
#A26 INTEGERS 21 (2021)

EXTENSIONS OF MIDY’S THEOREM FOR PERIODIC DECIMALS

Sakshi Dang1

Department of Mathematics, Indian Institute of Technology, Powai, Mumbai, India
204093005@iitb.ac.in

Saraswati Nanoti2

Discipline of Mathematics, Indian Institute of Technology, Palaj, Gandhinagar,
Gujarat, India

nanoti saraswati@iitgn.ac.in

Amitabha Tripathi3

Department of Mathematics, Indian Institute of Technology, Hauz Khas, New
Delhi, India

atripath@maths.iitd.ac.in

Received: 5/16/20, Accepted: 2/17/21, Published: 3/23/21

Abstract

The decimal expansion of reduced rational number a/n is purely recurring precisely
when gcd(n, 10) = 1. For any reduced fraction a/n, with gcd(n, 10) = 1, having
periodic length L = b`, partition the periodic part into b blocks, each of length `,
and let S(a, n; `, b) denote the sum of the b blocks. We show that

S(a, n; `, b) = (k + qd) · 10
`−1
d ,

where k, d can be determined from a, n, `, b and q ∈ {0, . . . , b−1}. In particular, we
show (i) S(a, p; `, b) = 10`−1 when b ∈ {2, 3}, (ii) S(a, n; `, b) = b

2 (10`−1) when b is

even and n | (10L/2 + 1), and determine (iii) S(a, n; `, 2). We also characterize n for
which S(a, n; `, 2) equals either λ`, 1 ≤ λ ≤ 9 or λ` + 9`, 1 ≤ λ ≤ 8, where λ` is the
`-digit number λ . . . λ for any λ ∈ {1, . . . , 9}. Our results contain the theorems of
Midy and Ginsberg, and either contain or extend the result of several other authors.

1. Introduction

Midy [9] discovered the result that goes by his name in 1836, but it was probably

due to Dickson [1] that the result became known to people in mathematical circles.

1This work was done while visiting Department of Mathematics, IIT Delhi.
2This work was done while visiting Department of Mathematics, IIT Delhi.
3Corresponding Author
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Because of the approachable yet mysterious nature of the result, it found a place

in several well known works that dealt with the treatment of Mathematics largely

from the point of view of entertainment; for instance, in [4, 11]. A recent paper

of Lewittes [7] traces some of the history behind Midy’s intriguing result. Interest

in Midy’s theorem has been sporadic until very recently; [6, 10], to name a few.

A resurgence of interest in Midy’s theorem and attempts to generalize it may be

directly attributed to an extension of the original result by Ginsberg [2], resulting

in significant extensions by Gupta and Sury [3], Lewittes [7], and Martin [8], among

others.

Let a, n ∈ N, n > 1, 1 ≤ a < n, and gcd(a, n) = 1. Let n = 2α · 5β ·m, where

gcd(m, 10) = 1. Then the decimal expansion of a/n is given by

a

n
= 0.c1 . . . cγ cγ+1 . . . cγ+L, (1)

where γ = max{α, β} and L = ordm 10 is the multiplicative order of 10 modulo m,

that is, the least positive integer k satisfying 10k ≡ 1 (mod m). In particular, the

decimal expansion of a/n is purely recurring if and only if gcd(n, 10) = 1. All this

is well known; see, for instance [5].

We consider the decimal expansion of a/n, where gcd(10a, n) = 1 throughout

the rest of this article. In this case, α = β = γ = 0 and m = n in Equation (1), and

so
a

n
= 0.c1 . . . cL. (2)

Let B(a, n) denote the smallest repeating block of digits in decimal expansion of

a/n:

B(a, n) = c1 . . . cL. (3)

The number of digits in B(a, n) is called the period length of a/n.

Suppose that L is divisible by b, that is, the L-length period B(a, n) can be

divided into b blocks, each of length `; thus L = b`. Since a/n is the sum of an

infinite geometric progression with first term B(a, n)/10L and common ratio 1/10L.

We have

n ·B(a, n) = a(10L − 1). (4)

We divide B(a, n) into b subblocks, each of length `:

B1(a, n; `, b) = c1 . . . c`,

B2(a, n; `, b) = c`+1 . . . c2`,

B3(a, n; `, b) = c2`+1 . . . c3`,

...
...

Bb(a, n; `, b) = c(b−1)`+1 . . . cb`.
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Let S(a, n; `, b) denote the sum of these blocks:

S(a, n; `, b) = B1(a, n; `, b) + · · ·+Bb(a, n; `, b). (5)

The organization of this article is as follows. In Section 2, we give a formula

to compute the sums S(a, n; `, b), defined by Equation (5). As a consequence, we

prove the theorems of Midy [9] and Ginsberg [2], that S(1, p; `, b) = 10` − 1 for

prime p > 5 and b = 2, 3, respectively. In Section 3, we deal with the case where

b is even and n divides 10b`/2 + 1. We note that this case applies when n = pα, p

prime and L is even. In Section 4, we give an explicit formula for S(a, n; `, 2). We

also characterize n for which S(a, n; `, 2) equals either λ`, 1 ≤ λ ≤ 9 or λ` + 9`,

1 ≤ λ ≤ 8, where λ` is the `-digit number λ . . . λ for any λ ∈ {1, . . . , 9}. Some

results by previous authors, like Lewittes [7] and Martin [8], may either be deduced

from our results, or generalized.

2. The General Case

We consider the decimal expansion of a/n, where gcd(a, n) = gcd(n, 10) = 1. Such

decimal expansions are purely recurring. We denote by L the length of the recurring

part, and break up the recurring part into b blocks each of length `. We denote by

S(a, n; `, b) the sum of these b numbers each of ` digits. Theorem 1 shows that

S(a, n; `, b) =
(
k
d + q

)
(10` − 1),

where k, d may be computed from the given parameters a, n, `, b, and q ∈ {0, . . . , b−
1}. For prime n = p, the theorems of Midy and Ginsberg correspond to b = 2 and

b = 3, respectively, and follow easily from Theorem 1; see Corollary 1. Whereas

Midy’s theorem applies to any a coprime to 10n, Ginsberg proved his result only in

the case a = 1. We illustrate the results in Theorem 1 and Corollary 1 by numerical

examples.

Theorem 1. Let a, n ∈ N, with 1 ≤ a < n and gcd(10a, n) = 1. Let ordn 10 = L,

and let b, ` ∈ N such that L = b` and b > 1. Define

N(`, b) =
10L − 1

10` − 1
, g = gcd

(
n,N(`, b)

)
, d =

n

g
.

Then

S(a, n; `, b) = (k + qd) · 10` − 1

d
,

where

k ≡ N(`, b)

g
· a (mod d), k ∈ {0, . . . , d− 1}, and q ∈ {0, . . . , b− 1}.

In particular, S(a, n; `, b) = q(10` − 1) for some q ∈ {1, . . . , b− 1} if d = 1.
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Proof. Let a
n = 0.c1 . . . cL. For each t ∈ N, let At denote the t-digit number

c1 . . . ct. Then

a · 10t = n ·At + rt, 1 ≤ rt < n, (6)

and

Bt(a, n; `, b) = At` − 10` ·A(t−1)`, 2 ≤ t ≤ `, withB1(a, n; `, b) = A`. (7)

In particular, rb` = a. Substituting Equation (6) in Equation (5) gives

S(a, n; `, b) =
1

n

(
b∑
t=1

rt`

)
(10` − 1). (8)

Note that n does not divide 10` − 1 but may divide
∑b
t=1 rt`.

Putting t = `, 2`, 3`, . . . , b` in Equation (6) and adding gives

a ·N(`, b) · 10` = n

b∑
i=1

Ai` +

b∑
i=1

ri`. (9)

Since g divides both N(`, b) and n, we have g divides
∑b
i=1 ri`. Dividing the quotient∑b

i=1 ri`/g by d allows us to write∑b
i=1 ri`
g

= qd+ k (10)

where q ∈ Z≥0 and k ∈ {0, . . . , d− 1}. Combining Equation (8) and Equation (10),

and using n = dg gives

S(a, n; `, b) = (k + qd) · 10` − 1

d
. (11)

We note that
n

g
= d divides 10` − 1 (12)

follows from

N(`, b)

g
(10` − 1) =

10L − 1

n
· n
g

and g = gcd
(
n,N(`, b)

)
.

Dividing Equation (9) throughout by g, using Equation (10), and reducing modulo

d gives

k ≡ N(`, b)

g
· a (mod d).

Since 1 ≤ rt < n from Equation (6), Equation (10) gives

0 ≤ qd ≤ qd+ k =

∑b
i=1 ri`
g

<
nb

g
= bd.

Hence q ∈ {0, . . . , b− 1}.
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Example 1.
46
561 = 0.0819964349376114.

a n L b ` N(`, b) g d k q S(a, n; `, b)

46 561 16

2 8 108 + 1

17 33

19 0 19
33 (10

8 − 1)

4 4 1012 + 108 + 104 + 1 5 2 5
33 (10

4 − 1) + 2(104 − 1)

8 2 1014 + 1012 + · · ·+ 1 10 3 10
33 (10

2 − 1) + 3(102 − 1)

Table 1: Examples for Theorem 1

Corollary 1 ([2, 9]). Let p be a prime, p > 5. If ordp 10 = L = b`, where b ∈ {2, 3},
then

S(a, p; `, b) = 10` − 1,

where a ∈ {1, . . . , p− 1} when b = 2 and a = 1 when b = 3.

Proof. We use the notations of Theorem 1. Since ordp 10 = L, p | (10L − 1) and

p - (10` − 1). Hence p | N(`, b), so that g = p and d = 1. The particular case of

Theorem 1 shows S(a, p; `, b) = q(10` − 1) for q ∈ {1, 2, 3, . . . , b− 1}. When b = 2,

q = 1, and this is Midy’s theorem. When b = 3, q = 1 or 2. By Equation (10) in

Theorem 1, q =
(
r` + r2` + r3`

)
/p. Since r`, r2` ∈ {1, . . . , p − 1}, r3` = a = 1, and

p | (r` + r2` + r3`), it follows that q = 1. This is Ginsberg’s theorem.

Example 2.
4
19 = 0.210526315789473684.

a n L b ` N(`, b) g d k q S(a, n; `, b)

4 19 18

2 9 109 + 1 19 1 0 1 109 − 1

3 6 1012 + 106 + 1 19 1 0 1 106 − 1

6 3 1015 + 1012 + 109 + · · ·+ 1 19 1 0 3 3(103 − 1)

9 2 1016 + 1014 + 1012 + · · ·+ 1 19 1 0 4 4(102 − 1)

Table 2: Examples for Corollary 1

3. The Case n Divides 10b`/2 + 1, b Even

In this section we evaluate the sum S(a, n; `, b) when n | (10L/2 + 1) and b is even.

One of the special cases where this applies is when n = pα is a prime power, with

p 6= 2, 5. Although the antecedents of a result of Lewittes [7, Theorem 1] seem to be

different from our result in this section (Theorem 2), they are actually equivalent.

We show this equivalence in Theorem 3. We close this section with numerical

examples.
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Theorem 2. Let a, n ∈ N, with 1 ≤ a < n and gcd(10a, n) = 1. Suppose that

ordn 10 = b` with b even. If n | (10b`/2 + 1), then

S(a, n; `, b) =
b

2
(10` − 1).

Proof. We use the notations of Theorem 1. Putting t = i` and t =
(
i + b

2

)
` in

Equation (6), adding and reducing modulo n gives

a · 10i` · (1 + 10b`/2) ≡ ri` + r(i+ b
2 )`

(mod n). (13)

Thus n |
(
ri` + r(i+ b

2 )`

)
, and since 0 < ri` + r(i+ b

2 )`
< 2n, we have ri` + r(i+ b

2 )`
= n.

Therefore
b∑
t=1

rt` =

b/2∑
1=1

(
ri` + r(i+ b

2 )`

)
=

b/2∑
1=1

n =
bn

2
.

Substituting in Equation (8) gives the desired sum.

Example 3.

5
61 = 0.081967213114754098360655737704918032786885245901639344262295.

a n L b ` S(a, n; `, b)

5 61 60

2 30 2
2
(1030 − 1)

4 15 4
2
(1015 − 1)

6 10 6
2
(1010 − 1)

10 6 10
2
(106 − 1)

12 5 12
2
(105 − 1)

20 3 20
2
(103 − 1)

30 2 30
2
(102 − 1)

Table 3: Examples for Theorem 2

The antecedents of the following result (Theorem 3) that appear in [7] is equivalent

to the antecedents of Theorem 2.

Theorem 3 ([7]). Let a, n ∈ N, with 1 ≤ a < n and gcd(10a, n) = 1. Suppose that

ordn 10 = b` with b even. If

(10b`/2 − 1) | S
(
a, n; b`2 , 2

)
,

then

S(a, n; `, b) =
b

2
(10` − 1).
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Proof. It suffices to prove the equivalence of the antecedents of Theorem 2 and

Theorem 3, namely, the divisibility condition (10b`/2 − 1) | S
(
a, n; b`2 , 2

)
given in

Theorem 3 is equivalent to the divisibility condition n | (10b`/2 + 1) in Theorem 2.

We use the notations of Theorem 1.

If n | (10b`/2 + 1), then g = gcd
(
n,N

(
b`
2 , 2

))
= n, so that d = 1 and k = 0.

Hence (10b`/2 − 1) | S
(
a, n; b`2 , 2

)
.

Conversely, suppose that (10b`/2 − 1) | S
(
a, n; b`2 , 2

)
. By Theorem 1, d | (k +

qd) and so d | k. Hence k = 0, so that d | N
(
b`
2 ,2
)

g · a. Since gcd(a, d) =

gcd

(
N
(
b`
2 ,2
)

g , d

)
= 1, we must have d = 1. Therefore n | (10b`/2 + 1).

The theorem of Midy [9] is a direct consequence of Theorem 2. In fact, the “property

of nines” may be generalized by the result in Corollary 2 to decimal expansions of

a/pα, p prime, p 6= 2, 5 with even period length.

Corollary 2. Let p be a prime with p 6= 2, 5, and let a and α be positive integers

such that 1 ≤ a < pα and p - a. If ordpα 10 = b`, b even, then

S(a, pα; `, b) =
b

2
(10` − 1).

Proof. The condition ordpα 10 = b` implies pα | (10b`/2 + 1)(10b`/2 − 1). But then

pα must divide exactly one of 10b`/2 ± 1, since gcd(10b`/2 + 1, 10b`/2 − 1) = 1. The

possibility pα | (10b`/2 − 1) must be excluded due to the condition ordpα 10 = b`.

Therefore pα | (10b`/2 + 1) and S(a, pα; `, b) = b
2 (10` − 1) by Theorem 2.

Example 4.

8
49 = 0.163265306122448979591836734693877551020408.

a n L b ` N(`, b) g d k q S(a, n; `, b)

8 49 42

2 21 1021 + 1 49 1 0 1 2
2
(1021 − 1)

6 7 1035 + 1028 + 1021 + · · ·+ 1 49 1 0 3 6
2
(107 − 1)

14 3 1042 + 1039 + 1036 + · · ·+ 1 49 1 0 7 14
2
(103 − 1)

Table 4: Examples for Corollary 2

4. The Case b = 2

The main result of this section is the evaluation of the sum S(a, n; `, 2) in Theorem

4. Midy’s theorem is the special case where n = p is prime: S(a, p; `, 2) = 9`. We
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use Theorem 4 to characterize n for which S(a, n; `, 2) equals (i) λ`, λ ∈ {1, . . . , 9},
and (ii) λ` + 9`, λ ∈ {1, . . . , 8}; this is Theorem 5. In particular, Theorem 5

contains the following extension of Midy’s theorem: For 1 ≤ a < n, gcd(a, n) = 1,

S(a, n; `, 2) = 10` − 1 if and only if n | (10` + 1).

Martin [8] extended Midy’s theorem to composite denominators by showing that

S(1, n; `, 2) has the “property of nines” if and only if every pair of prime divisors

of n are period-compatible. Two positive integers a and b are said to be period-

compatible if the highest power of 2 in the prime factorization of period lengths

of 1/a and 1/b is same. He also showed that 10` − 1 divides S(1, n; `, 2) under

specific conditions. We show how these results of Martin in [8] can be deduced from

Theorem 4 via Proposition 2 and Proposition 3 in Theorem 6. Wherever necessary,

we exhibit numerical examples in support of our results.

Theorem 4. Let a, n ∈ N, with 1 ≤ a < n and gcd(10a, n) = 1. Suppose that

ordn 10 = 2`. Define

g = gcd
(
n, 10` + 1

)
, d =

n

g
.

Then

S(a, n; `, 2) =


k · 10` − 1

d
if a < kg;

k · 10` − 1

d
+ (10` − 1) if a > kg,

where k satisfies

k ≡ 2ag−1 (mod d), k ∈ {0, . . . , d− 1}.

Proof. We use the notations of Theorem 1. When b = 2, we have N(`, 2) = 10` + 1

and

S(a, n; `, 2) = (k + qd) · 10` − 1

d
,

where

k ≡ 10` + 1

g
· a (mod d) and q ∈ {0, 1}.

Note that q = 0 and q = 1 result in the expressions k · 10
`−1
d and k · 10

`−1
d +(10`−1)

respectively, for S(a, n; `, 2). Thus, we need to show

• gcd(d, g) = 1 and N(`, 2) = 10` + 1 ≡ 2 (mod d), and

• the first case in the expression for S(a, n; `, 2) corresponds to q = 0 and the

second case in the expression for S(a, n; `, 2) corresponds to q = 1.

Equation (12) in Theorem 1 shows that d | (10`−1) and we know that g | (10`+ 1).

Since d and g are both odd, and any common divisor of d and g must divide

(10` + 1) − (10` − 1) = 2, we have gcd(d, g) = 1. The second part follows from

10` ≡ 1 (mod d).
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Putting b = 2 and t = 2` = L in Equation (6) in Theorem 1, and reducing modulo

n gives r2` ≡ a (mod n). Hence r2` = a. From Equation (10) in Theorem 1 we

have r`+r2` = g(qd+k). Hence r` = g(qd+k)−a = qn+kg−a. Since 0 < r` < n,

q = 0 implies a < kg and q = 1 implies a > kg.

Remark 1. We observe that with the notations of Theorem 4, a 6= kg since

gcd(a, n) = 1.

Example 5.

25
1547 = 0.016160310277957336780866192630898513251454427925,
389
1547 = 0.251454427925016160310277957336780866192630898513.

a n L b ` N(`, b) g d k S(a, n; `, b)

25
1547 48 2 24 1024 + 1 17 91 19

19
91
(1024 − 1)

389 19
91
(1024 − 1) + (1024 − 1)

Table 5: Examples for Theorem 4

Theorem 5. Let a, n ∈ N, with 1 ≤ a < n and gcd(10a, n) = 1. Suppose that

ordn 10 = 2`. Define

g = gcd
(
n, 10` + 1

)
, d =

n

g
.

Let λ ∈ {1, . . . , 9}, and let µ = gcd(λ, 9). Then

(i)

S(a, n; `, 2) = λ` ⇐⇒ n =
9

µ
g and a ≡ λ

µ
g · 2−1 (mod d), a <

λ

µ
g.

In particular,

S(a, n; `, 2) = 9` ⇐⇒ n | (10` + 1) and a ∈ {1, . . . , n− 1}, gcd(a, n) = 1.

(ii)

S(a, n; `, 2) = λ`+(10`−1)⇐⇒ n =
9

µ
g and a ≡ λ

µ
g ·2−1 (mod d), a >

λ

µ
g.

Moreover, S(a, n; `, 2) 6= 9` + (10` − 1).

Proof. We use the notations of Theorem 4.

(i) S(a, n; `, 2) = λ` is equivalent to 9k = λd, and applies only in the case a < kg.

Note that n is odd and gcd(a, n) = 1 imply gcd(2a, d) = 1. From the proof

of Theorem 4, we have gcd(g, d) = 1. Hence, gcd(k, d) = 1, and 9
µk = λ

µd
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implies d | 9
µ (because gcd(k, d) = 1) and 9

µ | d (because gcd
(

9
µ ,

λ
µ

)
= 1).

Thus, d = 9
µ and k = λ

µ , and so n = dg = 9
µg and a ≡ kg · 2−1 = λ

µg · 2
−1

(mod d), with a < kg = λ
µg.

When λ = 9, µ = 9 and so n = g (which is the same as n | (10` + 1)) and

d = 1. Thus, there is no congruence restriction on a, and we only have a < n.

(ii) S(a, n; `, 2) = λ` + (10` − 1) is again equivalent to 9k = λd, and applies only

in the case a > kg. The arguments in case (i) apply, and we note that a > n

when λ = 9.

Example 6.

5
63 = 0.079365,
59
63 = 0.936507,
5
51 = 0.0980392156862745,
46
51 = 0.9019607843137254,
13
77 = 0.168831.

a n L b ` N(`, b) g d µ λ S(a, n; `, b)

5
63 6 2 3 103 + 1 7 9

1 4 λ · 13
59 1 3

(
λ · 13

)
+ (103 − 1)

5
51 16 2 8 108 + 1 17 3

3 6 λ · 18
46 3 3

(
λ · 18

)
+ (108 − 1)

13 77 6 2 3 103 + 1 77 1 3 9 λ · 13

Table 6: Examples for Theorem 5

Proposition 1. If m and n are positive integers such that gcd(m,n) = gcd(mn, 10) =

1, then ordmn 10 = lcm(ordm 10, ordn 10).

Proof. From gcd(m,n) = 1, we have Zmn ∼= Zm × Zn, and hence U
(
Zmn

) ∼=
U
(
Zm
)
× U

(
Zn
)

via the mapping a 7→ (a mod m, a mod n). When a = 10, we get

ordmn 10 = lcm(ordm 10, ordn 10).

Proposition 2. Let n ∈ N such that gcd(n, 10) = 1 and ordn 10 = 2`. Let n =∏t
i=1 p

αi
i be the prime factorization of n, and let 2ei be the highest power of 2

dividing the period length `i of the expansion of 1/pαii , 1 ≤ i ≤ t. If e = max{ei :

1 ≤ i ≤ t}, then

gcd
(
n, 10` + 1

)
=

∏
i∈{1,...,t}: ei=e

pαii .
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Proof. Let g = gcd(n, 10` + 1), and let d = n
g , as in Theorem 4. Let ordpαii

10 =

2ei ·mi, mi odd, 1 ≤ i ≤ t. Then 2` = ordn 10 = 2e · lcm(m1, . . . ,mt) by Lemma 1.

If ei = e, then ordpαii
10 - `. Hence 10` 6≡ 1 (mod pαii ). Since 102` ≡ 1 (mod pαii )

and gcd(10` − 1, 10` + 1) = 1, we have pαii |
(
10` + 1

)
.

If ei < e, then ordpi 10 | ordpαii
10 | `. Hence pi -

(
10` + 1

)
, since gcd(10` −

1, 10` + 1) = 1.

Example 7. 2457 = 33 · 7 · 13, 15827 = 72 · 17 · 192.

n L b ` (pα1
1 , `1, e1) (pα2

2 , `2, e2) (pα3
3 , `3, e3) e gcd(n, 10` + 1)

2457 6 2 3 (33, 3, 0) (7, 6, 1) (13, 6, 1) 1 91

15827 1008 2 504 (72, 6, 1) (17, 16, 4) (19, 18, 1) 4 17

Table 7: Examples for Proposition 2

Proposition 3. Let a, n ∈ N, with 1 ≤ a < n and gcd(10a, n) = 1. Suppose that

ordn 10 = 2`. Then every pair of prime divisors of n is period-compatible if and

only if n | (10` + 1).

Proof. Let n =
∏t
i=1 p

αi
i be the prime factorization of n, and let ordpαii

10 = 2ei ·mi,

mi odd, 1 ≤ i ≤ t, and let e = max{ei : 1 ≤ i ≤ t}, as in Proposition 2. From

Proposition 2 we have

n | (10` + 1)⇐⇒ n = gcd
(
n, 10` + 1

)
⇐⇒ n =

∏
ei=e

pαii . (14)

Therefore we must show that every pair of prime divisors of n is period-compatible

if and only if n =
∏
ei=e

pαii .

Let ordpi 10 = 2fi · ni, ni odd, 1 ≤ i ≤ t. Note that fi ≤ ei for each i. We show

that ei = e implies fi = e. Suppose, to the contrary, that fi < ei = e for some

i. Recall that 2` = ordn 10 = 2e · lcm(m1, . . . ,mt) by Lemma 1. Hence ordpi 10

divides `, and so pi | (10` − 1). Assuming n | (10` + 1), we have the contradiction

pi | (10` ± 1). This contradiction shows ei = e implies fi = e.

We have shown that if n | (10` + 1), then by Equation (14) ei = e for each i,

and consequently, fi = e for each i. Therefore every pair of prime divisors of n is

period-compatible.

Conversely, if n - (10` + 1), then again by Equation (14) ei < e for some i.

Thus fi < e for this i. Let j be such that ej = e. Then p
αj
j - (10` − 1), and hence

p
αj
j | (10`+1) since n | (10`−1)(10`+1) and gcd(10`−1, 10`+1) = 1. In particular,

pj | (10` + 1). Now if fj < e, then pj | (10` − 1), which together with pj | (10` + 1)

is impossible. This contradiction proves fj = e. Hence there exist i, j for which

fi 6= fj , so that pi, pj are not period-compatible.
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Remark 2. Equation (14) shows that every pair of distinct maximum prime power

divisors of n is period-compatible if and only if n | (10` + 1).

Example 8. 77077 = 72 · 112 · 13.

n L b ` (pα1
1 , `1, e1) (pα2

2 , `2, e2) (pα3
3 , `3, e3) e gcd(n, 10` + 1)

77077 462 2 231 (72, 42, 1) (112, 22, 1) (13, 6, 1) 1 77077

Table 8: Examples for Proposition 3

Theorem 6 ([8]). Let n ∈ N, with gcd(n, 10) = 1. Suppose the decimal expansion

of 1/n is partitioned into b blocks, each of length `, where b > 1.

(i) If gcd(n, 10` − 1) = 1, then (10` − 1) divides S(1, n; `, b).

(ii) If for each prime divisor p of n, ` is not a multiple of the period length of 1/p,

then (10` − 1) divides S(1, n; `, b).

(iii) S(1, n; `, 2) = 10` − 1 if and only if every pair of prime divisors of n are

period-compatible.

Proof. The results in Theorem 6 follow from our results, as we next show. We use

notation from Theorem 1 for parts (i) and (ii), and Theorem 4 and Proposition 3

for part (iii).

If gcd(n, 10` − 1) = 1, then n | N(`, b) since n | (10L − 1). Therefore g = n,

d = 1, k = 0, so that (10` − 1) divides S(1, n; `, b). This proves part (i).

Since ` is not a multiple of the period length of 1/p, we have p - (10` − 1). This

is true for each prime divisor p of n. Hence gcd(n, 10` − 1) = 1, and the conclusion

in part (ii) follows from part (i).

By Proposition 3, every pair of prime divisors of n are period-compatible if and

only if n | (10` + 1). By Theorem 4, n | (10` + 1) if and only if d = 1. Now d = 1

implies k = 0. If k = 0 and a = 1, then d | 2g−1 by Theorem 4. But gcd(d, g) = 1

(as shown in the proof of Theorem 4) and d is odd together imply d = 1. Thus,

d = 1 if and only if k = 0. We have shown that every pair of prime divisors of

n are period-compatible if and only if k = 0 (and d = 1), which is equivalent to

S(1, n; `, 2) = 10` − 1 again by Theorem 4. This proves part (iii). This is also a

direct consequence of Proposition 3 and Corollary 5.

Example 9. 91 = 7 · 13, 511 = 7 · 73.

n L b ` gcd(n, 10` − 1) S(1, n; `, b)

91 6 2 3 1 103 − 1

511 24 3 8 73 not a multiple of 108 − 1

Table 9: Examples for Theorem 6, part (i)
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3131 = 31 · 101

n L b ` (p1, `1) (p2, `2) S(1, n; `, b)

3131 60 6 10 (31, 15) (101, 4) 2(1010 − 1)

Table 10: Examples for Theorem 6, part (ii)

1463 = 7 · 11 · 19

n L b ` (pα1
1 , `1, e1) (pα2

2 , `2, e2) (pα3
3 , `3, e3) e S(1, n; `, 2)

1463 18 2 9 (7, 6, 1) (11, 2, 1) (13, 6, 1) 1 109 − 1

Table 11: Examples for Theorem 6, part (iii)
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