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New Theory Cracks Open the Black Box of Deep
Learning

A new idea called the “information bottleneck” is helping to explain the puzzling success of today’s
artificial-intelligence algorithms — and might also explain how human brains learn.

By Natalie Wolchover

Eric Nyquist for Quanta Magazine

Even as machines known as “deep neural networks” have learned to converse, drive cars, beat video
games and Go champions, dream, paint pictures and help make scientific discoveries, they have also
confounded their human creators, who never expected so-called “deep-learning” algorithms to work
so well. No underlying principle has guided the design of these learning systems, other than vague
inspiration drawn from the architecture of the brain (and no one really understands how that
operates either).
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Like a brain, a deep neural network has layers of neurons — artificial ones that are figments of
computer memory. When a neuron fires, it sends signals to connected neurons in the layer above.
During deep learning, connections in the network are strengthened or weakened as needed to make
the system better at sending signals from input data — the pixels of a photo of a dog, for instance —
up through the layers to neurons associated with the right high-level concepts, such as “dog.” After
a deep neural network has “learned” from thousands of sample dog photos, it can identify dogs in
new photos as accurately as people can. The magic leap from special cases to general concepts
during learning gives deep neural networks their power, just as it underlies human reasoning,
creativity and the other faculties collectively termed “intelligence.” Experts wonder what it is about
deep learning that enables generalization — and to what extent brains apprehend reality in the same
way.

Learning From Experience
Deep neural networks learn by adjusting the strengths of their
connections to better convey input signals through multiple

layers to neurons associated with the right general concepts.
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When data is fed into a network, each artificial neuron that fires
(labeled “1") tfransmits signals to certain neurons in the next layer,
which are likely to fire if multiple signals are received. The process

filters out noise and retains only the most relevant features.
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Last month, a YouTube video of a conference talk in Berlin, shared widely among artificial-
intelligence researchers, offered a possible answer. In the talk, Naftali Tishby, a computer scientist
and neuroscientist from the Hebrew University of Jerusalem, presented evidence in support of a new
theory explaining how deep learning works. Tishby argues that deep neural networks learn
according to a procedure called the “information bottleneck,” which he and two collaborators first
described in purely theoretical terms in 1999. The idea is that a network rids noisy input data of
extraneous details as if by squeezing the information through a bottleneck, retaining only the
features most relevant to general concepts. Striking new computer experiments by Tishby and his
student Ravid Shwartz-Ziv reveal how this squeezing procedure happens during deep learning, at
least in the cases they studied.

Tishby’s findings have the Al community buzzing. “I believe that the information bottleneck idea
could be very important in future deep neural network research,” said Alex Alemi of Google
Research, who has already developed new approximation methods for applying an information
bottleneck analysis to large deep neural networks. The bottleneck could serve “not only as a
theoretical tool for understanding why our neural networks work as well as they do currently, but
also as a tool for constructing new objectives and architectures of networks,” Alemi said.

Some researchers remain skeptical that the theory fully accounts for the success of deep learning,
but Kyle Cranmer, a particle physicist at New York University who uses machine learning to analyze
particle collisions at the Large Hadron Collider, said that as a general principle of learning, it
“somehow smells right.”

Geoffrey Hinton, a pioneer of deep learning who works at Google and the University of Toronto,
emailed Tishby after watching his Berlin talk. “It’s extremely interesting,” Hinton wrote. “I have to
listen to it another 10,000 times to really understand it, but it’s very rare nowadays to hear a talk
with a really original idea in it that may be the answer to a really major puzzle.”

According to Tishby, who views the information bottleneck as a fundamental principle behind
learning, whether you're an algorithm, a housefly, a conscious being, or a physics calculation of
emergent behavior, that long-awaited answer “is that the most important part of learning is actually
forgetting.”

The Bottleneck

Tishby began contemplating the information bottleneck around the time that other researchers were
first mulling over deep neural networks, though neither concept had been named yet. It was the
1980s, and Tishby was thinking about how good humans are at speech recognition — a major
challenge for AI at the time. Tishby realized that the crux of the issue was the question of relevance:
What are the most relevant features of a spoken word, and how do we tease these out from the
variables that accompany them, such as accents, mumbling and intonation? In general, when we
face the sea of data that is reality, which signals do we keep?

https://www.quantamagazine.org/new-theory-cracks-open-the-black-box-of-deep-learning-20170921/ September 21, 2017


https://www.youtube.com/watch?v=bLqJHjXihK8&feature=youtu.be
http://www.cs.huji.ac.il/~tishby/
https://arxiv.org/pdf/physics/0004057.pdf
https://arxiv.org/pdf/physics/0004057.pdf
https://arxiv.org/abs/1703.00810
https://research.google.com/pubs/104980.html
https://arxiv.org/pdf/1612.00410.pdf
https://as.nyu.edu/content/nyu-as/as/faculty/kyle-s-cranmer.html
http://www.cs.toronto.edu/~hinton/

Quanta Magazine

Miriam Alster, Flash 90. ELSC Art and Brain Week 2016

Naftali Tishby, a professor of computer science at the Hebrew University of Jerusalem.

“This notion of relevant information was mentioned many times in history but never formulated
correctly,” Tishby said in an interview last month. “For many years people thought information
theory wasn'’t the right way to think about relevance, starting with misconceptions that go all the
way to Shannon himself.”

Claude Shannon, the founder of information theory, in a sense liberated the study of information
starting in the 1940s by allowing it to be considered in the abstract — as 1s and 0s with purely
mathematical meaning. Shannon took the view that, as Tishby put it, “information is not about
semantics.” But, Tishby argued, this isn’t true. Using information theory, he realized, “you can
define ‘relevant’ in a precise sense.”

Imagine X is a complex data set, like the pixels of a dog photo, and Y is a simpler variable
represented by those data, like the word “dog.” You can capture all the “relevant” information in X
about Y by compressing X as much as you can without losing the ability to predict Y. In their 1999
paper, Tishby and co-authors Fernando Pereira, now at Google, and William Bialek, now at Princeton
University, formulated this as a mathematical optimization problem. It was a fundamental idea with
no killer application.

“I've been thinking along these lines in various contexts for 30 years,” Tishby said. “My only luck
was that deep neural networks became so important.”
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Eyeballs on Faces on People on Scenes

Though the concept behind deep neural networks had been kicked around for decades, their
performance in tasks like speech and image recognition only took off in the early 2010s, due to
improved training regimens and more powerful computer processors. Tishby recognized their
potential connection to the information bottleneck principle in 2014 after reading a surprising paper
by the physicists David Schwab and Pankaj Mehta.

The duo discovered that a deep-learning algorithm invented by Hinton called the “deep belief net”
works, in a particular case, exactly like renormalization, a technique used in physics to zoom out on
a physical system by coarse-graining over its details and calculating its overall state. When Schwab
and Mehta applied the deep belief net to a model of a magnet at its “critical point,” where the
system is fractal, or self-similar at every scale, they found that the network automatically used the
renormalization-like procedure to discover the model’s state. It was a stunning indication that, as the
biophysicist Ilya Nemenman said at the time, “extracting relevant features in the context of
statistical physics and extracting relevant features in the context of deep learning are not just
similar words, they are one and the same.”

The only problem is that, in general, the real world isn’t fractal. “The natural world is not ears on
ears on ears on ears; it’s eyeballs on faces on people on scenes,” Cranmer said. “So I wouldn't say
[the renormalization procedure] is why deep learning on natural images is working so well.” But
Tishby, who at the time was undergoing chemotherapy for pancreatic cancer, realized that both
deep learning and the coarse-graining procedure could be encompassed by a broader idea.
“Thinking about science and about the role of my old ideas was an important part of my healing and
recovery,” he said.
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Yifat Yogev (left); courtesy of Ravid Shwartz-Ziv (right)
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Noga Zaslavsky, left, and Ravid Shwartz-Ziv helped develop the information bottleneck theory of deep learning as
graduate students of Naftali Tishby’s.

In 2015, he and his student Noga Zaslavsky hypothesized that deep learning is an information
bottleneck procedure that compresses noisy data as much as possible while preserving information
about what the data represent. Tishby and Shwartz-Ziv’'s new experiments with deep neural
networks reveal how the bottleneck procedure actually plays out. In one case, the researchers used
small networks that could be trained to label input data with a 1 or 0 (think “dog” or “no dog”) and
gave their 282 neural connections random initial strengths. They then tracked what happened as the
networks engaged in deep learning with 3,000 sample input data sets.

The basic algorithm used in the majority of deep-learning procedures to tweak neural connections in
response to data is called “stochastic gradient descent”: Each time the training data are fed into the
network, a cascade of firing activity sweeps upward through the layers of artificial neurons. When
the signal reaches the top layer, the final firing pattern can be compared to the correct label for the
image — 1 or 0, “dog” or “no dog.” Any differences between this firing pattern and the correct
pattern are “back-propagated” down the layers, meaning that, like a teacher correcting an exam, the
algorithm strengthens or weakens each connection to make the network layer better at producing
the correct output signal. Over the course of training, common patterns in the training data become
reflected in the strengths of the connections, and the network becomes expert at correctly labeling
the data, such as by recognizing a dog, a word, or a 1.

In their experiments, Tishby and Shwartz-Ziv tracked how much information each layer of a deep
neural network retained about the input data and how much information each one retained about
the output label. The scientists found that, layer by layer, the networks converged to the information
bottleneck theoretical bound: a theoretical limit derived in Tishby, Pereira and Bialek’s original
paper that represents the absolute best the system can do at extracting relevant information. At the
bound, the network has compressed the input as much as possible without sacrificing the ability to
accurately predict its label.

Tishby and Shwartz-Ziv also made the intriguing discovery that deep learning proceeds in two
phases: a short “fitting” phase, during which the network learns to label its training data, and a
much longer “compression” phase, during which it becomes good at generalization, as measured by
its performance at labeling new test data.
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Inside Deep Learning

New experiments reveal how deep neural networks evolve as they learn.
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A INITIAL STATE: Neurons in Layer 1 encode everything about the input
data, including all information about its label. Neurons in the highest
layers are in a nearly random state bearing little o no relationship

to the data or its label.

B FITTING PHASE: As deep learning begins, neurons in higher layers

gain information about the input and get better at fitting labels fo it.

C PHASE CHANGE: The layers suddenly shift gears and start to “forget”

information about the input.

D COMPRESSION PHASE: Higher layers compress their representation
of the input data, keeping what is most relevant to the output label.

They get better at predicting the label.

E FINAL STATE: The last layer achieves an optimal balance of accuracy

and compression, retaining only what is needed to predict the label.
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Lucy Reading-lkkanda/Quanta Magazine; adapted from arXiv:1703.00810 [cs.LG].

As a deep neural network tweaks its connections by stochastic gradient descent, at first the number
of bits it stores about the input data stays roughly constant or increases slightly, as connections
adjust to encode patterns in the input and the network gets good at fitting labels to it. Some experts
have compared this phase to memorization.

Then learning switches to the compression phase. The network starts to shed information about the
input data, keeping track of only the strongest features — those correlations that are most relevant
to the output label. This happens because, in each iteration of stochastic gradient descent, more or
less accidental correlations in the training data tell the network to do different things, dialing the
strengths of its neural connections up and down in a random walk. This randomization is effectively
the same as compressing the system’s representation of the input data. As an example, some photos
of dogs might have houses in the background, while others don’t. As a network cycles through these
training photos, it might “forget” the correlation between houses and dogs in some photos as other
photos counteract it. It’s this forgetting of specifics, Tishby and Shwartz-Ziv argue, that enables the
system to form general concepts. Indeed, their experiments revealed that deep neural networks
ramp up their generalization performance during the compression phase, becoming better at
labeling test data. (A deep neural network trained to recognize dogs in photos might be tested on
new photos that may or may not include dogs, for instance.)

It remains to be seen whether the information bottleneck governs all deep-learning regimes, or
whether there are other routes to generalization besides compression. Some Al experts see Tishby’s
idea as one of many important theoretical insights about deep learning to have emerged recently.
Andrew Saxe, an Al researcher and theoretical neuroscientist at Harvard University, noted that
certain very large deep neural networks don’t seem to need a drawn-out compression phase in order
to generalize well. Instead, researchers program in something called early stopping, which cuts
training short to prevent the network from encoding too many correlations in the first place.

Tishby argues that the network models analyzed by Saxe and his colleagues differ from standard
deep neural network architectures, but that nonetheless, the information bottleneck theoretical
bound defines these networks’ generalization performance better than other methods. Questions
about whether the bottleneck holds up for larger neural networks are partly addressed by Tishby
and Shwartz-Ziv’'s most recent experiments, not included in their preliminary paper, in which they
train much larger, 330,000-connection-deep neural networks to recognize handwritten digits in the
60,000-image Modified National Institute of Standards and Technology database, a well-known
benchmark for gauging the performance of deep-learning algorithms. The scientists saw the same
convergence of the networks to the information bottleneck theoretical bound; they also observed the
two distinct phases of deep learning, separated by an even sharper transition than in the smaller
networks. “I'm completely convinced now that this is a general phenomenon,” Tishby said.

Humans and Machines

The mystery of how brains sift signals from our senses and elevate them to the level of our conscious
awareness drove much of the early interest in deep neural networks among Al pioneers, who hoped
to reverse-engineer the brain’s learning rules. Al practitioners have since largely abandoned that
path in the mad dash for technological progress, instead slapping on bells and whistles that boost
performance with little regard for biological plausibility. Still, as their thinking machines achieve
ever greater feats — even stoking fears that Al could someday pose an existential threat — many
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researchers hope these explorations will uncover general insights about learning and intelligence.

Brenden Lake, an assistant professor of psychology and data science at New York University who
studies similarities and differences in how humans and machines learn, said that Tishby’s findings
represent “an important step towards opening the black box of neural networks,” but he stressed
that the brain represents a much bigger, blacker black box. Our adult brains, which boast several
hundred trillion connections between 86 billion neurons, in all likelihood employ a bag of tricks to
enhance generalization, going beyond the basic image- and sound-recognition learning procedures
that occur during infancy and that may in many ways resemble deep learning.

For instance, Lake said the fitting and compression phases that Tishby identified don’t seem to have
analogues in the way children learn handwritten characters, which he studies. Children don’t need
to see thousands of examples of a character and compress their mental representation over an
extended period of time before they’re able to recognize other instances of that letter and write it
themselves. In fact, they can learn from a single example. Lake and his colleagues’ models suggest
the brain may deconstruct the new letter into a series of strokes — previously existing mental
constructs — allowing the conception of the letter to be tacked onto an edifice of prior knowledge.
“Rather than thinking of an image of a letter as a pattern of pixels and learning the concept as
mapping those features” as in standard machine-learning algorithms, Lake explained, “instead I aim
to build a simple causal model of the letter,” a shorter path to generalization.

Such brainy ideas might hold lessons for the Al community, furthering the back-and-forth between
the two fields. Tishby believes his information bottleneck theory will ultimately prove useful in both
disciplines, even if it takes a more general form in human learning than in Al. One immediate insight
that can be gleaned from the theory is a better understanding of which kinds of problems can be
solved by real and artificial neural networks. “It gives a complete characterization of the problems
that can be learned,” Tishby said. These are “problems where I can wipe out noise in the input
without hurting my ability to classify. This is natural vision problems, speech recognition. These are
also precisely the problems our brain can cope with.”

Meanwhile, both real and artificial neural networks stumble on problems in which every detail
matters and minute differences can throw off the whole result. Most people can’t quickly multiply
two large numbers in their heads, for instance. “We have a long class of problems like this, logical
problems that are very sensitive to changes in one variable,” Tishby said. “Classifiability, discrete
problems, cryptographic problems. I don’t think deep learning will ever help me break cryptographic
codes.”

Generalizing — traversing the information bottleneck, perhaps — means leaving some details
behind. This isn’t so good for doing algebra on the fly, but that’s not a brain’s main business. We're
looking for familiar faces in the crowd, order in chaos, salient signals in a noisy world.

This article was reprinted on Wired.com.
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