the Registrar to select the desired activity: ADD,
DELETE, REVIEW, or QUIT.

If the activity selected is ADD, the S-1: Add a Course subflow is

performed.

If the activity selected is DELETE, the S-2: Delete a Course subflow
is performed.

If the activity selected is REVIEW, the S-3: Review Curriculum
subflow is performed.

If the activity selected is QUIT, the use case ends.

14

8/29/2012

Use Case Diagram

® Use case diagrams are created to visualize the
relationships between actors and use cases

Uses and Extends Use Case Relationships

® Asthe use cases are documented, other use case
relationships may be discovered

— The includes relationship shows behavior that is common to one
or more use cases

— An extends relationship shows optional behavior
,//\\
k‘vt‘r\ <<includes>>

Register for courses ~

<<includes>>
Logon validation
()

\ pZ

~

Maintain curriculum

15

8/29/2012

Example Use Case

. - actor

ECG Machine - ’
Remote
Display

wACTor

Physician rigger on «actop
hy : Patient

«aCtor

rvic
ns Chart
«actorm Recorder
Service Rep
iew Error

Use Case Realizations

* The use case diagram presents an outside view of
the system

* Interaction diagrams describe how use cases are
realized as interactions among societies of objects

* Two types of interaction diagrams
— Sequence diagrams
— Collaboration diagrams

16

8/29/2012

Sequence Diagram

® Asequence diagram displays object interactions arranged
in a time sequence

1:fill in info
S T TS T

s e
form n g

2: submit

~

3:add course(joe, math 01)

T Tt
4: are you open?

6: add (joe)
7:add (joe)
B

Collaboration Diagram

* A collaboration diagram displays object
interactions organized around objects and their

links to one another e o
e -
x

: Registrar \L 3:add course

theManager :
aCourse : "
| CurriculumManager
Course —
E

4: new course

17

8/29/2012

Class Diagrams

® A class diagram shows the existence of classes and
their relationships in the logical view of a system

® UML modeling elements in class diagrams
— Classes and their structure and behavior
— Association, aggregation, and inheritance relationships
— Multiplicity and navigation indicators
— Role names

Classes

A class is a collection of objects with common
structure, common behavior, common
relationships and common semantics

Classes are found by examining the objects in
sequence and collaboration diagram

A class is drawn as a rectangle with three
compartments

Classes should be named using the vocabulary
of the domain
— Naming standards should be created

— e.g., all classes are singular nouns starting with a
capital letter

18

8/29/2012

Classes

ScheduleAlgorithm

RegistrationManager
Course
Studentinfo

RegistrationForm

Professorinfo
CourseOffering

Operations

* The behavior of a class is represented by its operations

e Operations may be found by examining interaction
diagrams

registration registration

RegistrationManager

3:add course(joe, math 01).
—— addCourse(Student,Course)

19

8/29/2012

Attributes

* The structure of a class is represented by its
attributes

» Attributes may be found by examining class
definitions, the problem requirements, and by
applying domain knowledge

CourseOffering

Each course offering number
has a number, location location
and time time

Classes

RegistrationForm ScheduleAlgorithm

RegistrationManager

addStudent(Course, Studentinfo)
Course

name
numberCredits

Studentinfo
open()

name addStudent(Studentinfo)
lutilels

Professorinfo
name CourseOffering
tenureStatus Beten
open()
addStudent(Studentinfo)

20

8/29/2012

Example Classes

Temperature Sensor Stepper Motor RE232 Interface

temperature position data to be transmitted
calibration constant data received

step forwardi | baud rate

acquirel j step backward() parity

set calibration() parki) stop bits

power]) start bits

last emror

send messagel)
receive messagel |

set comm parametersi)
pausel)

start()

geterron)

clear emor()

Relationships

® Relationships provide a pathway for
communication between objects

® Sequence and/or collaboration diagrams are
examined to determine what links between
objects need to exist to accomplish the
behavior -- if two objects need to “talk” there
must be a link between them

®* Three types of relationships are:
— Association
— Aggregation
— Inheritance

21

8/29/2012

Relationships

An association is a bi-directional connection between classes
— An association is shown as a line connecting the related classes

An aggregation is a stronger form of relationship where the
relationship is between a whole and its parts

— An aggregation is shown as a line connecting the related classes
with a diamond next to the class representing the whole

A dependency relationship is a weaker form of relationship showing
a relationship between a client and a supplier where the client does
not have semantic knowledge of the supplier

— A dependency is shown as a dashed line pointing from the client
to the supplier

Finding Relationships

» Relationships are discovered by examining
interaction diagrams

— If two objects must “talk” there must be a pathway

for communication

Manager

3: add student(joe)

22

8/29/2012

Relationships

ScheduleAlgorithm

RegistrationManager

addStudent(Course, Studentinfo)
Course

Studentinfo

Professorinfo

addStudent(Studentinfo)

Multiplicity and Navigation

® Multiplicity defines how many objects
participate in a relationships
— Multiplicity is the number of instances of one class
related to ONE instance of the other class
— For each association and aggregation, there are
two multiplicity decisions to make: one for each
end of the relationship
® Although associations and aggregations are bi-
directional by default, it is often desirable to
restrict navigation to one direction

— If navigation is restricted, an arrowhead is added
to indicate the direction of the navigation

23

8/29/2012

Multiplicity and Navigation

ScheduleAlgorithm

0.* 1| RegistrationManager

addStudent(Course, Studentinfo)
Course

Professorinfo

tenureStatus

addStudent(Studentinfo)

Inheritance

* Inheritance is a relationships between a superclass
and its subclasses

* There are two ways to find inheritance:
— Generalization
— Specialization

e Common attributes, operations, and/or
relationships are shown at the highest applicable
level in the hierarchy

24

8/29/2012

Inheritance

RegistrationForm ScheduleAlgorithm

RegistrationManager

addStudent(Course, Studentinfo)

Course

RegistrationUser redits
I Studentinfo -
addstudent(Studentinfo)
major

Professorinfo
CourseOffering
location

open()
addStudent(Studentinfo)

Generalization/Specialization
Relation

e Controllers and Monitors are examples of
abstract classes

Brake Controller Engine Controller

25

8/29/2012

Dependency: A Special Case
of Association

CommandManager

Simple Sensor Actuator Controller
System Example

.—| 1
AD Converter Controller

1

1 A ™
gets data from sands commands to
e ~ 0
1 0.* i

Sensor Actuator

Temperature Sensor ' Pressure Sensor Stepper Motor

26

8/29/2012

The State of an Object

* A state transition diagram shows
— The life history of a given class

— The events that cause a transition from one
state to another

— The actions that result from a state change

* State transition diagrams are created for
objects with significant dynamic behavior

State Transition Diagram

Add student[count < 10]

Add Student /
Set count=0

Canceled

do: Notify registered students =

27

8/29/2012

State Machine (Automaton) Diagram

e Graphical
rendering
of
automata
behavior

Outputs and Actions

¢ As the automaton changes state it can generate outputs:

on (o])]
Lamp On
print(”on”)

on/ on

o

Mealy automaton Moore automaton

28

8/29/2012

Extended State Machines

 Addition
of
variable
s |
(“extend
ed
state”)

A Bit of Theory

e An extended (Mealy) state machine is defined by:
— a set of input signals (input alphabet)
a set of output signals (output alphabet)
a set of states
a set of transitions
* triggering signal
e action
a set of extended state variables
an initial state designation
a set of final states (if terminating automaton)

29

8/29/2012

Basic UML Statechart Diagram

“top” state
Initial

pseudostate
Trigger

Transition

Action

What Kind of Behavior?

* In general, state machines are suitable for
describing event-driven, discrete behavior
— inappropriate for modeling continuous behavior

30

Event-Driven Behavior

* Event = a type of observable occurrence

— interactions:
* synchronous object operation invocation (call event)
 asynchronous signal reception (signal event)

— occurrence of time instants (time event)
* interval expiry
» calendar/clock time

— change in value of some entity (change event)

* Event Instance = an instance of an event (type)
— occurs at a particular time instant and has no duration

Object Behavior - General Model

Handling depends on
specific request type

e Simple
server void:offHook ();
{busy = true;

mOdeI: obj.reqDialtone();
¥

8/29/2012

31

8/29/2012

Object Behavior and State Machines
* Direct mapping:

!

on/print(”on”)

3

Hierarchical State Machines

e Graduated attack on complexity
— states decomposed into state machines

LampOff
entry/lamp.off()

LampFlashing

LampOn
entry/lamp.on()

32

8/29/2012

Case Study: Protocol Handler

e A multi-line packet switch that uses the
alternating-bit protocol as its link protocol

AB protocol

Enduser ['
=

End user . unreliable :
telecom lines ~ §

7

Alternating Bit Protocol (1)

* A simple one-way point-to-point packet protocol

AB protocol

7 data(1)

data(1)

ack
et — |

ack
e — 1

data(2)

pktB
E— data(2)

ack
et — |

33

8/29/2012

Alternating Bit Protocol (2)

 State machine specification

ackB/"ack pktA/~data
data/"pktA ack/™ackA
timeout/"pktB timeout/~ackB

timeout/"pktA timeout/~ackA

ackA/"ack data/"pktB ktB/"data
b b ack/"ackB

Additional Considerations

System
operator

34

8/29/2012

Control

The set of (additional) mechanisms and actions required to
bring a system into the desired operational state and to
maintain it in that state in the face of various planned and
unplanned disruptions

For software systems this includes:
esystem/component start-up and shut-down
failure detection/reporting/recovery
esystem administration, maintenance, and provisioning
¢(on-line) software upgrade

Retrofitting Control Behavior

35

The Control Automaton

In
isolation,
the same
control
behavior
appears
much
simpler

%‘%},1 8

e,

Exploiting Inheritance

* Abstract control classes can capture the
common contr '

8/29/2012

36

8/29/2012

Exploiting Hierarchical States

Activity Diagram

displays a special state
diagram where most of the states are
action states and most of the transitions
are triggered by completion of the actions
in the source states.

 This diagram focuses on flows driven by
internal processing.

37

8/29/2012

Activity diagrams

Activity diagrams show the flow of activities through the system.

Diagrams are read from top to bottom and have branches and
forks to describe conditions and parallel activities.

A fork is used when multiple activities are occurring at the same
time (concurrently).

A branch describes what activities will take place based on a set
of conditions. All branches at some point are followed by a
merge to indicate the end of the conditional behavior started by
that branch.

After merging all parallel activities must be combined by a join
before transitioning into the final activity state.

Both activity2 and activity3 are
occurring at the same time.

Branch After activity?2 there is a branch.
The branch describes what

activities will take place based on a
set of conditions.

38

8/29/2012

Parallel activities -
delivery and billing

[rush arder]

activity control flow start activity
.
Begin _
fork of control
ﬁ N Develop
Ct I V I ty technology A lssue RFP
cification o

- T

diagram .

o« Object flow
e

input value
e input va

e pecification
[initial
proposal
Collaborate

J '-‘I
competitive

-
submitters
Evaluate initia
submissions
i,
” -

. Join and fork

=" of contral

branch

TR

39

