Abstract—To alleviate the spectrum scarcity problem in the licensed cellular networks (LCN), we introduce a new paradigm called cognitive multihoming (CM), where a cognitive radio (CR)-enabled base station transmits to the users simultaneously over the licensed cellular bands and primary user bands in CR networks (CRNs). The CR aspect incurs lower cost, however at the expense of higher energy consumption due to intermittent channel sensing. On the other hand, transmission via LCN is expensive because of its licensing premium. To minimize the transmission cost while meeting the users energy and received video quality constraints, sensing duration and transmission rate over CRN, transmission rate over LCN, and network selection for retransmission of lost packets are adjusted. Solution to the multiuser resource allocation optimization problem is obtained by solving the cost minimization problem of a single-user system. The problem is nonconvex which is solved using convex-concave procedure. The proposed scheme is compared with the cases where a user operates over a single network, either LCN or CRN. The system performance results indicate that the proposed CM strategy significantly decreases the cost to the users as well as serves a higher number of users while maintaining the desired video quality and energy consumption constraints.

Index Terms—Cognitive multihoming system, multi-radio clients, resource allocation, scalable video transmission, energy efficiency, convex-concave procedure

I. INTRODUCTION

Explosive growth of Internet traffic is being experienced in recent years. Cisco research report in 2016 [1] indicated that the mobile video traffic demand is tipped to grow 11 times by 2020. It is anticipated that, soon the existing wireless networks may not be capable of delivering high-quality content to the mobile users despite the advances in wireless technology [2]. This is due to the licensed cellular networks (LCNs) lacking adequate spectrum availability. However, spectrum measurement studies have revealed that large parts of the licensed spectrum are underutilized [3]. Cognitive radio (CR) techniques can be employed to combat spectrum resource scarcity in the conventional cellular bands for mobile broadband quality-of-service (QoS) support.

On the receiver technology front, emergence of multihomed devices (multi-radio clients) [4] has enabled simultaneous access to multiple radio access technology in a heterogeneous network. Conventionally, multihoming capability of user devices is used for concurrent multipath transfer (CMT) [5] of data from remotely-located source via multiple networks. This approach invites challenges due to network dynamics, leading to selective packet loss over multiple paths and hence the user’s difficulty in data decodability. In order to alleviate the spectrum scarcity problem, minimize the resource intensive video transmission load in LCNs, and quality degradation in conventional CMT via wireless networks, we propose a novel access paradigm, called cognitive multihoming (CM).

A. CM Concept Overview

As depicted in Fig. 1, in CM system the base station (BS) of LCN is also equipped with the CR functionality. The BS controller buffers the data packets from the video server across the Internet and divides the data stream suitably as per the available LCN and CR network (CRN) resources, and the BS transmits them to the user concurrently via LCN and CRN. The band over which the LCN and CRN operate are different. To meet dynamic demands of the real-time users, the service provider (SP) would want to keep its licensed band as idle as possible by making most use of CRN resource. To encourage usage of more CRN resources, data transmission over the CRN is offered at a discounted rate. This is in consonance with the fact that the cellular bands are costly, as the SP pays a huge premium for licensing. Operations over CRNs do not levy high cost to the users due to the opportunistic (secondary) usage of the primary user (PU) bands.

Transmission cost could be reduced if most of the content is transmitted via CRN. However, due to intermittent PU arrivals and imperfect channel sensing, there could be low throughput over CRN. Moreover, the channel needs to be sensed at regular intervals which further reduces the performance. Hence, reception over CRN can be characterized by low cost, low QoS, and low energy efficiency. On the other hand, transmissions
over LCN are marked by high cost and high QoS. Thus, there is an apparent cost-quality-energy tradeoff. The possible degradation in energy efficiency and QoS in CRN can be controlled in CM by optimally allocating resources from LCN and CRN as a function of a user's demand.

With the growing demand for mobile video streaming, there have been some works in the area of video streaming to multihomed devices [6], [7]. Different from these approaches, where the two separate end-to-end paths are utilized for video content delivery (as in CMT), in the present work we consider scalable video transmission to the users via CM technique. The users request unicast scalable video encoded content from the network. Due to high throughput demands of video services, transmissions via a single access network may not be sufficient for high quality content delivery. Instead, the users are equipped with multihomed devices so that high quality video content can be received. For battery operated devices, user satisfaction depends on the received video quality, device battery level, and the cost it pays for the content reception. To this end, in addition to transmission rate adaptation over single network [8], in the proposed CM approach, two novel techniques of video packet priority dependent sensing duration adaptation and network selection for packet retransmission are proposed to enhance user experience without causing PU performance degradation.

B. Key Objectives and Contributions

In the proposed CM architecture, we explore the optimally-shared scalable video transmission for enhanced user experience in terms of reception quality, energy savings, and cost.

The contributions of the paper are summarized as follows:

1) A novel CM framework is proposed, where the CR-enabled cellular BSs transmit optimally-divided user content over the two networks to the multihomed users (Section III-A).

2) Adaptation of transmission rate over LCN, sensing duration and transmission rate over CRN, and network selection for retransmission of lost packets is developed (Section III-D).

3) A joint optimization for maximizing the number of users served and minimizing the user cost is formulated, which accounts for the device energy and reception quality (Section IV-A).

4) An optimal algorithm for resource allocation and call admission control is proposed. The optimization problem being nonconvex, it is transformed into a difference of convex optimization problem and solved using the convex-concave procedure. The optimization problem is further decomposed to speed up the computation (Section IV-B).

Our system simulation results (Section V) demonstrate that, compared to single network access the CM system serves a higher number of users at a lower cost. In the next section, we discuss the related works.

II. RELATED WORKS

We survey the related works in three categories, namely, video transmission over single licensed wireless network, transmission over CRN, and transmission over multihomed networks.

A. Video Transmission over Single Wireless Network

Considerable work have been done on video transmission over single licensed wireless network. In [9], the authors proposed different retry limits to each layer of scalable video to improve quality of user experience (QoE). The works in [10], [11] proposed MDP based transmission scheduling of video packets over wireless fading channels. The authors in [11] further looked into energy-efficient scheduling of video packets. A link adaptation scheme for scalable video transmission over wireless local area network (WLAN) was proposed in [12]. The authors in [8] proposed energy minimization in video transmission by rate, power, and retransmission rate adaptation. Energy-efficient resource allocation for video transmission was proposed in [13]. Energy-efficient mobile video streaming was studied in [14]. The authors in [15] optimized high rate video transmission over wireless networks. We note that, while video transmission over single LCN has been considerably well investigated, scarcity of LCN resources to cater to ever-increasing volume of traffic and diverse user-end limitations and interests have motivated further research on radio resource utilization.

B. Video Transmission over CRN

There have been a few recent works reported on video transmission over CRN. In [16], the authors studied scalable video multicast over CRN. The work in [17] studied the impact of spectrum multicast over CRN. The work in [17] studied the impact of spectrum multicast over CRN. The work in [18], sensing delays in real-time video transmission was addressed by breaking the sensing duration into small time slots. In [19], the authors considered scalable video coding and transmission rate adaptation jointly, for energy-efficient video streaming over CR. A scheme to reduce unnecessary sensing and extend the transmission times for optimal SU operation over multiple PU channels was presented in [20]. QoS based resource allocation for CRN was proposed in [21]. In [22], the authors proposed a QoE-driven channel allocation scheme for CR users. A multiuser video streaming scheme in cellular CRNs was presented in [23], where spectrum sensing, power allocation, and channel assignment strategies were jointly optimized to maximize QoS. The difficulties in providing service to CR users in delay sensitive applications due to intermittent PU activity has motivated us to consider access strategy via multiple networks simultaneously.

C. Video Transmission to Multihomed Clients

In heterogeneous networks, the users are capable of accessing multiple RANs. They can access multiple RANs simultaneously as in multihoming, or they may select a single network for their operation. Simultaneous video transmission over multiple networks has drawn considerable research attention in recent years. Different from our proposed model where the data stream is split at the last hop, the works in the literature on multihoming consider different paths from
content server to the user device. Hence, their main focus remain on transport layer congestion control over multiple networks. The studies in [4], [5] considered CMT based video delivery and proposed a TCP based solution for efficient video reception. Systematic Raptor codes were adopted in [6] to mitigate video quality degradation caused by wireless channel in multipath video transmission. The authors in [24] analyzed probabilistic multipath transmission of streaming video packets over multiple networks via Markov chains. High definition video streaming over heterogeneous networks was considered in [7], [25]. These studies did not account cost and energy consumption related issues.

In [26], energy-efficient video transmission over multi-homed network was studied. An MDP based cost minimization framework for video transmission was presented in [27]. The work in [28] reported performance optimization in terms of cost, signaling load, and session quality, for media streaming over heterogeneous networks. The inter-cell network cooperation in [29] implicitly used the multihoming concept in a homogeneous LCN scenario. A survey on bandwidth aggregation techniques in heterogeneous multi-homed devices was presented in [30]. All these studies did not consider energy consumption and user cost jointly. The approach in [31] is closest to our proposed model, where the authors studied user cost and energy optimized video transmission over two access networks. However, it did not consider CR-enabled multihoming aspects. Additionally, layer based parameter adaptation in scalable video streaming and admission control in multiuser scenario was not in its scope of study.

While LTE-U [32] has been introduced to enhance the capacity of LTE by extending its operation over unlicensed bands, inter-operability with other devices in the unlicensed bands pose a big challenge. CM offers an alternate to LTE-U wherein the opportunistic use of licensed bands along with the LCN enhances the system capacity. Moreover, transmission power limitations over the unlicensed bands restricts LTE-U operation regions. In contrast, CR-enabled CM easily adapts itself to different environments by employing spectrum sensing mechanisms which is difficult in LTE-U operations.

As an current body of works, the current work in this paper distinguishes itself on the following aspects: (i) The presented CM system architecture is a novel approach to efficient and cost-effective utilization of wireless spectrum resource toward QoS provisioning, and it is different from the conventional multihoming and CMT. (ii) The usage of CRN resources opportunistically in multihoming approach, which can effectively integrate pure Licensed (white-space) Spectrum Access and Dynamic Spectrum Access, has not been addressed before. (iii) Consideration of cost to the users and device energy consumption for scalable video streaming over the heterogeneous networks has not been jointly dealt with in the literature. The basic CM model was presented recently in [33]. It however did not consider the application-specific details, the related cost, and energy optimization schemes.

III. System Model and Preliminaries

We now introduce the CM concepts along with the system assumptions, video traffic model, and user device characteris-

\(B_{rb} \) and \(t_{rb} \)	Bandwidth and duration of a resource block (RB)
\(B_{cr} \) and \(t_{cr} \)	Bandwidth and duration of a slot over CRN
\(p_{lc} \)	PU channel idling probability in a slot
\(p_{lb}(\delta) \)	Probability of false alarm with sensing duration \(\delta \)
\(p_{lc}(\delta) \)	Probability of misdetection with sensing duration \(\delta \)
\(F_{lc}(z) \)	Probability of packet failure transmitted at rate \(z/\tau \) over LCN/CRN due to fading and path loss
\(z_{l}, r_{l} \)	Transmission rate over LCN/CRN for \(l \)th layer
\(\delta_{l} \)	Sensing duration for \(l \)th layer transmission
\(T \)	Group of pictures (GOP) duration
\(J(\delta) \)	Transmission probability over a slot in CRN with sensing duration \(\delta \)
\(Q_{th} \)	Minimum received video quality threshold
\(E_{th} \)	Maximum energy consumption threshold
\(\alpha \)	Per packet overhead (bits)
\(N_{rb} \)	Number of RBs available per GOP
\(p_{lc}^{tr} \)	Retransmission probability of \(l \)th layer content over LCN that is originally transmitted over LCN
\(p_{cr}^{tr} \)	Retransmission probability of \(l \)th layer content over CRN that is originally transmitted over CRN
\(n_{l} \)	Maximum number of retransmissions for \(l \)th layer content
\(d_{l} \)	\(l \)th layer video data content (bits) in a GOP duration
\(u_{l} \)	\(l \)th layer content (bits) transmitted over CRN in a GOP
\(w_{lc,l}, w_{cr,l} \)	Amount of \(l \)th layer content (including retransmissions) transmitted over LCN/CRN in a GOP duration
\(G_{cr}(\delta, r) \)	Probability of packet failure transmitted at rate \(r \) and with sensing duration \(\delta \) over a slot in CRN
\(\phi_{lc}, \phi_{cr} \)	Cost per unit time of LCN/CRN usage
\(\xi_{lc,tx}, \xi_{cr,tx} \xi_{lc,ra}, \xi_{cr,ra} \)	Reception power consumption over LCN/CRN
\(P_{tx}^{cr} \)	Tail power consumption over LCN/CRN
\(\theta_{cr} \)	Maximum allowable probability of misdetection

A. Cognitive Multihoming

In CM (Fig. 1), apart from operating over the licensed bands, the cellular BSs have an in-built functionality to operate over the CR bands. The network operates on at least one LCN and one CRN band. LCN could be from, e.g., LTE and WCDMA standards, while CRN could be based on the IEEE standards, such as, 802.11af and 802.22. Downlink video content transmission is considered. The video content is buffered at the BS from the external server. The BS decides on how the data should be split across the two networks for optimal operation. As a natural advantage of multihoming, CM avoids any communication overhead for data splitting between the user and external server. However, unlike in CMT, out of order delivery of packets across the two networks is minimized by optimal data stream splitting at the BS. Thus, the drawback of congestion related delay variations in conventional multihoming is not present in CM.

LCN and CRN system specific details are presented next.

1) **Transmission over LCN**: The resources over LCN are divided into time-frequency resource blocks (RBs). The bandwidth and time duration of an RB are respectively denoted as \(B_{rb} \) and \(t_{rb} \). Over an RB, transmitter rate depends on the channel conditions. Block fading is considered where the channel gain across an RB remains constant over the duration \(t_{rb} \). Denoting \(P_{tx}^{cr} \) as the BS transmit power, received signal...
power $P_{lc,rx}$ at a user located L distance away from the BS is given by the Friis formula:

$$P_{lc,rx} = P_{lc,tx} G_T G_R \left(\frac{\lambda}{4\pi L} \right)^\eta$$

where G_T and G_R are respectively the transmitter and receiver antenna gains, λ is the transmitted signal wavelength, and η is the path loss coefficient. Considering Rayleigh fading (with 0 mean and unit variance) between the BS and user, the rate offered over an RB is given by Shannon’s capacity formula

$$Z = B_r b \log_2 \left(1 + \frac{h_{lc} P_{lc,tx}}{\sigma^2_{lc,n}} \right),$$

where h_{lc} is the channel fading power gain and $\sigma^2_{lc,n}$ is the noise variance. Outage probability at transmission rate z bps is given as:

$$\mathcal{F}_{lc}(z) = Pr(Z \leq z) = 1 - \exp \left(-\frac{\sigma^2_{lc,n}(2^z/B_r - 1)}{P_{lc,rx}} \right).$$

(1)

2) Transmission over CRN: CRNs operate opportunistically over the licensed PU channels. We denote, bandwidth B_{cr} of a PU channel can be used by a CR-user at a time. Time is divided into slots of duration t_{cr} units. PUs transmission over the channel is considered to follow ON-OFF model [34]. The probability of PU channel being idle in a slot is denoted as p_{cr}. Over a slot, the CR-enabled BS senses the channel for a duration δ, and if found idle, it transmits over the channel for the remaining time $t_{cr} - \delta$. Relative to the PU coverage area, the users and the BS are considered co-located in a small geographical area, such that they experience similar channel conditions. Probabilities of false alarm $p_f(\delta)$ and misdetection $p_m(\delta)$ as a function of sensing duration δ are respectively given as [35]:

$$p_f(\delta) = \text{erfc} \left(\frac{\epsilon}{\sigma^2_{cr,u}} - 1 \right) \sqrt{\delta f_s}$$

(2)

$$p_m(\delta) = \text{erfc} \left(\frac{\epsilon}{\sigma^2_{cr,u}} - \gamma - 1 \right) \sqrt{\frac{\delta f_s}{2\gamma + 1}}$$

(3)

where $\sigma^2_{cr,u}$ is the noise power variance, f_s is the channel sampling frequency, ϵ is the sensing threshold, and γ is the PU signal SNR at the CR node. The user data is transmitted at a rate r bps over the remaining part of the slot if the channel is sensed idle. Packet transmission probability over CRN in a slot is given as:

$$J(\delta) = (1 - p_{cr})p_m(\delta) + p_{cr}(1 - p_f(\delta)).$$

(4)

Similar to (1), outage probability over the PU channel in CRN due to channel fading is:

$$\mathcal{F}_{cr}(r) = 1 - \exp \left(-\frac{\sigma^2_{cr,n}(2^r/B_r - 1)}{P_{cr,rx}} \right)$$

(5)

where $\sigma^2_{cr,n}$ is the channel noise variance and $P_{cr,rx}$ is the received power over the CRN. Considering energy detection based spectrum sensing, for accounting interference to a CR transmission, all other transmissions are combined together.

These developments on transmission error over LCN and CRN will be used in Section IV.

B. Video Traffic Model

We now outline the traffic characteristics and video quality metric. We consider scalable video coding (SVC) video encoder that allows graceful degradation of video quality caused by wireless channel fading. It consists of a base layer (layer 1) and several enhancement layers (layers 2, 3, \cdots, L). Layer l_1 has a higher priority over layer l_2 if $l_1 < l_2$. Base layer provides the basic quality level of the video and it is decoded independently of the higher layers. Enhancement layer l_1 can only be decoded once all the layers $l < l_1$ are decoded. Each layer is independently encoded at a specific rate.

A predictive model of QoE for Internet video was presented in [36]. However, considering the SVC video transmission in our work, we define received video quality metric similarly as in [4], [12]. Distortion of H.264/SVC encoded video can be quantified as $D = D_{enc} + D_{loss}$. D_{enc} is the average encoding distortion, given as $D_{enc} = D_0 + \frac{\theta_0}{X - R_0}$, where X is the average bit rate, and the parameters D_0, θ_0, and R_0 are constants that depend on the encoder and video characteristics. Packet loss induced distortion D_{loss} is independent of D_{enc}. Denoting φ_l as the probability of lth layer content loss, D_{loss} can be expressed as:

$$D_{loss} = \sum_{l=1}^{L} \varphi_l \Omega_l,$$

where $\Omega_l = \left(\frac{\theta_0}{X_{l-1} - R_0} - \frac{\theta_0}{X_l - R_0} \right).$

(6)

Ω_l is the weight associated with the lth layer, and X_l is the rate of the l layers video content.

Video quality metric Q is defined as the distortion impact of the packets received correctly to the total available packets [26]. It is given as:

$$Q = \frac{\sum_{l=1}^{L} \Omega_l (1 - \varphi_l)}{\sum_{l=1}^{L} \Omega_l} \cdot 100\%.$$

(7)

Video stream is divided into group of pictures (GOP) with each GOP duration of T units.

C. User Device Operation

Before presenting adaptive video transmission, we briefly discuss how the users (multihomed clients) operate. A user device is enabled with multi-RAT (radio access technology) access functionality by which it can simultaneously operate over the LCN and CRN. All user devices are considered battery operated and therefore their respective reception processes are sensitive to the remaining battery energy. Part of this energy consumption is due to reception of the video content over the two networks. Consequently, the upper bound on energy consumption and the quality of video (number of layers) requested is determined by its remaining battery level.

As noted in the experimental studies in [37], [38], energy consumption in mobile devices due to network interface is mainly on three fronts, namely, ramp, tail, and data transfer energy. Ramp energy is consumed when the radio transits from idle state to transmit state. Data transfer energy is proportional to the duration of time the radio is transmitting/receiving. Tail energy refers to the lingering of the radio at high energy.
state during the inactivity period after the transmission is over, which is on the order of tens of seconds [37]. The network transmits to the device for a fraction of time in a GOP. Thus, reception energy is consumed for the time device is actually receiving, and the tail energy is consumed when the device is idle in a GOP. The device does not incur ramp energy consumption, as the radio mostly remains in the high energy state during the reception.

Along with meeting the energy consumption constraints, the network should ensure high quality video reception to the user end at a low cost. The communication cost (cost charged to the user) is proportional to the amount of resources allocated via the two networks. A user is more satisfied when it receives the video content at a lower cost while satisfying its energy consumption constraint.

In the following, we discuss adaptive video transmission to a CM-capable user.

D. Video Transmission to CM User

The BS transmits video stream to a user optimally across the two networks such that the user’s cost is minimized subject to the user’s energy consumption and video quality constraints. Note that, the user cost minimization by SP does not affect its revenue maximization objective, as the profit to SP may be completely different over the two networks. Video content over a GOP and SVC video parameters are considered available at the BS before the GOP starts. Consider that the BS is capable of performing layer based video transmission. It can form packets of desired length and transmits them to a user. A lost packet is retransmitted by the BS (based on acknowledgement (ACK) notification via independent LCN RBs) to the user up to a layer-dependent predefined number \(n_l \) of retransmission attempts. The undelivered packets within a GOP duration are dropped, resulting in distortion. For enhanced user experience, transmission rate adaptation over the LCN, sensing duration and transmission rate adaptation over the CRN, and number of retransmission attempts and network selection for retransmission are optimized for each layer of video transmission. We describe these three mechanisms next.

1) Transmission rate adaptation over LCN/CRN: According to (1) and (5), a higher transmission rate has a lower probability of success. However, higher transmission rate introduces lower cost as well as energy consumption to the user. Hence, while the lower layers (high distortion impact) are transmitted at a lower rate so that their correct reception probability is higher, the higher layers are transmitted at a higher rate.

2) Sensing duration adaption over CRN: Sensing duration \(\delta \) over a slot plays a key role in determining the reception performance. With a small \(\delta \), probabilities of misdetection and false alarm are large, but the available transmission duration are also longer. Therefore, for balanced cost and quality, for the different priority of video packets \(\delta \) can be accordingly chosen.

3) Cross network retransmissions: Video packets transmitted can be lost due to path loss, channel fading, or channel sensing misdetections. Such packets are retransmitted within the allowable GOP time window to reduce distortion at the receiver. Network selection for retransmission is also critical. Retransmission over CRN could reduce cost, however at a higher energy consumption. If the retransmission request for the \(l \)th layer content initially transmitted over LCN is received by the BS, it can either retransmit the content over LCN or CRN.

E. Benchmark Schemes

For comparison purpose, we consider two schemes. In the first, we consider that the user is associated with only a single network, either LCN or CRN. We call it as single network access (SNA)-LCN or SNA-CRN. If the user is associated with LCN, transmission rate is optimized for its optimal performance. In SNA-CRN, sensing duration and transmission rate adaptation are performed to guarantee optimal performance. To explicitly demonstrate the benefit of layer-dependent parameter adaptation in the proposed CM (we call it as optimized CM, or CM-opt), the comparative scheme we consider is the basic CM (CM-basic). In CM-basic, transmission rate adaptation over the LCN and CRN, sensing time adaptation, and number of retransmission and network selection for retransmission are optimally chosen for all video packets without distinguishing their respective priority levels, to obtain low cost transmission to the users.

IV. PROBLEM FORMULATION AND SOLUTION PROCEDURE

We analyze the multiuser scenario, where a fixed pool of total channel resource is traded with multiple user demands of video content delivery. First, the multiuser resource allocation optimization problem is formulated. Subsequently, to achieve solution of the multiuser optimization, for an individual user, single-user cost minimization problem is solved. Delay-tolerant traffic requests are not considered in our current study, as it does not require resource guarantee.

A. Problem Formulation

Let \(N \) be the number of users requesting video content. Resources are allocated to the users per GOP. Denote \(\mathcal{N}_{rb} \) as the maximum number of RBs available to the users in a GOP. Due to limited resource availability at the BS, some of the user requests may not be fulfilled, leading to their non-admission to the network. Resource allocation by the BS is such that the user cost is minimized while the number of users served is maximized.

For a user requesting \(L \) layers of video content, let \(d_i \) amount of data (in bits) be transmitted for the \(l \)th layer content over a GOP. The BS transmits data of layer \(l \) at a rate \(z_l \) over LCN and at a rate \(r_l \) over CRN. We denote the sensing duration for layer \(l \) packet as \(\delta_l \). Also, denote that the \(l \)th layer content can be retransmitted at most \(n_l \) times, where \(n_l \) can take a fractional value in general. It is upper bounded by \(n_{max} \), which is the maximum number of retransmissions allowed for any individual packet within a GOP. Let \(p_{r|l} \) (respectively, \(p_{r|l} \)) be the probability that the retransmission of \(l \)th layer content transmitted initially over LCN (respectively, CRN) is carried out over LCN (respectively, CRN) itself.
As the data stream \(d_l \) is split across the two networks, let \(u_l \) amount be initially transmitted over CRN. The remaining data volume \((d_l - u_l)\) is initially transmitted over LCN. To compute the total traffic over LCN for the \(l \)th layer content we note that, due to wireless channel uncertainties, part of the failed data is retransmitted over LCN (with probability \(p_{l,tc}^{rtx} \)). The remaining volume of retransmission is over CRN, with probability \((1 - p_{l,tc}^{rtx})\). Given the maximum number of retransmissions \(n_l \) for the \(l \)th layer,
\[
\sum_{i=0}^{n_l} F_{lc}(z_i) = \frac{1 - F_{tc}(z_l)^{n_l + 1}}{1 - F_{tc}(z_l)} - 1
\]

is the expected number of transmission attempts carried out including the initial transmission for the part of data retransmitted over LCN. Hence, for transmitting \((d_l - u_l)\) data over LCN, the expected data transmission over LCN is
\[
(d_l - u_l) \left(p_{l,tc}^{rtx} \left(\frac{1 - F_{tc}(z_l)^{n_l + 1}}{1 - F_{tc}(z_l)} + 1 - p_{l,tc}^{rtx} \right) \right)
\]

The data transmitted over CRN could also be lost due to misdiscretion in channel sensing, path loss, and channel fading. The probability of packet transmission failure \(G_{cr}(\delta_l, r_l) \) over CRN is given as:
\[
G_{cr}(\delta_l, r_l) = (1 - p_{cr}) p_{m}(\delta_l) + p_{cr}(1 - p_{f}(\delta_l)) F_{cr}(r_l).
\]
Part of the lost data is retransmitted over LCN. Out of the original share of transmitted data \(u_l \) over CRN, the amount of data retransmitted over LCN is
\[
u_l (1 - p_{cr}) G_{cr}(\delta_l, r_l).
\]

The expected number of retransmissions over LCN is given as:
\[
\sum_{i=0}^{n_l} F_{lc}(z_i) = \frac{1 - F_{tc}(z_l)^{n_l}}{1 - F_{tc}(z_l)}
\]

Overall, the total amount of data transmitted over LCN for the \(l \)th layer in a GOP is:
\[
w_{lc,l} = (d_l - u_l) \left(p_{l,tc}^{rtx} \left(\frac{1 - F_{tc}(z_l)^{n_l + 1}}{1 - F_{tc}(z_l)} + 1 - p_{l,tc}^{rtx} \right) \right)
+ u_l (1 - p_{cr}^{rtx} G_{cr}(\delta_l, r_l)) \frac{1 - F_{tc}(z_l)^{n_l}}{1 - F_{tc}(z_l)}.
\]

Similarly, total \(l \)th layer data transmission over CRN in a GOP is obtained as:
\[
w_{cr,l} = u_l \left(p_{cr}^{rtx} \left(\frac{1 - G_{cr}(\delta_l, r_l)^{n_l + 1}}{1 - G_{cr}(\delta_l, r_l)} + 1 - p_{cr}^{rtx} \right) \right)
+ (d_l - u_l) (1 - p_{cr}^{rtx} F_{lc}(z_l)) \frac{1 - G_{cr}(\delta_l, r_l)^{n_l}}{1 - G_{cr}(\delta_l, r_l)}.
\]

Probability of packet transmission failure for the data transmitted (including retransmission) via LCN is
\(F_{lc}(z_l)^{n_l + 1} \), while that for the data transmitted over LCN and retransmitted over CRN is
\(F_{lc}(z_l) G_{cr}(\delta_l, r_l)^{n_l} \). Hence, for \((1 - u_l/d_l)\) fraction of \(l \)th layer content initially transmitted over LCN, probability of failure after retransmissions is
\((p_{l,tc}^{rtx} F_{lc}(z_l)^{n_l + 1} + (1 - p_{l,tc}^{rtx}) F_{lc}(z_l) G_{cr}(\delta_l, r_l)^{n_l}) \). Similarly for \(u_l/d_l \) fraction of \(l \)th layer content, the probability of transmission failure is
\((p_{cr}^{rtx} G_{cr}(\delta_l, r_l)^{n_l + 1} + (1 - p_{cr}^{rtx}) G_{cr}(\delta_l, r_l) F_{lc}(z_l)^{n_l}) \).

Consolidating, probability of \(l \)th layer content loss is given as:
\[
\varphi_l = (1 - \frac{u_l}{d_l}) \left(p_{l,tc}^{rtx} F_{lc}(z_l)^{n_l + 1} + (1 - p_{l,tc}^{rtx}) F_{lc}(z_l) G_{cr}(\delta_l, r_l)^{n_l} \right)
+ \frac{u_l}{d_l} \left(p_{cr}^{rtx} G_{cr}(\delta_l, r_l)^{n_l + 1} + (1 - p_{cr}^{rtx}) G_{cr}(\delta_l, r_l) F_{lc}(z_l)^{n_l} \right).
\]

The overall received video quality is quantified using (7).

A packet is transmitted per RB/slot with an overhead of \(\alpha \) bits. From (9), the amount of LCN RBs required by the user is given as:
\[
N_{rb} = \sum_{l=1}^{L} \frac{w_{l,c,l}}{(z_l t_{rb} - \alpha)}.
\]
while the spectrum leasing duration over CRN using (10) is:
\[
T = t_{cr} \sum_{l=1}^{L} \frac{u_{l,c,l}}{\varphi_l(z_l t_{rb} - \alpha)}.
\]

Over LCN, cost of communication charged to the user is proportional to the number of RBs allocated to the user. Denoting cost charged per unit time as \(\phi_{lc} \), cost to the user over LCN is:
\[
C_{lc} = \phi_{lc} t_{rb} \sum_{l=1}^{L} \frac{w_{l,c,l}}{(z_l t_{rb} - \alpha)}.
\]

Over the CRN, cost to the user is considered proportional to the time duration the CR spectrum is used for its service. Let \(\phi_{cr} \) be the cost to the user per unit time. Thus, the user cost over CRN is:
\[
C_{cr} = \phi_{cr} t_{cr} \sum_{l=1}^{L} \frac{w_{l,c,l}}{\varphi_l(z_l t_{rb} - \alpha)}.
\]

Total cost to the user is:
\[
C = C_{lc} + C_{cr}.
\]

Energy consumption on account of reception over LCN is:
\[
\Xi_{lc} = (\xi_{lc,rx} - \xi_{lc,ta}) T_{rb} \sum_{l=1}^{L} \frac{w_{l,c,l}}{z_l t_{rb} - \alpha} + \xi_{lc,ta} T
\]

where reception and tail power consumption over LCN are respectively \(\xi_{lc,rx} \) and \(\xi_{lc,ta} \). Over CRN, the device remains in receive mode in the entire slot duration. Denoting receive and tail power consumption over CRN respectively as \(\xi_{cr,rx} \) and \(\xi_{cr,ta} \), total energy consumption in reception over CRN is:
\[
\Xi_{cr} = (\xi_{cr,rx} - \xi_{cr,ta}) T_{cr} \sum_{l=1}^{L} \frac{w_{l,c,l}}{z_l t_{rb} - \alpha} + \xi_{cr,ta} T.
\]

For the multiuser resource allocation optimization formulation, we use superscript \(k \) over a variable to denote it for the \(k \)th user. Depending on the remaining battery level, the \(k \)th user requests \(L^{(k)} \) layers of the video content at a minimum quality threshold \(Q_{th}^{(k)} \) and a maximum energy consumption constraint \(E_{th}^{(k)} \). Let \(\psi^{(k)} = 1 \) (respectively, 0) denote the user \(k \) served (respectively, not served). A reward \(\beta \) is associated with each user admitted. The resource allocation optimization problem is formulated in (18).

The optimization problem (18) jointly maximizes the number of users served and minimizes the cost of video transmission to the users while ensuring their demanded quality (cf. C1) and energy consumption (cf. C2) constraints. To protect the PUs from interference due to CR activity, the sensing duration is chosen such that the probability of misdetection is upper-bounded by \(p_{th}^{(m)} \) (cf. C3). C4 bounds the number of packet retransmissions to \(n_{max} \), while C5 upper bounds \(u_l \) to
The proposed algorithm is presented in Algorithm 1, which provides an optimal solution as it simultaneously achieves low cost to the users while maximizing the number of users served.

1. Resource allocation optimization to single user: In steps 1 and 9 of Algorithm 1, the optimal resource and cost to the individual users are required. To obtain this, we need to solve a cost minimization problem for a single user. The corresponding optimization problem (P2) is formulated in (19), where superscript k (to indicate the kth user) is omitted for brevity.

 \[N_{rb}^a \text{ and } T^a \text{ in C7a are the available resources over LCN and CRN, respectively. C9 and C10 are the constraints corresponding to the amount of } l\text{th layer content transmitted over LCN (}w_{ic,l}\text{) and CRN (}w_{cr,l}\text{), respectively.} \]

 As stated in Section IV-A, the expressions for cost, energy, and video quality metrics in (P1) are nonconvex. Hence, (P2) is a nonconvex optimization problem. In the following, the problem is transformed to a difference of convex (DC) optimization problem and solved using the convex-concave procedure (CCP). Before proceeding further, we briefly discuss the DC optimization problem and introduce some useful lemmas.

 2) DC optimization problem: A DC optimization problem can be written in the following form:

 \[
 \begin{align*}
 & (P3) \quad \text{minimize} \quad f_0(x) - g_0(x) \\
 & \text{s.t.} \quad f_i(x) - g_i(x) \leq 0, \forall i = 1, 2, \cdots M
 \end{align*}
 \]
Given that \(f(x) \) and \(g(y) \) are convex, diagonal terms in \(h'' \) are positive. Determinant of \(h'' \) is \(4f''_{xx}g_{yy}(f(x) + g(y)) + 4f''_{xx}(f(x) + g(y))(g_y')^2 + 4g''_{yy}(f(x) + g(y))(f'_x)^2 \). As \((x, y) \in \mathbb{R}^2 | f(x) + g(y) \geq 0 \), determinant of \(h'' \) is positive. Hence, \((f(x) + g(y))^2 \) is also convex.

Next, we make use of the two lemmas to reformulate (P2) to a DC optimization problem.

3) Optimization problem reformulation into DC: The number of RBs over LCN and number of slots over CRN used for the \(k \)th layer video transmission obtained from (14) and (15) respectively are nonconvex. Using epigraphs, these expressions are transformed into constraints as follows:

\[
\frac{w_{tcb}}{z_{tcb} - \alpha} \leq a_t
\]

\[
\frac{w_{cr, l}}{J(\delta_l)(t_{cr} - \delta_l) - \alpha} \leq b_l.
\]

By replacing the above expressions in (P2) with \(a_t \) and \(b_t \) (P2), (P2), C6a, and C7a are transformed to linear functions of \(a_t \) and \(b_t \). These newly introduced constraints are converted to DC constraints as follows: We rewrite (22) as \(w_{tcb} - a_t(z_{tcb} - \alpha) \leq 0 \). The term \(a_t(z_{tcb} - \alpha) \) is nonconvex, which is converted to DC by using Lemma 2. Similarly, (23) is rewritten using (4) as \(w_{cr, l} - b_l(p_{cr, p_0}(\delta_l) + (1 - p_{cr})(1 - pf(\delta_l)))(t_{cr} - \alpha) \leq 0 \). The terms \((1 - p_{cr})(1 - pf(\delta_l))r_{b_l} \) and \(b_l p_{cr, p_0}(\delta_l) \) in the above expression are nonconvex and are converted to DC by using Lemma 2.

The probability of transmission failure \(F_{tc}(z) \) over a LCN RB and the probability of transmission failure \(F_{cr}(r) \) due to channel fading and path loss over a slot in CRN from (1) and (5), respectively are nonconvex. Similarly, the expressions \(1 - F_{tc}(z)^{\alpha^2} - F_{tc}(z) \), \(1 - F_{cr}(r)^{\alpha^2} - F_{cr}(r) \), \(1 - g_{cr}(\delta_l, r_l)^{\alpha^2} - g_{cr}(\delta_l, r_l) \), \(F_{tc}(z)^{n_i} \), and \(F_{cr}(r)^{n_i} \) appearing in the constraints C1a, C9, and C10 are also nonconvex. These are linear approximated using the first order Taylor series. For a function \(f(x) \), its linear approximation is \(f(x_k) + \nabla f(x_k)(x - x_k) \) around a point \(x_k \). Once these are approximated, the original constraints are expressed in DC using Lemmas 1 and 2.

Thus, the modified optimization problem constitutes a convex objective with DC constraints. Below, we use the convex-concave procedure (CCP) [39] to solve the DC optimization problem.

4) Solution to the DC optimization problem: In CCP, the DC functions \(f_i(x) - g_i(x) \) are approximated to convex functions. Linear approximation of the negative convex part, i.e., \(g_i(x) \) is used to convert the DC to convex function. First order Taylor series is used to obtain the linear approximation. At a point \(x_k \), the linear approximation of the DC function is given as \(f_i(x_k) - g_i(x_k) \approx f_i(x_k) - g_i(x_k) - \nabla g_i(x_k)(x - x_k) \). Once the DC functions are convex approximated, convex optimization is applied to obtain the solution. At each iteration, once the optimal values are obtained, the approximation to the DC functions are improved to obtain a better solution. Convergence of this algorithm has been provided in [40].
Algorithm 2: Penalty convex-concave procedure.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_κ</td>
<td>Form $\hat{g}j(x; x\kappa) \triangleq g_j(x_\kappa) + \nabla g_j(x_\kappa)'(x - x_\kappa)$ for $j = 0, 1, \cdots, M$.</td>
</tr>
<tr>
<td>Γ_κ</td>
<td>Set the value of $x_{\kappa + 1}$ to the solution of $f_\kappa(x) - \hat{g}0(x, x\kappa) + \tau_\kappa \sum_{j=1}^M v_j$ subject to $f_j(x) - \hat{g}j(x; x\kappa) \leq v_j, \forall j \in 1, \cdots, M$, $v_j \geq 0, j = 1, 2, \cdots, M$.</td>
</tr>
<tr>
<td>$\tau_{\kappa + 1}$</td>
<td>Update τ: $\tau_{\kappa + 1} = min(\mu \tau_\kappa, \tau_{max})$.</td>
</tr>
</tbody>
</table>

involved. In [41], it was shown that the need for an initial feasible point could be overcome by making use of slack variables in the constraints and penalizing the violations. Naming this modified algorithm as penalty CCP, Algorithm 2 describes the steps involved. In step 1, the DC constraints are linear approximated around point x_κ. Slack variable v_j is considered for each constraint, τ is the penalty factor added to the objective, and μ is the multiplying factor which increments the penalty factor in each iteration. τ_{max} is the upper limit of τ. In each iteration, an approximate convex optimization problem is solved in step 2. The algorithm stops when the change in the objective function value is less than a small constant ς.

5) Complexity analysis and convex problem decomposition:

In step 2 of the Algorithm 2, a convex optimization problem is solved. For solving (P2), number of variables are $(20L + 4)$, where $7L$ are the required parameters ($z_j, \delta_t, r_t, u_t, n_t, p_t^{\text{rc}},$ and p_t^{rf}), $4L$ are the additional introduced variables (w_{tc}, w_{cr}, δ_t, and b_t), and $9L + 4$ are slack variables (v_j) corresponding to each constraint. Solving this convex problem involves high complexity. Therefore, we resort to the decomposition method to solve this convex problem.

To reduce the computational complexity, dual decomposition of the approximated convex optimization problem is carried out. Due to the specific structure of the problem, it is decomposed with each layer forming a separate subproblem. The Lagrange function of the approximated convex problem is decomposed into L subproblems corresponding to each layer and $9L + 4$ subproblems corresponding to the slack variables. The subproblems corresponding to each layer are nonlinear, while the subproblems corresponding to the slack variables are linear. The problem is iteratively solved, where the subproblems are fed with the Lagrange multipliers to obtain the optimal parameters. Using these optimal values from each subproblem, the main problem computes the optimal Lagrange multipliers using the subgradient method [42].

This decomposition results in a total of $10L + 4$ subproblems with 15 variables for the L subproblems corresponding to each layer and 1 variable for the $9L + 4$ subproblems corresponding to each slack variable. Complexity for solving subproblems corresponding to L layers is $O(15^3)$ and they can be solved in parallel. Closed form expressions are obtained for solving the $9L + 4$ subproblems corresponding to each slack variable. Their computation complexity is negligible. The computation of optimal Lagrange multipliers requires only a few arithmetic operations. Thus, the decomposition method reduces the complexity significantly.

We performed the optimization in Matlab R2014a running on Intel i7-3770 CPU with 3.4 GHz clock and 16 GB RAM. On an average, the penalty CCP along with the decomposition algorithm took around 6 minutes to converge to the optimal solution for 4-layer video transmission.

For CM-basic, the parameters in (P2) are made layer independent. Thus, decomposition method is not required in CM-basic. The solution to (P2) for CM-basic is obtained using the penalty CCP method as proposed in Algorithm 2. There are 22 variables, where 7 are the desired parameters, 4 are the additional variables introduced, and 13 are the slack variables corresponding to the constraints. Complexity of solving this problem is $O(22^3)$. Though its complexity is lower than CM-opt, as will be noted in Section V, the performance of CM-basic is inferior to CM-opt.

6) Discussion: The optimization problem (P2) provides optimal parameters for the transmission of L-layer video content via the two networks. The user-provided parameters (namely, $E_{\text{th}}^{(k)}$, $Q_{\text{th}}^{(k)}$, and $L^{(k)}$) change with the remaining battery level of the device, which is on the order of minutes. While these computations are done on the BS, which have high processing capabilities, the optimization problem computation can be easily parallelized to meet the deadlines.

V. SYSTEM SIMULATION RESULTS

In this section we evaluate the user cost in video reception via optimized CM (CM-opt) and compare it with CM-basic, SNA-LCN, and SNA-CRN (cf. Section III-E). A single cell scenario is considered with 1 Km cell radius. LCN RBs are of duration 0.5 ms with bandwidth of 5 MHz (LTE in 900 MHz band is considered). CRN operation is considered over UHF band (500 MHz) with PU channel bandwidth of 6 MHz. Slot duration is 10 ms (as in IEEE 802.22). Channel idling probability is 0.7 [42]. Misdirection probability threshold is set to 0.05 [34]. Transmission power over LCN and CRN is 24 dBm and 20 dBm, respectively, while noise variance is 10^{-4} [43]. Path loss exponent is 3.76 [44].

$\phi_{\text{rc}}/\phi_{\text{tc}} \triangleq \rho$ is the ratio of cost charged by CRN and LCN per unit time. In this study we consider that the user is charged monetary cost 100 units per unit time for operation over LCN, and the default value of cost ratio $\rho = 0.5$ (50 units per unit time for PU spectrum leasing). Device power consumption for reception is 1737 mW, while its tail power consumption is 1325 mW [37]. Device energy consumption is a function of the number of layers it intends to receive. In 3GPP, channel state feedback is provided within 6 ms [45]. Hence, for each packet reception error, the receiver can inform the BS almost within the next CRN slot. For this study we consider maximum retry limit $n_{max} = 5$.

Foreman and Mobile QCIF video sequences are encoded into SNR scalable bit-streams with a base layer and 3 enhancement layers, with 30 frames per second (fps) and with GOP of
duration 16 frames having structure “IPPPPPPPPPPPPPP”. For the Foreman sequence, base layer data rate is 69 Kbps, while the enhancement layers 2, 3, and 4 are encoded at rates 58, 95, and 239 Kbps, respectively. For the Mobile sequence, base layer data rate is 117 Kbps, while the enhancement layers 2, 3, and 4 are encoded at rates 80, 174, and 656 Kbps, respectively. The encoding is done using JSVM software [46]. This data is suitably divided into packets with per-packet overhead of 24 Bytes, as in IEEE 802.11.

A. Video Transmission to a Single CM User

A user located at a distance of 0.5 Km from the BS requests for Foreman video sequence with 4 layers. The minimum desirable video quality is 95%. In the following, we study the single-user performance in terms of device and network constraints and user preference.

1) Effects of user preference: Figs. 2(a) and 2(b) present respectively the user cost and energy consumed versus energy consumption threshold. Compared to SNA-LCN, SNA-CRN offers service at a lower cost due to its opportunistic spectrum access. However, operation over CRN requires a higher average energy consumption per GOP than SNA-LCN (i.e., E_{th}^* > E_{th}^{**}, as noted in Fig. 2(b)), because of the additional activity of the device due to intermittent sensing and channel imperfections. CM-basic provides service in all regimes as it exploits both CRN and LCN. For E_{th}^* > E_{th}^*, cost is same as in SNA-CRN, because all content is transmitted via CRN. As the device energy consumption constraint becomes more stringent ($E_{th} < E_{th}^*$), the SNA-LCN and CM-basic go into outage because energy consumption in SNA-LCN exceeds the threshold. In contrast, less resource requirement in CM-opt allows to serve a user with even more stringent energy constraints. Though, the energy consumption in CM-opt is higher than that in SNA-LCN, CM-opt serves the user at a lower cost due to concurrent transmissions via LCN and CRN. Overall, CM-opt outperforms CM-basic (hence SNA-LCN and SNA-CRN) by reducing the cost on average by up to 44.1%.

Table II presents the values of different layer-dependent parameters that are optimized with $E_{th} = 670$ mJ. As anticipated, to protect a higher priority layer from channel-induced packet losses, its data rate is low. Also, the sensing duration and number of retransmissions are higher for high priority layers, and most of the retransmissions are done via LCN for higher priority layers.

![Variation in user cost versus video quality constraint.](image)

Fig. 3: Variation in user cost versus video quality constraint. $E_{th} = 685$ mJ, $\rho = 0.5$, $p_{cr} = 0.7$, $L = 4$.

TABLE II: Optimized parameters for CM-opt. $E_{th} = 670$ mJ and $p_{cr} = 0.7$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Layer 1</th>
<th>Layer 2</th>
<th>Layer 3</th>
<th>Layer 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission rates over LCN (Mbps)</td>
<td>10.17</td>
<td>10.99</td>
<td>11.91</td>
<td>41.6</td>
</tr>
<tr>
<td>Transmission rates over CRN (Mbps)</td>
<td>11.4</td>
<td>12.8</td>
<td>18.3</td>
<td>48.0</td>
</tr>
<tr>
<td>Sensing time over CRN (ms)</td>
<td>1.88</td>
<td>1.80</td>
<td>1.58</td>
<td>1.4</td>
</tr>
<tr>
<td>Fraction of data transmitted via CRN</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>Average number of retry attempts</td>
<td>3.9</td>
<td>3.5</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Probability of retry over LCN for data originally transmitted over LCN</td>
<td>1</td>
<td>1</td>
<td>0.74</td>
<td>0.44</td>
</tr>
<tr>
<td>Probability of retry over CRN for data originally transmitted over CRN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Layer 1</th>
<th>Layer 2</th>
<th>Layer 3</th>
<th>Layer 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission rates over LCN (Mbps)</td>
<td>10.17</td>
<td>10.99</td>
<td>11.91</td>
<td>41.6</td>
</tr>
<tr>
<td>Transmission rates over CRN (Mbps)</td>
<td>11.4</td>
<td>12.8</td>
<td>18.3</td>
<td>48.0</td>
</tr>
<tr>
<td>Sensing time over CRN (ms)</td>
<td>1.88</td>
<td>1.80</td>
<td>1.58</td>
<td>1.4</td>
</tr>
<tr>
<td>Fraction of data transmitted via CRN</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>Average number of retry attempts</td>
<td>3.9</td>
<td>3.5</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Probability of retry over LCN for data originally transmitted over LCN</td>
<td>1</td>
<td>1</td>
<td>0.74</td>
<td>0.44</td>
</tr>
<tr>
<td>Probability of retry over CRN for data originally transmitted over CRN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Fig. 2: Variation in (a) user cost and (b) energy consumed, versus energy consumption threshold. $Q_{th} = 95\%$, $\rho = 0.5$, $p_{cr} = 0.7$, $L = 4$.

![Variation in user cost versus video quality constraint.](image)

Fig. 3: Variation in user cost versus video quality constraint. $E_{th} = 685$ mJ, $\rho = 0.5$, $p_{cr} = 0.7$, $L = 4$.

TABLE II: Optimized parameters for CM-opt. $E_{th} = 670$ mJ and $p_{cr} = 0.7$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Layer 1</th>
<th>Layer 2</th>
<th>Layer 3</th>
<th>Layer 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission rates over LCN (Mbps)</td>
<td>10.17</td>
<td>10.99</td>
<td>11.91</td>
<td>41.6</td>
</tr>
<tr>
<td>Transmission rates over CRN (Mbps)</td>
<td>11.4</td>
<td>12.8</td>
<td>18.3</td>
<td>48.0</td>
</tr>
<tr>
<td>Sensing time over CRN (ms)</td>
<td>1.88</td>
<td>1.80</td>
<td>1.58</td>
<td>1.4</td>
</tr>
<tr>
<td>Fraction of data transmitted via CRN</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>Average number of retry attempts</td>
<td>3.9</td>
<td>3.5</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>Probability of retry over LCN for data originally transmitted over LCN</td>
<td>1</td>
<td>1</td>
<td>0.74</td>
<td>0.44</td>
</tr>
<tr>
<td>Probability of retry over CRN for data originally transmitted over CRN</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.9</td>
</tr>
</tbody>
</table>
on user cost. Q_{th} is varied from 90% to 99%, with $E_{th} = 685$ mJ. A higher Q_{th} requires higher resources, thereby increasing energy consumption and cost. With the considered E_{th}, SNA-CRN can guarantee service only up to $Q_{th} \leq Q_{th}^*$. In contrast, SNA-LCN meets the user demand at a lower energy consumption, though at a higher cost. CM performs better by using CRN at lower Q_{th} for reduced cost, and optimally dividing the stream over LCN and CRN to meet higher Q_{th} at a reduced cost.

Remark 1: Compared to SNA, CM-opt provides on an average 42.7% cost reduction along with providing service to the users with more stringent E_{th} and Q_{th} requirements.

2) Effects of network parameters: Fig. 4(a) shows the cost to the user in various schemes with the change in CRN versus LCN cost ratio ρ. Observe that cost to the user increases with the increase in ρ (ϕ_{cr}). User cost in SNA-CRN surpasses SNA-LCN at $\rho = \rho^*$. To achieve a low-cost transmission, the proposed CM-opt delivers all the data via CRN for $\rho < \rho^*$, while the data is transmitted via LCN for $\rho > \rho^*$.

The effect of PU activity parameter on user cost is plotted in Fig. 4(b). PU channel idling probability p_{cr} is varied from 0.25 to 1. Lower idling probability induces the use of higher number of CRN slots to transmit a video content, thus increasing energy consumption and cost. For $p_{cr} < p_{cr}^*$, the energy consumption constraint is violated in SNA-CRN resulting in service outage. CM-opt chooses the radio access optimally to maintain low cost to the user at all times.

High demands from other users may push the single network operation into outage. As an example, we consider that, for a single user operation 5% resource is available via CRN, and LCN resource availability is varied from 1% to 15%. Given the user’s resource request, it cannot be served via SNA-CRN. Fig. 4(c) shows that, SNA-LCN is able to fulfill the user requirement only above 13% resource availability (marked av_2). CM provides service by simultaneously using both LCN and CRN resources. CM-basic is useful only when the available LCN resources are more than 8% (marked av_3). Layer based parameter adaptation in CM-opt requires less resources. Hence, it provides service at even lower LCN resource availability (see av_1 and av_2).

3) Effects of device battery energy constraint: As discussed in Section III-C, to aid continued reception, user’s requested video quality and maximum energy consumption constraint is proposed to be a function of its remaining battery level. For demonstration, we consider a mobile device with maximum energy consumption threshold and requested number of video layers L, as shown in Fig. 5.

A lower remaining battery level induces lower video quality and E_{th}. Q_{th} is maintained at 95%. Fig. 6(a) presents the user cost in video transmission in the various schemes. SNA-CRN goes into outage for some E_{th} regimes, though providing service at a lower cost. The gain in CM-opt as compared to SNA as well as CM-basic scheme is higher when L is higher. This is because, the advantage with layer-dependent parameter adaptation diminishes for lower number of requested layers.

Figs. 6(b) and 6(c) present respectively the user energy consumption and mean received video PSNR for different battery levels of the user device. Energy consumed in all the cases remain below the maximum energy consumption constraint, while the PSNR increases with the increased number of layers requested. As Q_{th} is maintained at 95%, the PSNR remains constant for a fixed number of layers requested.

Remark 2: CM-opt intelligently distributes data via the two networks depending on the individual network cost and availability, to ensure low cost to the user without affecting the video reception quality.
In this paper, a novel paradigm, called cognitive multi-homing (CM), has been presented, where the user data is uniformly randomly distributed across the cell. We consider three network scenarios. In the first, all users request ‘Foreman’ video sequence, while in the second all users request ‘Mobile’ video sequence. In the third scenario, the users request one of the two video sequences: ‘Foreman’ or ‘Mobile’, with equal probability. Remaining battery level of user device is distributed uniformly between [0 100]%. Depending on the remaining battery level, the user’s maximum energy consumption constraint and number of layers requested are obtained from the characteristics in Fig. 5. The minimum video quality constraint is fixed to 95% for all users. We consider three random instances of the network in each of the three scenarios and evaluate the average performance.

Fig. 7 presents an example of resources requested/allocated via the two networks for a random network instance in Scenario 3. \(N = 80, Q_{th} = 95\% \), \(\rho = 0.5 \), and \(p_{cr} = 0.7 \).

B. Multiuser Operation

We now consider a single cell scenario with 80 CM users uniformly randomly distributed across the cell. We consider three network scenarios. In the first, all users request ‘Foreman’ video sequence, while in the second all users request ‘Mobile’ video sequence. In the third scenario, the users request one of the two video sequences: ‘Foreman’ or ‘Mobile’, with equal probability. Remaining battery level of user device is distributed uniformly between [0 100]%. Depending on the remaining battery level, the user’s maximum energy consumption constraint and number of layers requested are obtained from the characteristics in Fig. 5. The minimum video quality constraint is fixed to 95% for all users. We consider three random instances of the network in each of the three scenarios and evaluate the average performance.

Fig. 7 presents an example of resources requested/allocated via the two networks for a random network instance in the third scenario. Optimal resources requested by the individual users are computed using (P2) in (19). Following Algorithm 1, the users are served in an increasing order of their cost, or equivalently the number of layers requested. The users meeting the resource availability criteria are served (marked allocated in Fig. 7). If the CRN resources are insufficient, (P2) is recomputed to obtain the revised resource allocation. If a user’s revised resource allocation is acceptable, the user is served (marked by arrow in Fig. 7). A user is dropped if its resource requirement is not met. Overall, the users requesting lower resources are served, while the users with higher demands are more likely to be dropped.

Figs. 8(a) and 8(b) presents respectively the total network cost \(C_{net} \) (cf. (P1) in (18)) and the average number of users served in the three scenarios. Number of users served is higher in scenario 1 as the data rate of the Foreman video sequence is lower compared to the Mobile video sequence. Total network cost in SNA schemes is seen to be higher than (inferior to) the CM system because the users are optimally allocated resources from the two networks simultaneously in CM. Further, the number of users served in CM is higher compared to the other schemes. Fig. 8(c) shows the average PSNR of the users served. We observe that the average PSNR in CM-opt is better than that in all the other schemes as higher number of users are served in CM-opt. Due to layer-dependent parameter optimization, CM-opt outperforms SNA-LCN schemes by serving on average 48.2% more users with about 3% higher PSNR on average.

To gain further insights, Figs. 9(a) and 9(b) presents the average cost per user and fraction of users served versus number of layers requested in the first scenario. From Fig. 9(a) it is observed that the average cost per user served is the lowest in CM-opt, which is due to its layer-dependent parameter optimization. Cost reduction in CM-opt is higher for higher number of requested layers as noted in Section V-A3. As the users are served in an increasing order of the number of layers requested, the users requiring higher number of layers are more likely to be dropped (see Fig. 9(b)). However, in CM system, where the data is optimally transmitted via the two networks, the fraction of users served is higher. Similar trends are observed in the other scenarios as well.

Remark 3: Compared to SNA, CM system serves a higher number of users with a higher average video reception quality and at a lower cost.

VI. CONCLUSION

In this paper, a novel paradigm, called cognitive multi-homing (CM), has been presented, where the user data is
optimally split across LCN and CRN before transmission to the multihomed users. The CM approach aids in mitigating the spectrum scarcity problem of LCN, which CRN alone cannot solve. In the proposed approach, dynamic radio resource selection, sensing duration and transmission rate adaptation over CRN, and transmission rate adaptation over LCN are optimized, which reduces the cost to the user while meeting the energy consumption and video quality thresholds. The optimized CM has been shown to outperform the SNA schemes by reducing the cost to the user while meeting the energy consumption and video quality thresholds. CM can be easily implemented on devices with multihoming and CR capabilities.

ACKNOWLEDGMENTS

This work has been supported in parts by the ITRA Media Lab Asia project under Grant no. ITRA/15(63)/Mobile/MBSSCRN/01 and the Department of Science and Technology under Grant SB/S3/EECE/0248/2014.

REFERENCES

