

Formal Verification

Sumeet Agarwal
EE Dept., IIT Delhi

[Ref.: Huth and Ryan, Logic in Computer
Science. Cambridge University Press, 2004.]

Why verification?

● Verifying correctness very valuable for
hardware/software systems

● Especially safety-critical systems; also
commercially or mission critical

● Formal verification methods a growing area
and have become quite usable by industry

Components of formal verification

● Framework for modelling systems: some
sort of language in which they can be
described

● Specification language: to describe the
properties to be verified

● Verification method: establishes whether the
system description satisfies the specification

Approaches to verification

● Proof-based vs. Model-based
– In proof-based, both description (Г) and

specification () are formulae in a suitable logic. ϕ
Verification method is proof-finding (). Usually
needs human intervention.

– In model-based, the system is represented by a
model M for an appropriate logic. Specification is
again a formula ; verification is checking if model ϕ
satisfies formula (). Usually automatic for
finite models.

M⊨ϕ

Γ⊢ϕ

Approaches to verification

● Degree of automation
● Full verification vs. property-verification
● Domain of application: hardware/software;

sequential/concurrent; reactive/terminating
● Pre-development vs. post-development (e.g.,

Intel Pentium FDIV error)

Model checking

● Model checking is automatic, model-based,
property-verification; intended for concurrent,
reactive systems; originated as a post-
development method

● Concurrency bugs among the hardest to
detect using testing: often non-reproducible or
not covered by test cases

● Based on temporal logic: dynamic notion of
truth; formulae aren't just statically true/false,
but state-dependent

Model checking

1.Model the system using the description
language (representing some kind of transition
system), to arrive at model M

2.Code the property to be verified using the
specification language (temporal logic), giving
formula ϕ

3.Run the model checker with inputs M and , ϕ
to check if : output either yes or no
(along with system trace)

M⊨ϕ

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

