Neural Network and Deep Learning Approaches to Computer Vision

Sumeet Agarwal
Department of Electrical Engineering
IIT Delhi
What is the key challenge in vision?

- Arguably, extracting meaningful features from images.
- How do we construct increasingly complex/abstract representations, starting with raw pixels?
- These representations can be handcoded; but can they also be learnt automatically from data?
- Does the learning of such representations have to be guided/supervised, or can it also be achieved in an unsupervised fashion?
Computer vision features

SIFT

Spin image

HoG

RIFT

Textons

GLOH

[Andrew Ng]
Human vision

Neuronal networks build up a hierarchy of increasingly complex representations.

[Bachatene et al., 2012]
Learning models: The Perceptron

A non-linear transformation in the form of a step function is applied to the weighted sum of the input features. This is inspired by the way neurons appear to function, mimicking the action potential.
Usually, the non-linear activation function used is a logistic sigmoid: \(y = f(w^T \Phi(x)) = \sigma(w^T \Phi(x)), \) where \(\sigma(a) = 1/(1+e^{-a}) \). This makes \(y \) a differentiable function of the input \(x \); each unit/neuron can now be thought of as simply a logistic regression classifier.
Learning feature hierarchies

Input image (pixels)

Higher layer (Combinations of edges; cf. V2)

“Sparse coding” (edges; cf. V1)

[Technical details: Sparse autoencoder or sparse version of Hinton’s DBN.]

[Lee, Ranganath & Ng, 2007]
Supervised learning with neural nets

- Target values for the output(s) can be provided as categorical or continuous values, corresponding to classification and regression settings.
- An appropriate error function is defined and minimised with respect to the network weights.
- Typically done using gradient descent; the gradient of the error function can be computed via backpropagation.
'Deep' learning

• Is just a fashionable term for the use of neural networks with many hidden layers

• The aim is for hidden neurons to be able to capture a hierarchy of representations, similar to the visual cortex

• Labelled training data may be limited; can useful representations also be learnt in an unsupervised fashion?
Sparse autoencoders

- A neural net with as many outputs as inputs
- The idea is to reproduce the input as closely as possible (minimise reconstruction error)
- How can this be done whilst retaining a relatively small number of features in the hidden layers, i.e., enforcing sparsity?
- Represents a form of dimensionality reduction

[Andrew Ng]
Large-scale deep learning

- Made possible by massive computing power and parallelisation

- Google Brain: A deep neural network with 9 layers and $\sim 10^9$ connections

- Still only one-millionth the size of a 3-year-old human brain!

- Important for demonstrating that complex concepts like faces can be discovered in an entirely unsupervised fashion
Visual input network architectures

[Le et al. 2012]
Conclusions

- Classical neural networks provide a biologically-inspired approach to the problem of learning appropriate visual representations.
- Recent advances in technology have made it possible to train 'deep' networks, with millions or billions of connections.
- Unsupervised learning by minimising reconstruction error whilst enforcing sparsity can be a powerful tool for feature/concept discovery.
References