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ABSTRACT
Rigorous analyses of Euclidean distances between non-peptide bonded residues in structures of sev-
eral thousand naturally occurring folded proteins yielded a surprising “margin of life” for percentage
occurrence of individual amino acids in naturally occurring folded proteins. On one hand, the concept
of “margin of life”, referring to lower than expected variances in average stoichiometric occurrences of
individual amino acids in folded proteins, remains unchallenged since its discovery a decade ago. On
the other hand, within this past decade there has been a strong emergence of a gradual paradigm
shift in biology, from sequence-structure-function in proteins to sequence-disorder-function, fuelled by
discoveries on functional implications of intrinsically disordered proteins (primary sequences that do
not form stable structures). Thus the applicability of “margin of life” to peptide-bonded residues in all
known natural proteins, adopting stable structures vis-�a-vis intrinsically disordered needs to be
explored. Therefore in this work, we analyze compositions of the complete naturally occurring primary
sequence space (over 560000 sequences) after dividing it into mutually exclusive subsets of structured
and intrinsically disordered proteins along with a subset without any structural information. While find-
ing that occurrence of different peptides (up to pentapeptides) is a direct consequence of the relative
occurrences of their constituting residues in folded proteins, we report that structural disorder in nat-
ural proteins originates beyond the narrow stoichiometric margins of amino acids found in struc-
tured proteins.
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Introduction

The narrow margins of values of physico-chemical variables
such as temperature and pH in which different living systems
exist are well accepted (Dill et al., 2011; Ghosh et al., 2016;
Ghosh & Dill, 2010). In fact, it is recognized that the narrow
range of values of the physico-chemical variables at which
molecular components function together for assembling and
maintaining living systems are often different from the
“optimum” conditions applicable individually to the molecu-
lar components (Ghosh & Dill, 2010). Further, along with the
environmental factors, species-specific compositional con-
straints for the above molecular components are also well
established. The simplest examples being those of codon
bias in genetic codes (Sharma et al., 2008; Sun & Caetano-
Anoll�es, 2008; Zhang et al., 2019), variations in mesophilic
and archaeal proteins (Caetano-Anoll�es et al., 2012) and
prevalence of different membrane lipids in biological mem-
branes of specific organisms (Bansal & Mittal, 2015).
Interestingly, while discovery of the Chargaff’s rules in the

last century (Chargaff, 1950) recognizing the compositional
constraints on DNA regardless of classification of living sys-
tems played a key role in structural elucidation of DNA
(Watson & Crick, 1953), appreciation of such species-inde-
pendent compositional constraints on protein primary
sequences has not yet fully matured since their recent dis-
covery (Mittal et al., 2010).

About a decade ago, several thousands of high resolution
(� 2.5 Å) structures of naturally occurring folded proteins in
the PDB were analyzed for extracting the presumed preferen-
tial interactions between specific residues in folded proteins
(e.g. negatively and positively charged side chains, non-polar
side chains with each other) by measuring Euclidian distan-
ces between non-peptide-bonded residues (Mittal et al.,
2010). From analyses of the largest structural dataset at that
time, it was found that Euclidian distances between a-carbon
atoms of residues with oppositely charged polar side chains
were no different from distances between polar and non-
polar/hydrophobic residues or non-polar/hydrophobic and
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non-polar/hydrophobic residues (Mittal et al., 2010; Mittal &
Jayaram, 2011a; 2011b). In addition, regardless of the protein
size or 3D structure, the probability of any two non-peptide
bonded residues being close together was found to depend
primarily on their percentage occurrence in primary sequen-
ces rather than the physico-chemical nature of their side
chains (Mittal et al., 2010; Mittal & Jayaram, 2011a; 2011b).
The findings were termed as controversial, “bordering on rev-
olutionary” (Sarma, 2011).

In order to contest the findings, an independent test of
the methodology developed was applied on DNA structures
(Galzitskaya et al., 2011). Remarkably, the results showed
that, if existent, preferential interactions (i.e. A-T and G-C in
case of DNA) were indeed extracted from structural data
(Galzitskaya et al., 2011; Mittal & Jayaram, 2011b) by applying
the methodolgy. In contrast, the only preferential interaction
found in protein structures was Cys-Cys – the agreement
between prediction (Agutter, 2011) and results (Mittal &
Jayaram, 2011a; 2011b) further strengthened the reliability of
the methodology utilized. Experimental validation of the
apparently” blasphemous” results on percentage occurrence
of amino acids (i.e. their stoichiometry) in protein sequences
being responsible for their 3 D structures rather than the pre-
sumed preferential interactions between non-peptide
bonded residues further came independently from (a) com-
putational experiments showing jumbled protein sequences
with the same amino-acid stoichiometry arriving at identical
thermodynamic conformations in different simulation times
(Song et al., 2011), and, (b) wet experiments showing that a
mixture of non-peptide bonded amino acids in the same
proportion as amino acids of a natively folded polypeptide
sequence have the same conformational signatures (Schir�o
et al., 2011). Thus, structural data had serendipitiously uncov-
ered stoichiometric constraints on amino acids constituting
protein sequences as a primary feature in protein folding.
Finally, an independent discovery of the fact that standard
deviations of average percentage occurrence of amino acids
in all structured protein sequences were found to be much
lower than standard deviations expected from random nor-
mal distributions of amino acids (Mezei, 2011) led to defining
of the” stoichiometric margins of life” for the constrained
amino acid compositions resulting in structured proteins
(Mittal & Jayaram, 2011b; 2012)

On one hand, it may appear in retrospect that simply cal-
culating percentage occurrence of amino acids in all known
protein sequences could have been a straight forwad
approach towards insights into stoichiometric constraints in
naturally occurring protein sequences. On the other hand,
the elucidation of stoichiometric margins of life from struc-
tural data on non-peptide-bonded residues in structured pro-
tein sequences provided a completely new view on protein
folding. At that time, the area of disordered proteins was still
in its infancy with extremely limited data on intrinsically dis-
ordered proteins (IDPs), i.e. sequences that do not fold into a
stable structure (Chouard, 2011). Since then, not only several
discoveries establishing important biological roles of IDPs
have been reported (Berlow et al., 2018; Li & Babu, 2018;
Meyer et al., 2018; Salvi et al., 2019; Tompa et al., 2014; van

der Lee et al., 2014), but the amount of data on IDPs has
also increased more than ten-fold (Piovesan et al., 2017).
Therefore, time and data are now appropriate to explore
whether compositional constraints applicable to structured
proteins are similar to or different from those of IDPs. The
key question is –”are stoichiometric margins of amino acids
in structured proteins applicable to IDPs and hence all natur-
ally occurring primary sequences?” To answer this question,
the straight forward approach of simply calculating occur-
rence of amino acids in primary sequences to different
classes of proteins (e.g. Structured vs IDPs) was applied.

Methods

Complete sequence data was downloaded from Uniprot
(Swiss-prot) on 28th July 2019 as per instructions provided
for offline analyses (The UniProt Consortium, 2019). Results
presented are from this dataset. The list of all computation-
ally synthesized peptides and the exact number of times
they occur in all curated sequences downloaded from
Uniprot (Swiss-Prot) are available upon request. An earlier
download of complete sequence data on 15th February 2019
was done to develop and test the analytical codes. Datasets
were also downloaded on 21st September 2019 and 30th

October 2019. Negligible differences (almost nil) in the
results were obtained from analyses of all the datasets.
Coding was done in Python for counting the number of
occurrences of peptides. Independent coding was done in
Java to confirm accuracy of the results. Data analyses was
done in MATLAB (Mathworks Inc.) and MS Excel. Mean and
standard deviation of occurrence for each of the dipeptides
were calculated based on the following equations:
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where, N¼ total number of sequences, ni ¼ number of
occurrences of a given dipeptide in the ith sequence, and Ri
¼ number of total residues in the ith sequence. Similarly,
mean and standard deviation of occurrence for each of the
tripeptides were calculated based on the following equa-
tions:
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Following the above, mean and standard deviation of occur-
rence of each of the tetrapeptides and pentapeptides were
calculated by using “Ri – 3” and “Ri – 4” respectively.

Here it is also important to state a key assumption in this
work on comparing amino acid frequencies in primary
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sequences of all known naturally occurring proteins. Since the
primary sequence data utilized is manually curated, it has
been assumed that annotation (from genomes to proteomes)
is accurate in Swiss-Prot. While assuming the same, we also
carefully inspected the different species from which the data
has been compiled in Swiss-Prot and Disprot. This is important
since earlier work on comparisons between different species
of living organisms has provided evidence for the dependence
of amino acid frequencies on the genomic GC content
(Lightfield et al., 2011; Zhou et al., 2014). Neither did we find
any species specificity in Swiss-Prot vs. Disprot, nor did we find
any species specificity while cross-referencing the species
sources of our data with the earlier studies. This simply
allowed us to safely assume that the genomic GC content
resulting in the primary sequence datasets used in this work
are (at least) very similar, if not exactly the same.

Results

Amino acid distributions in different classes of primary
sequences and narrow stoichiometric margins of life

We first collected curated (manually reviewed) primary
sequence data from the Uniprot: Swiss-Prot database (The
UniProt Consortium, 2019). Then, by careful cross-referencing
with the Protein Data Bank: PDB (Berman et al., 2000; 2007)
and DisProt (Piovesan et al., 2017), we divided the Swiss-Prot
data into three mutually exclusive datasets of primary
sequences – (i) the first dataset containing all primary
sequences with folded protein structures (of varying resolu-
tions) was called” StrucSeq”, (ii) the second dataset contain-
ing all primary sequences classified as IDPs was called”
IDPsSeq”, and (iii) the third dataset containing all primary
sequences without any structural information was called”
OnlySeq”. In addition to the above, we found some sequen-
ces in DisProt that were not present in Swiss-Prot but pre-
sent in TrEMBL by cross-referencing. We called this dataset
of sequences as” IDPsUnRev” (unreviewed sequences, not
part of Swiss-Prot, classified as IDPs in DisProt). Thus, the

complete primary sequence space of naturally occurring pro-
teins was divided into four mutually exclusive datasets. Table 1
shows percentage occurrence of amino acids, in form of mean-
± standard deviation, in the above datasets.

Since the original discovery of compositional constraints
was based on protein structures, amino acids are shown in
the order of decreasing percentage occurrence in the”
StrucSeq” dataset. Two primary observations emerge from
inspecting Table 1 – (a) standard deviations for all amino
acids are apparently lower in structured proteins compared
to IDPs, and (b) there appears to be a difference between
average percentage occurrence of amino acids in” StrucSeq”
and IDPs. In order to explore these apparent observations,
we plotted the occurrence statistics of amino acids in the dif-
ferent datasets in comparison to” StrucSeq”.

Figure 1a and b show that both mean and standard devi-
ation of percentage occurrence of amino acids of “OnlySeq”
are highly correlated with “StrucSeq”. On the contrary, Figure
1c–f show that the relative correlations of the parameters of
IDPs with “StrucSeq” are lower. Thus Figure 1a–f collectively
indicate – (a) stoichiometric constraints on occurrence of
amino acids in primary sequences are applicable, with vary-
ing degrees, to folded/structured proteins as well as IDPs, (b)
“OnlySeq” contains a large number of the sequences that
could result in structured proteins as well as sequences that
must be IDPs since the correlations with “StrucSeq” are very
high but are still < 1.0, and (c) IDPs have compositional var-
iations distinct from structured proteins. Statistically, the
apparently high value of regression coefficients between
IDPs and “StrucSeq” indicates that the stoichiometric con-
straints on amino acids in primary sequences that result in a
stable structure are quite narrow – however, outside the nar-
rower margins of structured proteins, the resulting primary
sequences would result in IDPs. As a measure of these nar-
row stoichiometric margins, we further decided to look at
“standard deviation/mean” for individual amino acids in the
four mutually exclusive data sets. Figure 1g clearly shows
that not only are the stoichiometric margins for relative
occurrence of each amino acid in primary sequences the

Table 1. Distribution of individual amino acids in different datasets.

Amino acid StrucSeq (n¼ 27199) OnlySeq (n¼ 532553) IDPsSeq (n¼ 707) IDPsUnRev (n¼ 94)

L 9.23 ± 2.81 9.60 ± 3.10 8.08 ± 2.94 8.03 ± 3.33
A 7.87 ± 3.30 8.48 ± 3.67 7.80 ± 3.79 8.09 ± 4.13
G 7.03 ± 2.68 7.19 ± 2.86 7.23 ± 3.71 6.99 ± 3.69
E 6.83 ± 2.70 6.59 ± 2.83 7.87 ± 3.89 7.37 ± 3.36
V 6.76 ± 2.25 7.08 ± 2.44 5.87 ± 2.29 6.04 ± 2.22
S 6.73 ± 2.66 6.21 ± 2.62 7.53 ± 3.00 6.89 ± 3.09
K 6.38 ± 3.12 6.16 ± 3.44 7.09 ± 3.95 7.94 ± 4.68
R 5.43 ± 2.63 5.81 ± 3.09 5.49 ± 3.35 5.16 ± 2.78
D 5.41 ± 1.90 5.28 ± 2.11 5.64 ± 2.54 5.85 ± 2.45
T 5.41 ± 1.95 5.24 ± 1.94 5.43 ± 2.09 5.82 ± 2.25
I 5.40 ± 2.30 6.11 ± 2.68 4.57 ± 2.34 4.94 ± 2.33
P 4.97 ± 2.39 4.50 ± 2.30 5.79 ± 3.52 4.70 ± 3.58
N 4.10 ± 1.95 3.92 ± 2.13 3.96 ± 2.13 4.73 ± 2.47
Q 3.95 ± 1.91 3.77 ± 2.01 4.69 ± 2.79 5.13 ± 4.19
F 3.76 ± 1.66 3.88 ± 2.04 3.27 ± 1.77 3.24 ± 1.89
Y 3.06 ± 1.51 2.87 ± 1.58 2.56 ± 1.48 2.89 ± 1.88
M 2.39 ± 1.19 2.56 ± 1.32 2.38 ± 1.19 2.29 ± 1.39
H 2.23 ± 1.26 2.23 ± 1.37 2.12 ± 1.58 1.63 ± 1.28
C 1.85 ± 2.55 1.45 ± 1.99 1.63 ± 2.11 1.43 ± 2.52
W 1.20 ± 0.99 1.05 ± 1.06 1.00 ± 0.91 0.83 ± 0.97
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lowest in structured proteins, but also that these margins are
distinctly higher in IDPs. Here it is pertinent to mention that
an earlier assessment of non-curated protein sequences

obtained from PSORT, eSLDB and Refseq databases had
reported percentage mean compositions in different eukar-
yotes (Gaur, 2014) – interestingly, the data presented in

Figure 1. Narrow stoichiometric margins of life. Relationship of Mean (l) & Standard-deviation (r) of percentage occurrence of individual amino acids in all cura-
ted sequences without structure (dataset: OnlySeq) in Swiss-Prot – (a) & (b), all curated Intrinsically Disordered Protein sequences (dataset: IDPsSeq) in Swiss-Prot
(cross-referenced with DisProt) – (c) & (d), and, un-reviewed Intrinsically Disordered Protein sequences (dataset: IDPsUnRev) in DisProt (cross-referenced with
UniProt TrEMBL) – (e) & (f), with l & r of percentage occurrence of individual amino acids in all structured protein sequences (dataset: StrucSeq) in the Protein
Data Bank (cross-referenced with Swiss-Prot). (g) r/l for each of the twenty amino acid residues in the four different datasets – values for all the amino acids are
lowest for the dataset StrucSeq indicating the stoichiometric margins of life. Also shown are the mean ± std of the values of r/l for all twenty amino acids in all
the four datasets along with the number of sequences in each dataset. Note that the X-axis shows amino acids in the decreasing order of mean percentage occur-
rence in all structured protein sequences (dataset: StrucSeq), as given in Table 1, from left to right, i.e. Leucine occurs most frequently and Tryptophan occurs least
frequently, on an average, in structured protein sequences.
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Table 1 here appears to be very similar to non-membrane
eukaryotic proteins of the earlier report (Gaur, 2014). Thus, in
natural proteins regardless of species, narrow margins of
amino acid occurrences in primary sequences is similar to
the well accepted and observed narrow ranges of several
physico-chemical variables required for supporting life.

Stoichiometric constraints applicable to dipeptides

Having established the narrow stoichiometric margins for
occurrence of individual amino acids in naturally occurring
protein sequences, the next obvious step was to explore
whether these are applicable to peptide-bonded partners
also. While the original discovery of the stoichiometric mar-
gins was an “undesired” consequence of searching for prefer-
ential interactions between non-peptide-bonded residues in
naturally occurring folded proteins (Mittal et al., 2010), here
we asked whether there are any particular preferences for
peptide-bonded partners in the four mutually exclusive pro-
tein datasets. To do so, we first synthesized a library of all
possible dipeptides (20� 20¼ 400) that can result from the
20 natural amino acids. Then we counted the occurrence of
each of the dipeptides in all the sequences of StrucSeq,
IDPsSeq, IDPsUnRev and OnlySeq datasets; two reading
frames of each sequence starting from the amino terminus
were read to count the occurrence of dipeptides as shown
on the top of Figure 2. From the counted occurrences of the
dipeptides, we were able to calculate the mean and standard
deviation of occurrence for each of the dipeptides using Eq.
1 and Eq. 2 (see Methods) respectively.

Figure 2 shows the mean and standard deviation of occur-
rence of each of the dipeptides, represented by heatmaps, in all
four sequence datasets. The darker the color, the higher is the
value (i.e. higher mean occurrence or higher standard deviation).
Rows represent the first amino acid of the dipeptide and col-
umns represent the second amino acid. The order of amino acids
is the same as Table 1, i.e. in the order of decreasing mean per-
centage occurrence of individual amino acids in StrucSeq. The
heatmap for mean occurrence of dipeptides in StrucSeq clearly
shows a gradient – dark color at the top left corner starts becom-
ing lighter as one moves towards the bottom right corner. This
clearly shows that occurrence of dipeptides is primarily dictated
by percentage occurrence of individual amino acids, i.e. there are
no preferences for any particular dipeptide formation. On the
other hand, the heatmaps for the occurrences of dipeptides
show some clear deviations in the color gradient from the top
left to bottom right, thereby indicating a deviation in occurrence
of dipeptides from that dictated by the percentage occurrence of
individual amino acids in StrucSeq. Thus, the data on occurrence
of dipeptides in IDPs supports the findings observed for individ-
ual amino acids seen in Figure 1. Similarly, data on occurrence of
dipeptides in OnlySeq also support the findings observed for
individual amino acids seen in Figure 1. Clearly, stoichiometric
distribution of individual amino acids “largely” dictates occur-
rence of dipeptides, with possible exceptions in IDPs that need
to be explored further. These possible exceptions indicate prefer-
ential dipeptide occurrences and detailed investigations on these
exceptions as signatures of IDPs are beyond the scope of this

work (they are being pursued separately). That said, it is pertinent
to mention the results reported earlier (Caetano-Anolles et al.,
2013) show a remarkable agreement with our findings in terms
of non-random patterns of dipeptides observed by them inde-
pendently in different family folds of protein structures with vary-
ing flexibility. Clearly, it may be possible to extract dipeptide
signatures (with a high propensity) for increasing flexibility or cre-
ating disorder in protein structures based on the differences in
the heatmaps of StrucSeq and IDPs. Interestingly, heatmaps of
dipeptides obtained by us for the complete set of natural protein
sequences show similar trends to a highly selective set of natural
proteins (Santoni et al., 2016), especially w.r.t. dipeptides involv-
ing specific residues (e.g. C, H, W). This strongly indicates stoichio-
metric constraints applicable to dipeptides based on relative
abundance of individual residues may be even a more general-
ized feature than appreciated earlier.

Stoichiometric constraints applicable to tripeptides

The next step was to investigate whether the results found above
applied to tripeptides also. In order to do so, we synthesized a
library of all possible tripeptides (20x20x20¼ 8000) and devel-
oped a way to visualize the relative occurrence of tripeptides
using heatmaps as shown in Figuer 3.

Each of the 400 blocks in the heatmaps shown in Figure
2 were further subdivided into 20 rows as shown in Figure 3.
The first residue of a given tripeptide was represented by
the letter given on the left, the second residue was repre-
sented by one of the 20 sub-row of each row in Figure 2
and the third residue of the tripeptide was represented by
the column. In an ideal scenario, i.e. if tripeptide occurrence
was a direct result of probabilistic occurrence of individual
amino acids (i.e. probability of occurrence of a tripeptide¼ -
product of probabilities of occurrences of the 3 individual
amino acids it is composed of), the heatmap for a given tri-
peptide would be expected to appear as shown in the lower
panel of Figure 3 since the rows, sub-rows and columns all
are in the order of decreasing mean occurrence of individual
amino acids.

Having developed a method to visualize the relative
occurrences of tripeptides, we counted the occurrence of
each of the tripeptides in all the sequences of StrucSeq,
IDPsSeq, IDPsUnRev and OnlySeq datasets; three reading
frames of each sequence starting from the amino terminus
were read to count the occurrence of tripeptides as shown
on the top of Figure 4. From the counted occurrences of the
tripeptides, we were able to calculate the mean and stand-
ard deviation of occurrence for each of the tripeptides using
Eq. 3 and Eq. 4 (see Methods) respectively.

Figure 4 shows the heatmaps representing mean and
standard deviation of occurrence of each of the tripeptides
in all four sequence datasets. The heatmap for mean occur-
rence of tripeptides in StrucSeq again clearly shows a gradi-
ent as predicted in Figure 3 – dark color at the top left
corner starts becoming lighter as one moves towards the
bottom right corner, with each sub-row showing gradients
similar to those expected in the case of tripeptide occurrence
being a direct result of probabilistic occurrence of its
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individual constitutents. Thus, occurrence of tripeptides is
also primarily dictated by percentage occurrence of individ-
ual amino acids at least in StrucSeq, i.e. there are no

preferences for any particular dipeptide formation. At the
same time, as observed earlier, the heatmaps for the occur-
rences of tripeptides show some clear deviations in the color

Figure 2. Stoichiometric distribution of individual amino acids “largely” dictates occurrence of dipeptides. A given primary sequence was read using two reading
frames, starting from the first two residues of its amino-terminus, to count the occurrence of any dipeptide as shown at the top. The number of occurrences of all
possible dipeptides (20x20¼ 400) in a given set of primary sequences was recorded. The Mean (l) & Standard-deviation (r) of percentage occurrence of each of
the dipeptides were calculated based on Equation 1 (see text). Heat maps representing l & r in the complete primary sequence space (divided into the exclusive
four datasets – see text and Figure 1 for details) of natural proteins are shown. In each heat map, the first residue of a dipeptide is represented row-wise and the
second residue is represented column-wise. Thus, there are a total of 400 blocks in each heat map, with each block representing a unique dipeptide – e.g. blocks
in the top row of each heat map, starting from left, represent the dipeptides LL, LA, LG, LE, LV, LS, LK, LR, LD, LT, LI, LP, LN, LQ, LF, LY, LM, LH, LC and LW respect-
ively. Dark color (towards black) represents high percentage occurrence and light color (towards white) represents low percentage occurrence. The dipeptide resi-
due order, i.e. from top to bottom (representing the first residue) and left to right (representing the second residue) is the same as that in Figure 1.
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gradient from the top left to bottom right for IDPs in spite
of an apparent maintenance of the overall gradient. Thus,
the data on occurrence of tripeptides in IDPs supports the
findings observed for individual amino acids seen in Figure 1
and dipeptides seen in Figure 2. Similarly, data on occur-
rence of tripeptides in OnlySeq also support the findings
from Figures 1 and 2. Clearly, stoichiometric distribution of
individual amino acids “largely” dictates occurrence of tripep-
tides, with possible exceptions in IDPs that need to be
explored further. These possible exceptions indicate prefer-
ential tripeptide occurrences in IDPs; as stated earlier
detailed investigations on these exceptions as signatures of
IDPs are beyond the scope of this work (they are being pur-
sued separately).

Stoichiometric constraints applicable to longer peptides
and amplification of deviation from the margins in
disordered proteins

Having discovered (a) the occurrences of di- and tri- peptides
being primarily governed by stoichiometric occurrences of indi-
vidual amino acids in StrucSeq, and, (b) emergence of devia-
tions of di- and tri- peptide occurrences from those expected
based on individual amino acids in IDPs, we decided to check
whether these findings are applicable to tetra- and penta- pep-
tides also. Therefore, we computationally synthesized libraries
of all possible tetrapeptides (20x20x20x20¼ 160000) and penta-
peptides (20x20x20x20x20¼ 3200000). Then, as done earlier,
we counted the occurrences of each of the tetrapeptides and
pentapeptides in the sequences of all four datasets. Figure 5a
shows the correlation between the actual number (frequency)
of occurrences and the expected number (frequency) of occur-
rences of individual amino acids, dipeptides, tripeptides, tetra-
peptides and pentapeptides in all the four datasets.

The expected numbers of occurrences were calculated by
simply multiplying the frequency of occurrences of individual
amino acids constituting the respective peptides. Figure 5b
shows the correlation between the mean occurrence and the
expected mean occurrence – the expected mean occurrence
was calculated by simply multiplying the mean occurrence of
individual amino acids constituting the respective peptides.
Note that at the single amino acid level, all four data sets
show R¼ 1. This is because, the frequency of occurrence or
mean occurrence of each amino acid of each of the four
datasets was independently considered (instead of consider-
ing w.r.t. StrucSeq as done earlier). Thus, reference for each
of the four data sets in Figure 5a and b were the occur-
rences of amino acids specific to each of the four respective
datasets. Remarkably in IDPs, the deviations of expected
occurrences start showing highly significant differences from
the actual occurrences, in terms of significantly lower values
or R, with increasing peptide size. Clearly, the stoichiometric
constraints on amino acids and peptides applicable to struc-
tured proteins are not applicable to disordered protein
sequences. The same results are observed when reference
for each of the four datasets is taken as amino acid occur-
rences only in StrucSeq, as shown in Figure. 5c and d.
Therefore, a clear conclusion emerges – structural disorder
originates beyond narrow stoichiometric margins of amino
acids in structured proteins in all naturally occurring protein
sequences regardless of their species-based classifications.

Interestingly, these results are extremely well supported
by another very recent and independent study (Mezei, 2019).
Firstly, Mezei (2019) established “importance of the sequence
following the known AA propensities”. Secondly, in terms of
“adjacency propensities” larger differences were observed in
distributions of tri- and tetra-peptides compared to individual
residues and dipeptides. Thus, in spite of the fact that a pro-
pensity score for peptide bonded neighbors correlating with
protein foldability/stability was elusive in Mezei (2019), the
overall results did show an amplification of differences
between naturally folded and artificial sequences for the lon-
ger peptides.

Figure 3. Visualizing relative occurrence of tripeptides using heat maps. Each
row of the heat maps in Figure 2 was sub-divided into 20 more rows, corre-
sponding to the second residue of the tripeptide. Thus, as shown here for the
first block of the first row corresponding to the top left block in Figure 2, the
first residue of a tripeptide is “L” and the third residue is “L”. 20 sub-rows are
created within this block, each sub-row representing the second residue of the
tripeptide. Thus, the rows in the single block shown, starting from top to bot-
tom, represent the tripeptides LLL, LAL, LGL, LEL, LVL, LSL, LKL, LRL, LDL, LTL,
LIL, LPL, LNL, LQL, LFL, LYL, LML, LHL, LCL and LWL respectively. A total of 8000
rectangular blocks are there in each heat map, with each block representing a
unique tripeptide. Dark color (towards black) represents high percentage occur-
rence and light color (towards white) represents low percentage occurrence.
The tripeptide residue order, i.e. from top to bottom (representing the first and
second residues) and left to right (representing the third residue) is the same
as that in Figure 1.
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Stoichiometric constraints on occurrences of amino
acids and peptides are not related to their size and
hydrophobicity

The original discovery of the stoichiometric margins of life
(Mittal et al., 2010; Mittal & Jayaram, 2011b) based on struc-
tural analyses of non-peptide-bonded neighbors had shown
an unexpected independence of Euclidian distances between
residues from their chemical properties (e.g. polar, non-polar,

positively or negatively charged side chains). Therefore, here
we tested whether occurrences of individual amino acids
and peptides depended on their size or hydrophobicity.

Figure 6 shows that occurrence of longer peptides is inde-
pendent of their molecular weights and hydrophobicities
(hydrophobicity of a given peptide was calculated by adding
the hydropathy index of the individual amino acid constitu-
ents; the GES scale developed by Engelman et al. (1986) was
used). While there appear to be indications that (a) larger

Figure 4. Stoichiometric distribution of individual amino acids “largely” dictates occurrence of tripeptides. A given primary sequence was read using three reading
frames, starting from the first three residues of its amino-terminus, to count the occurrence of any tripeptide as shown at the top. The number of occurrences of
all possible tripeptides (20x20x20¼ 8000) in a given set of primary sequences was recorded. The Mean (l) & Standard-deviation (r) of percentage occurrence of
each of the tripeptides were calculated based on Equation 2 (see text). Heat maps representing l & r in the complete primary sequence space (divided into the
exclusive four datasets – see text and Figure 1 for details) of natural proteins are shown. Each row of the heat maps in Figure 2 was sub-divided into 20 more
rows, corresponding to the second residue of the tripeptide (see Figure S1). Thus, as shown here in each heat map, the first residue of a tripeptide is shown row-
wise and the third residue is shown column-wise. Therefore, a total of 8000 blocks are there in each heat map, with each block representing a unique tripeptide –
e.g. blocks in the top row of each heat map, starting from left, represent the tripeptides LLL, LLA, LLG, LLE, LLV, LLS, LLK, LLR, LLD, LLT, LLI, LLP, LLN, LLQ, LLF, LLY,
LLM, LLH, LLC and LLW respectively. Dark color (towards black) represents high percentage occurrence and light color (towards white) represents low percentage
occurrence. The tripeptide residue order, i.e. from top to bottom (representing the first and second residues) and left to right (representing the third residue) is the
same as that in Figure 1.
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molecular weight amino acids occur less compared to lighter
amino acids in all four datasets, and, (b) heavier dipeptides
and tripeptides have lesser occurrences in StrucSeq com-
pared to IDPs from Figure 6a due to R < �0.5, it is clear that
the chemical nature of amino acids (reflected by the hydro-
phobicity values) does not have any role in primary sequen-
ces of all four datasets. Here it is important to note earlier
reports indicate factors such as metabolic costs of amino
acids (Krick et al., 2014) or availability of different number of
codons per amino acid in the genetic code (Mittal &
Jayaram, 2012) or availability of pools of tRNA (Mittal et al.,
2019) may be responsible for relative abundance of amino
acids in proteomes. However, considering parameters such
as codon bias, habitat constraints, existence of essential and
non-essential amino acids etc. in different species, the search
for universal factors resulting in the observed stoichiometric
margins of life for individual amino acids remains an
open question.

Discussion and conclusions

It may appear obvious that any two protein sets may show
differences in amino acid compositions. Alternatively, it also
may appear obvious that any sets of proteins having same
functions may show similarity in amino acid compositions.
However, there are substantial examples in literature where
both of the above need to be closely inspected and a case-
by-case basis set of interpretations emerges. E.g., transla-
tional dependent folding observed is indeed observed in
proteins with similar (or even identical) primary sequences
but some differences in folding lead to different protein
functionalities (Komar, 2007; Sharma et al., 2008). In this
work, we do not specifically do any case-by-case compari-
sons in manually segregated protein datasets. Rather, we
have compared the complete available population of existing
natural protein sequences in order to extract universal indi-
cators and features. Thus, while the actual distinct assess-
ment of where exactly is the “margin of life” located in

Figure 5. Amplification of deviations from narrow stoichiometric margins of life in disorder with increasing peptide size. (a) Pearson’s correlation coefficient (R)
between the number of actual occurrences of a peptide of a given length and the expected number of occurrences of the peptide based on the frequency of the
single residues constituting the peptide in each respective dataset – black bars represent StrucSeq, white bars represent OnlySeq, dark gray bars represent IDPsSeq
and light gray bars represent IDPsUnRev. (b) R between the mean percentage occurrence of a peptide of a given length and the expected percentage occurrence
of the peptide based on the mean percentage occurrence of the single residues constituting the peptide in each respective dataset. (c) R between the number of
actual occurrences of a peptide of a given length and the expected number of occurrences of the peptide based on the frequency of the single residues constitut-
ing the peptide in the dataset StrucSeq. (d) R between the mean percentage occurrence of a peptide of a given length and the expected percentage occurrence of
the peptide based on the mean percentage occurrence of the single residues constituting the peptide in the dataset StrucSeq. Bars represent the same respective
datasets as in Figure 1g.
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continuous distributions in the StrucSeq column of Table 1
may be difficult at this time, the closest we have reached so
far towards measuring the margins are in Figure 1G and 5
respectively in terms of the (a) ratios of standard deviation
to mean for different datasets and, (b) the correlation
between actual and expected occurrence of amino acids in
different datasets, respectively. How these differences can be
extrapolated to individual proteins, rather than whole popu-
lations, still remains a challenge – this is similar to analyzing
rare or marginal individual events occurring near the tails in
statistical distributions. The above said, this work opens up
very promising avenues for (a) understanding the complete
primary sequence space of natural proteins based on stoi-
chiometric margins of life (Mittal et al., 2019) and, (b) devel-
oping somewhat straightforward predictors of intrinsic
disorder based on stoichiometric compositions and occur-
rence of specific peptides in primary sequences which is
beyond the scope of the current manuscript (Mittal
et al., 2020).

In conclusion, by analyzing the complete data available
on primary sequences of proteins, we comprehensively show
that stoichiometric margins of life, i.e. a narrow band of rela-
tive occurrences of amino acids discovered earlier from struc-
tural data, are applicable to all naturally occurring primary

sequences from the perspective of synthesis of protein
sequences by peptide bonding of individual residues. We
also show that deviations beyond these stoichiometric mar-
gins are clearly observed in intrinsically disordered proteins
and these deviations are substantially amplified with increas-
ing the number of peptide bonds – i.e. longer sequences
having occurrences of residues (individual or peptide
bonded) beyond the compositional constraints of amino
acids in structured proteins are prone to be IDPs. Therefore,
our results unambiguously lead to the conclusion, at least at
a highly qualitative and/or semi-quantitative level, that struc-
tural disorder in natural proteins originates beyond the nar-
row stoichiometric margins of amino acids that constitute
structured proteins. Of course, the physical mechanisms
behind these stoichiometric margins need to be explored in
future studies.
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