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ABSTRACT 
 
                  This work aims at optimizing a helmet. First a discrete dynamic model of a helmet has been 

proposed for modeling the free fall of the helmet from a height of 2m. The model was solved 
using Runge Kutta method. The time history of head acceleration has been extracted from this 
solution and ‘Time bound peak acceleration criteria’ of head injury has been computed After 
preparing the model it was validated using the available experimental and FEM results. The 
model was then used for optimization. The objective of optimization is to minimize ‘time bound 
peak acceleration’ which is taken as an injury criterion representing the effectiveness of the 
helmet. The optimization is subjected to constraints of maximum total mass and maximum total 
thickness of the helmet. The optimization has been carried out using conventional method as 
well as genetic algorithms. Subsequently the sensitivity of the objective function value with 
respect to different design parameters was studied.  

  
               Key words : Dynamic modeling, Injury criteria, Drop test, Stiffness, Damping, Optimization . 
 
NOMENCLATURE 
A Area of Contact 
cc, cf, cs Contact Damping foam damping and shell 
damping respectively 
cf Foam Damping 
cs Shell Damping 
D Relative Density of Foam ( D = ρ0 /ρf) 
E Young’s modulus of elasticity  
Elc Young’s modulus of elasticity of composite 
material in longitudinal direction. 
Etc Young’s modulus of elasticity of composite 
material in transverse direction. 
F Force 
fct Compressive strength of composite 
g Gravitational acceleration 
h Height  of Helmet fall (Drop test height) 

kc,kf,ks        Contact ,foam and shell Stiffness respectively 
mf,mh,ms  Mass of foam, head and shell respectively 
P  Force between helmet shell and the surface 
R Radius of Helmet 
tf,ts Thickness of Foam and shell respectively 
Vf,Vm,Vc: Fiber volume, Matrix Volume and Volume 
of composite respectively 
xh, xf, xh   :Displacement of Head, foam mass and shell 
respectively 
ε Strain in  the Inner Foam Layer 
ρf Density of Foam 
ρ0 Density of Solid Foam 
σf Stress in  the Foam Layer 
τ Retardation Time 

 
1 INTRODUCTION 
In day today life we observe many cases of two wheeler accidents. Helmets a re a primary safety device used on 
motor cycles. A well-designed crash helmet has proved to be a very good protection device against head injuries in 
road accidents. The use of helmets reduces the number of fatal injuries as well as the severity of the injuries from 45 to 
80% [13, 16]. Most of the work done in the field of helmets is related to analysis of their protective effects using 
experimentation [17, 11] or FEM [1]. Hopes and Chinn [11] have examined the existing helmets by experimentation. 
From the results they have suggested various improvements in the present design to improve the effectiveness of the 
helmets. They have discussed different head injury criterions and their appropriateness. Goldsmith Werner [8] has 
also done detail study of head injury and its relation to different head injury criteria. Gilchrist and Mills [2, 8, 12] have 
studied different types of helmets and their performance with different materials and geometry. They have also 
worked on mathematical modeling of effectiveness of helmets. In the present work, basic guidelines for the dynamic 
modeling are derived from [12]. However instead of using concrete experimental data for getting the material 
properties, we seek to make a completely mathematical model and the material properties are also expressed 
mathematically as a function of design parameters. This makes the model suitable for use for optimization.  
For design and analysis purpose different head injury tolerances or criteria are used. These criteria define the 
biomechanical limit for fatal injury. Most of them involve accelerations during the impact period. Some of the 
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important criterion are Head Injury criteria (HIC), Head Performance Criteria (HPC), Gadd Severity Index (SI) and 
the Peak Acceleration Criteria [8]. The Time Bound peak acceleration criteria specifies the peak value of acceleration 
but with a standard time limit; e.g. peak acceleration of head should not exceed 200g for 2msec or 150g for 4 msec 
[8]. These criteria are simple and easy to implement. In the present work, ‘Peak acceleration with time limit’ i.e. ‘Time 
bound peak acceleration’ (TBPA) is used as the injury criteria. 
The present work aims at optimizing the motorcycle crash helmets. For that, application and construction of helmets is 
studied and appropriate materials are selected for different parts of the helmet. Thereafter a dynamic model of the 
helmet is prepared. This model predicts the dynamic behavior of the helmet under impact for given values of design 
variables. A bio-mechanical limit for head injury i.e. a criteria for head injury is adopted and implemented on the 
acceleration time history of the helmet during impact. This particular model is validated using available experimental 
and FEM results. The model is then used for optimization. It is intended to minimize the head injury criteria value. The 
optimization is subjected to constraints on maximum weight and total thickness of the helmet. Thus the present work 
seeks to obtain optimal values of design parameters of helmet. 

2 Methodology 
In order to design the helmet, the steps followed for problem solving are as follows. First a discrete dynamic model of 
the helmet was prepared. The model has three degrees of freedom. In the model, we consider the mass of shell, foam 
layer and head form. The stiffness and damping for each layer has been modeled accordingly. The model was solved 
using Runge-Kutta method and the acceleration, displacement and velocity time history of helmet during impact were 
obtained. The model was then validated using available experimental data. After validating and approving the model, 
the variation in the behavior of the system was studied with respect to different design parameters. The helmet design 
was then optimized for minimum TBPA subject to the constraints on mass and thickness of the helmet. In this study 
polystyrene is taken as material for inner foam layer whereas glass reinforced plastic is taken as material of shell. 
The following assumptions are made in this study while preparing the model: 

• The surface  with which the helmet impacts is rigid. 
• The headform is rigid.  
• Forces developed in the helmet are local 
• Area of contact of the helmet with the impacting surface is circular 
• The comfort Foam absorbs negligible amount of energy. So its mass, stiffness and damping are not considered 

in the modeling. 
• Global bending of the helmet is negligible. 

 
3 DYNAMIC MODELING 
The helmet consists of the outer shell, foam layer and a comfort layer as shown in Figure 1. During the impact 
siulation, a headofrm representing the head is taken to be inside the helmet as shown. A three degree of freedom 
discrete dynamic model of the helmet is prepared. The model constitutes of three masses representing the head form, 
outer shell and inner foam layer (Figure 3). The downward direction is considered as positive through out this paper. 
3.1 Mathematical Model 
Applying Newton’s law we get following equations of motion : 
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These equations have been solved using Runge-Kutta method. The stiffness and damping needed in these equations 
are non-linear and their values change with deformation of the component.  
When the helmet falls vertically on the ground the contact area is taken to be circular. From the geometry of impact 
area, as shown in Figure 2, the radius of the contact circle can be calculated as: 
          A   =  πa2 = π(R2-(R-x)2) = 2πRx – x2, where A = Contact Area  = Shaded Area for x << R 
 
3.1.1 Foam Stiffness Modelling : 
The second layer of helmet is made up of polystyrene foam. In modeling foam stiffness the stress strain curve of 
polystyrene (under impact) is used. The curve has been taken from [9] and is shown in Figure 4. It can be observed 
from the curve that, the loading part of the stress strain curve is independent of the strain rate. For all strain rates the 
same curve called master curve is traced, but the return path changes as the strain rate changes. This curve has three 
major regions – the elastic region, plastic region and return path. All these regions follow different rule of stress strain 
relationship and the stiffness is modeled accordingly in these regions. 
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Figure 1 The helmet with the headform 

 
Figure 2 Geometric representation of impact 

 

Figure 3 Dynamic Model Of Helmet 

The first part of the curve is the elastic region in which stress - strain satisfies the Hook’s law  i.e. stress is directly 
proportional to strain (σ = E ε) and the stiffness of the foam can be shown to be  
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The second region is the plastic region of the curve. In this region stress strain relations are no more linear. The stress 
strain relation is taken as [9]:  
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The return path from the peak point is also nonlinear. While it is approximately linear for low strain rates, the non-
linearity increases as the strain rate increases. Here the return path is approximated as a straight line parallel to the 
elastic region line. So this line will have slope same as that of elastic region line but it will not pass through the origin. 
It is assumed that reloading follows the same path. The stress strain relation for this region can be expressed as: 
σ =  Ef ε + const 
The value of the constant can be found using the peak point ( return point ) co-ordinates. If the co-ordinate of the 
return point are σ1 and ε1 then the value of constant can be found as: 
const = σ1 -  Ef ε1  
So stiffness in this region is can be found out using equation as follows : 
kf = (Ef* ε + const)* 2*π*rf  
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As has been seen earlier the material properties of foam depend upon relative density and properties of the base 
material i.e. solid polymer. Empirical relation between relative density and other properties of foam (e.g Young’s 
modulus , density, strength ) are given by [9]. 
  Ef =  E0 * D1.5  df = D * ds 

  Yf = Ys *D1.5  E0 = 3 * 109  N/m2   
  ds = 1200 kg/m3

  Ys = 6 * 107 N/m2 
Our program calculates values of material properties of foam using above relations and then uses these values to 
evaluate the stiffness of the foam. 
3.1.2  Shell Stiffness Modeling : 
The shell material is assumed to be orthotropic composite material. It will have different values of Young’s modulus in 
perpendicular directions. As the impact is in transverse direction, Young’s Modulus in transverse direction is used. As 
has been seen, the properties of the composite depend on fiber as well as matrix material and volume fraction of the 
two [4]. The relation between transverse Young’s modulus of fiber and matrix and that of the composite can be 
expressed as follows [4]: 

  
E*V  *V

E *E
  E

ftmmtf

mtft
ct +
=

E
, where Vm =  1-Vf , Emt = 3.2*109  N/m2

, Eft  =  2*109 N/m2 

For the matrix, as it is a homogeneous material, Eml = Emt. Compressive strength of the composite is obtained by 
dividing compressive strength of the matrix by a stress concentration factor, generally taken as 1.5. This stress 
concentration factor accounts for the stress concentration due to fibers. 
fct = fmc/1.5; 
fmc = 158e6 N/m2; 

 
Figure 4 Stress  Strain Relation for polystyrene (X Axis 
shows the strain (%), Y Axis shows stress(1*10^10 
Pa)  

Figure 5 Stress Strain Relationship for shell material 
Glass reinforced plastic has been used as the material for shell. As the material is plastic in nature, it has been 
modeled as elasto-plastic. A typical stress-strain variation for a elasto-plastic material is shown in Figure 5. It can be 
seen from the figure that upto the yield stress, Hook’s law is followed but after that the curve is parallel to X- axis. 
Unloading is parallel to the loading curve. The later loading curve follows the unloading path. Stiffness has been 
modeled differently for elastic and plastic regions as per the corresponding laws. 
In the elastic region the stress-strain satisfies the Hooke’s law  i.e. stress is directly proportional to strain, σ =  E2sε. 
Hence, the stiffness in the elastic region is given by 
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c t
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  k
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In the plastic region, the stress strain relation is represented by a horizontal line parallel to the x-axis. Here total force is 
given by Force = yield stress*area, and the stiffness is therefore given by  
 ks = (fct)*(2 * π * rs) 
The return path is a straight line parallel to the elastic region line. So using a similar approach the stiffness becomes, 
ks = (E2s* ε + const)* 2*π*rf  
3.1.3 Contact Stiffness Modeling  
During impact of the helmet, the outer shell as well as foam layer of the helmet bends locally as well as globally. In 
local bending, the shell bends near the impact region whereas in global bending the whole shell tends to bend about 
the impact point. This bending poses stiffness at the contact. While modeling the contact stiffness global bending has 
been neglected. Figure 6 demonstrates the local and global bending of the shell. After bending, the shell becomes flat 
as shown in Figure 7. The shell tries to regain its original shape back and thus acts as a spring. This gives rise to 
renounce of the helmet. The bending has been modeled as shown in Figure 8. Here it is assumed that the load at the 
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contact surface is uniformly distributed over the contact area. If ‘w’ is the deformation at the center in the X-direction, 
and ‘p’ is the pressure acting on the shell, then the relation between deformation and pressure is given as follows [6]: 
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Figure 6 Global and local bending 

 
Figure 7 Helmet after local bending 

3.1.4 Stiffness in tension: 
The stiffnesses modeled up till now are stiffnesses due to compression of the material or bending. As soon as the 
compression becomes zero the head and foam, and the shell and foam lose contact with each other. So there will be 
no shell stiffness or foam stiffness in tension. Mathematically this can be expressed as : 
For  xh - xf <0      kf= 0 
For   xf – xs<0    ks = 0 
For   xs<0    kc = 0 
3.1.5 Modeling of Damping  
Damping is an important element of the helmet model. Primarily, in both foams and shell viscoelastic type of damping 
is present. In case of plastics or polymers viscous as well as elastic effects are observed. So these are called viscoelastic 
materials. In these materials when stress is applied, corresponding response is sluggish which leads to time lag 
between stress and strain. Different models have been developed to represent this behavior of viscoelastic materials 
[5, 14]. Kelvin-Voigt model has been used in the present work. 
As per Hook’s law, stress is directly proportional to the instantaneous strain. But this is not applicable to viscoelastic 
materials as there is phase difference between stress and strain. Kelvin modeled the viscous behavior [5] with a spring 
and a damper in parallel as shown in Figure 9 

 
Figure 8 : Modeling of local bending 
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Figure 9 Kelvin-voigot model 
The spring represents force proportional to strain and damping represents force proportionate to strain rate. If a load P 
is imposed at time t=0, then from equation , the subsequent deflection X(t) can be given  by :  

 

) e  1(*
k
P  X(t) t / τ-−⎟
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⎞

⎜
⎝
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                                                              (15) 
 τ is called retardation time. It is a ratio of damping to stiffness. In this equation, for actual materials the value of the 
constant ‘retardation time’ depends upon molecular structure, strain rate, peak stress level, variation in stresses etc. 
According to Gilchrist and Mills, in case of helmet impacts, for ensuring realistic hysteresis in the loading and 
unloading sequence, the retardation time should be 0.25 msec for foam and 0.2 msec for shell [6, 7] i.e. cf = 0.25*10-

3 * kf, cs = 0.2 *10-3 * ks, cc = 0.2 *10-3 * kc. These relations are used to evaluate the damping incorporated in the 
dynamic model. 
3.1.6 Mass modeling  
To model helmet mass, a simple geometry of the helmet is assumed. The helmet has been optimized for this particular 
shape. It is assumed that the helmet is made up of two sections. The upper section is approximated as elliptical in 
shape. It is half ellipse as shown in Figure 10a. The lower section is taken as a partial elliptical cylinder as shown in 
Figure 10b 

 

 
Figure 10 Geometry of lower and upper half of the helmet 

The inner radius of the helmet generally ranges from 90 to 110 mm whereas the total radius of the helmet (outer 
radius of the outer shell) ranges from 125-140 mm. In the present work the inner radius is taken as base dimension 
and other dimensions are found out using it. The inner radius is taken to be 100mm. 
Let R be the inner radius of the helmet. Then the average radius of the foam layer can be taken as rf = R + tf / 2. 
Similarly, the average radius of the shell can be taken as rs = R + tf + ts/2, The contact radius or the radius of the 
outer shell will be rc = R + tf + ts.  
Next step is to find out volume of the foam and shell. Let ai, bi and ci be the inner dimensions of the ellipsoid. After 
studying the dimensions of the available helmets, the relation between ellipsoid dimensions and the inner radius are 
approximated as ai = R + 0.1*R, bi = R - 0.1*R, ci = R - 0.1*R + tf , bo = bi + tf , co = ci + tf,  
Let ao, bo and co be the outer dimensions of the ellipsoid. These are taken as ao = ai + tf , bo = bi + tf , co = ci +tf,  
The volume of the half ellipsoid is: approximated as V1

’ = 0.5* π *(ao*bo*co - ai*bi*ci). On the front of the ellipse a 
small cut is given to provide for upward vision. The angle of the cut, as per helmet standards, is 250. This cut occupies 
around 5% of the volume. So the volume of upper part of the helmet reduces to : 
V1

’ = 0.5*0.95 *π *(ao*bo*co - ai*bi*ci)  
The height of the elliptical cylinder is taken as 10cm. The volume of the elliptical cylinder becomes: 
V2’ = π *(ao*bo - ai*bi)*R 
Part of the elliptical cylinder is open to provide peripheral vision. This part is covered by a glass visor. The angle of 
opening for peripheral vision is 1100 with respect to middle vertical plane on its both the sides. The opening occupies 
approximately 15% of the cylinder space and the face guard occupies around 15%. Then the volume of the foam 
cylinder reduces by 30%. The total volume thus becomes V1 + V2 where V2 = 0.7*V2’. The volume of the foam 
becomes Vfoam  =  0.5*0.95* π *(ao*bo*co - ai*bi*ci) + 0.70* π *(ao*bo - ai*bi)*(R).  
The density of the foam depends on density of solid foam and relative density of the foam. The relation is given as 
dfoam = relative density * foam solid density. Having estimated the volume and the density of the foam, the mass of 
the foam can now be estimated.  
For the shell asi, bsi, csi and and aso,bso,cso are the three inner and outer shell dimensions respectively.  
asi = ao  ,bsi = bo,,csi = co 

250 

10cm 

(a) 

(b) 
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aso = ao+ts, bso = bo+ts, cso = co + ts 
Volume of the shell is formulated as Vc = 0.5*0.95*pi*(aso*bso*cso - asi*bsi*csi) + 0.85*π*(aso*bso - asi*bsi)*(R). 
Density of composites depends on the density of matrix as well as the density of fiber. The relation between composite 
density and matrix and fiber densities is given by dc = Vf*df  + Vm*dm. Having estimated the volume and the density 
of the shell, the mass of the shell can now be estimated.  
 
4 MODEL VALIDATION 
After preparing the dynamic model of impact of a crash helmet, the model has been validated against available 
experimental as well as results from a validated FEM model [3]. Properties of the helmet used for validation are:Inner 
Foam Layer: Shear Modulus  = 9*105 N/m2

, Tangent Modulus = 1*105 N/m2
, Bulk Modulus = 6 *105 N/m2

, Yield 
Stress = 3.2 *105 N/m2

, Density = 145 kg/m3
,  Thickness of the layer = 25 mm, Outer Shell : Young’s Modulus = 

1.87*109 N/m2
, Thickness  = 37 mm, Stiffness to damping ratio = 0.0133, Velocity of impact  = 6.26 m/s. With these 

values the model is solved to get the acceleration and displacement time history of the helmet. The results obtained 
are shown in the Figure 11 which shows the acceleration time history extracted from the discrete dynamic model and 
FEM analysis. Figure 12 shows the comparison of the results from the discrete dynamic model with the experimental 
results.  

 
Figure 11 Acceleration time history of head acceleration(fem 

and discrete dynamic model results) 

 
Figure 12 acceleration time history of head 

acceleration(experimental and discrete dynamic model 
results) 

Peak head acceleration value given by the FEM results is 2030.70 m/s2, whereas as for the present dynamic model it 
is 2059.95 m/s2. The TBPA value given by the FEM model is 1351.05 m/s2 and the one given by present model is 
1542.07 m/s2. Here we find that the peak acceleration as well as TBPA values given by the present model is higher 
than that of the FEM model. This shows that the present model is stiffer than the FEM model. In both the models we 
observe two prominent peaks and the second peak is higher than the first peak. Figure 12 compares the experimental 
results and results of the present model. Two experimental results for the helmet are available. It is evident that TBPA 
value as well as peak acceleration value is higher in case of theoretical results as compared to practical results. TBPA 
value for first experimental results is 1362.314 m/s2 whereas for the second experimental result it is 1491.599 m/s2. 
The theoretical peak acceleration value is also higher than the experimental peak acceleration value.  
Figure 13 represents the foam deformation time history for discrete dynamic as well as FEM model. From the figure it 
can be noted that the maximum deformation given by the discrete dynamic model is lower than the one given by 
FEM model. The maximum deformation of foam from the dynamic model is 19.67 mm  whereas as per the FEM 
model it is 22.23 mm. Difference between the maximum deformations is 2.56 mm. This again indicates that the 
discrete dynamic model is giving stiffer results as compared to FEM model. The permanent deformation in discrete 
dynamic model is 8.678 mm whereas in FEM model is 10.6081 mm.  
Thus the developed is slightly stiffer with respect to the experimental results as well as FEM results. The results are 
however within about 10-12%. This is acceptable in view of the assumptions made for simplification. This model is 
therefore used for optimization. But before we describe the optimization process, we describe the variation in the 
behavior of the objective function with respect to the design parameters. 
 
5 SENSITIVITY OF THE DESIGN PARAMETERS 
The dynamic model of the helmet impact has been prepared and validated. Having validated the model, we now 
study the sensitivity of the objective function (TBPA) to the different design parameters.  
5.1.1 Sensitivity wrt Relative Density of foam 
The variation of the TBPA with respect to relative density of foam is represented in the Figure 14. From the figure it 
can be observed that the TBPA value increases linearly with increase in foam density. As the relative density of the 
foam increases, young’s modulus of foam increases. This results in increase in stiffness of foam which leads to increase 
of TBPA value. 
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Figure 13  Foam compression vs time(fem and 

discrete dynamic model results)  
Figure 14 Variation in TBPA with respect to relative foam 

density 
5.1.2 Sensitivity wrt Fiber Volume Fraction: 
In this case also it can be observed from Figure 15 that TBPA is linearly proportional to fiber volume fraction. From 
relation 6.11 it can be observed that Young’s modulus of the composite increases with increase in fiber volume 
fraction. This ultimately leads to increase of stiffness of the shell which results in increase of TBPA value. 

 
Figure 15 Variation of TBPA with respect to fiber volume 

fraction Figure 16 Variation of TBPA with respect to foam thickness 
5.1.3 Sensitivity wrt Foam thickness: 
From Figure 16it is evident that TBPA is high for low values of foam thickness. As the thickness increases the value of 
TBPA value decreases to a minimum of 1676 m/s2. Thereafter a slow increase in the TBPA is observed. If the 
thickness of foam is small, the stopping distance provided by foam reduces drastically and it tends to become solid 
earlier leading to increase of stiffness. When the foam becomes solid shell stiffness becomes predominant. So with 
increase in thickness of foam reduction in TBPA is observed. 
5.1.4 Shell Thickness 

 
Figure 17 Variation of TBPA with respect to shell thickness 

In case of shell thickness, as shown in the Figure 17, it is found that the TBPA value increases for the initial range of  3 
mm to 4.2 mm. After that the value starts dropping down. Thus a minima will be obtained in both the ranges. But the 
one found in lower range will be important from view point of mass constraint.   
Figure 18 is a surface graph presenting the variation of objective function i.e. TBPA with respect to variables related to 
foam i.e. relative density of foam and its thickness. From the figure it is clear that the objective function is higher for 
low thickness and for high relative density, whereas it is lower for low relative density and higher foam thickness. In 
this region of low relative density and higher foam thickness, it can be observed that the surface is quite flat and the 
variation in the objective function value is less. Figure 19 is another surface plot representing the objective function 
variation with respect to variables related to shell i.e. shell thickness and fiber volume fraction. It can be observed that 
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the objective function value is lower in two regions; One corresponds to high fiber volume fraction and higher 
thickness and another one corresponds to low fiber volume fraction and lower thickness. 

 
Figure 18 TBPA vs foam relative density and foam thickness 

 
Figure 19 TBPA vs shell thickness and fiber volume fraction  

6  OPTIMIZATION 
In optimization we aim to find optimal values of material properties and geometric parameters like thickness of 
different parts of the helmet. The different aspects of the problem are as follows: 
The prime focus of the optimization is to maximize the protection provided by the helmets. This protective efficiency is 
measured using head injury criteria. In this work the TBPA is chosen as the criterion for optimization. This 
optimization has been subjected to a set of constraints. The neck takes up the weight of the helmet. So use of heavy 
helmet may lead to neck injury in long term use. Thus to satisfy the ergonomic considerations, the weight of the 
helmet should not exceed 1.3 kg [15]. As total mass of the helmet is non-linear function of material properties and 
geometry of the helmet, this is nonlinear type of inequality constraint. Another constraint is put on the total thickness 
of the helmet. It is maintained below 35mm [15] . This is linear type of inequality constraint. 
The optimization problem can now formally be stated as follows 

Design Parameters: 
Relative density of foam (D) 
Fiber volume fraction (Vf) 
Inner Foam layer thickness (tf) 
Outer shell thickness (ts) 

Objective function : Minimize TBPA   
Constraints: 

Non-linear : ms + mf ≤ 1.3  
Linear constraint : ts + tf ≤ 35  

In the present work two different approaches have been adopted for optimization, viz, a sequential quadratic 
programming approach and Genetic Algorithms (GAs).  

7 RESULTS AND DISCUSSION 
The results obtained from the ‘sequential quadratic programming’ approach are presented in Table 1. Different initial 
values were given in different runs to ensure that the algorithm did not get stuck with a local optima.  

  
VAR 

INITIAL GUESS FINAL SOLUTION VALUE OF 
OBJECTIVE 
FUNCTION 

1 0.04, 0.4, 18, 2.9 0.04, 0.4, 26.2, 3 1676.5 
2  NO 0.04, 0.5204, 22, 3.2 1715.1 
3 

D, Vf, tf 
(mm), ts 
(mm) 0.04, 0.6, 28, 3 0.04, 0.4, 0.04, 0.004 1683.7 

Table 1 Result obtained by using conventional method 
The same problem was solved by the genetic algorithms also. For different initial values genetic algorithm gave same 
result. The results are presented in the Table 2. It can be observed that the optimal values match with the lowest 
minima obtained by the conventional method. It was also observed that the results from GAs were more consistent. 

NO VARIABLES FINAL SOLUTION VALUE OF 
OBJECTIVE 
FUNCTION 

1 D, Vf, tf (mm), ts (mm) 0.0402, 0.4067, 26.4, 3.07 1681.1 
Table 2  Results obtained by using genetic algorithms 
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Figur e 20 Acceleration vs time for optical solutions 

Figure 21 Shell deformation vs time for optimal 
solution 

 
Figure 22 foam deformation vs time history for optimal 

solution 

 
Figure 23 Head ,foam and shell deformations vs time 

for optical solutions 
The graphical results for the optimized parameters are presented in Figur e 20 to Figure 23. The peak value of the 
acceleration is 2237.1m/s2 where as the TBPA is 1676.1 m/s2 . the maximum deformation of the inner foam layer is 
16.7mm. The permanent deformation of foam observed is 13.89 mm. For shell the maximum deformation goes is 
0.129 mm. It remains in elastic region throughout the deformation. So it regains its original shape. The maximum 
movement of the head in the downward direction is 20.13mm. In order to understand the functioning of the helmet, 
let us look at the foam and shell deformations closely. From Figure 23 we can observe six prominent stages of the 
time history plots according to the motion of the head form and helmet. These stages are marked with points A, B, C, 
D, E and F in the figure. The movements of the head and the helmet in these stages are presented diagrammatically 
in Figure 24. The stages and their relation with acceleration is explained as follows: 
First Stage: (0 – 0.0009 sec) 

In the first stage both helmet and headform move towards the impact plane. The helmet hits the impact 
plane and its velocity decreases to zero while the velocity of the headform is constant.  

Second Stage: (0.0009 – 0.0022 sec) 
In the second stage headform is still moving downwards. But the helmet (foam layer and shell) moves 
upward pressing the headform hard. This increases the head acceleration faster as can be seen from 
acceleration time history plot in Figur e 20 

Third Stage: (0.0022 – 0.0034 sec) 
In the third stage helmet again starts moving downwards due to the momentum of the head. This increases 
the foam compression and the compressive forces between headform and the foam. This leads to slight 
reduction in the headform acceleration. 

Fourth Stage: (0.0034 – 0.0047 sec) 
In the fourth stage the headform continues to move downwards and the helmet bounces back and moves 
upwards. This again causes hard pressing of the foam layer. This increases the compressive forces at the 
contact between headform and the foam and increases the headform acceleration. 

Fifth Stage: (0.0047 – 0.0054 sec) 
Thereafter in the fifth stage, head moves down whereas the headform starts moving up. Due to these 
movements, the compression in the foam layer is released causing reduction in the forces. This reduces the 
headform acceleration.  

Sixth Stage: (0.0054 sec onwards) 
In this last stage the headform continues to move up as well as the helmet bounces back and starts moving 
up. The helmet pushes the headform causing small increase in the foam compression. This reduces the 
acceleration for a while as seen from the Figur e 20. 

Deformation vs time
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8 CONCLUSION 
In this paper we have described a 3 degree of freedom helmet model which has been validated against experimental 
as well as FE based models. The model has then been used for optimizing the helmet effectiveness. Two different 
optimization techniques have been used to ensure that a global optima is found. Finally the optimized helmet model is 
used for studying the kinematics of the helmet and the mode in which the helmet reduces head accelerations. The 
paper presents a technique by which a simple helmet model can be used for optimizing the helmet at the design stage. 

 

 
Figure 24 Six Stages Of Helmet Impact 
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