

ON THE TWO-COLOR RADO NUMBER FOR $x_1 + ax_2 - x_3 = c$

Srashti Dwivedi Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi, India maz138162@maths.iitd.ac.in

Amitabha Tripathi¹

Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi, India atripath@maths.iitd.ac.in

Received: 5/24/19, Accepted: 4/25/20, Published: 5/8/20

Abstract

Let $a, c \in \mathbb{Z}$, $a \ge 1$. The *Rado number* for the non-homogeneous equation $x_1 + ax_2 - x_3 = c$ in 2 colors is the least positive integer N such that any 2-coloring of the integers in the interval [1, N] admits a monochromatic solution to the given equation. We determine exact values whenever possible, and upper and lower bounds otherwise, for the Rado numbers for all values of c.

1. Introduction

The 2-color *Rado number* for the equation \mathcal{E} , denoted by $Rad_2(\mathcal{E})$, is the least positive integer N such that any 2-coloring of the integers in the interval [1, N]admits a monochromatic solution to \mathcal{E} . Kosek & Schaal [1] considered the 2-color Rado number for the equation $x_1 + \cdots + x_{m-1} + c = x_m$ for negative values of c. Schaal & Zinter [3] considered the 2-color Rado number for the equation $x_1 + 3x_2 + c = x_3$ for $c \geq -3$. They show that

 $6c + 19 \le Rad_2 (x_1 + 3x_2 + c = x_3) \le \begin{cases} 6c + 19 & \text{if } c \equiv k \pmod{k+3}, k \in S; \\ \frac{13c+41}{2} & \text{if } c \not\equiv k \pmod{k+3}, k \in S, c \text{ is odd}; \\ 7c + 22 & \text{if } c \not\equiv k \pmod{k+3}, k \in S, c \text{ is even}, \end{cases}$

where $S = \{0, 1, 2, 4, 8, 10, 14, 16, 20\}.$

In this paper, we study the equation $\mathcal{E}_{a,c}: x_1 + ax_2 + c = x_3$ when a is a positive integer and c any integer. We give a necessary and sufficient condition for the Rado number $Rad_2(1, a, -1; c)$ to exist, give upper and lower bounds in all cases, and exact values in many cases. In particular, we determine the Rado number for the

 $^{^{1}}$ Corresponding author

equation $x_1 + 3x_2 + c = x_3$ for $c \ge -3$. Existence of Rado number requires $\alpha \le \gamma$, where α and γ are the highest powers of 2 dividing *a* and *c*, respectively. The results of this paper are summarized in Table 1.

Conditions on c and a	$\mathbf{Rad}_2(1, a, -1; c)$	Result
$\begin{array}{c} \alpha \leq \gamma \\ c < a, \ a \ \text{even} \\ c < a, \ a \ \text{odd} \\ c > a \end{array}$	exists $\leq \left(a + \frac{a}{2^{\alpha}} + 2\right)(a - c) + 1$ $\leq (2a + 1)(a - c) + 1$ $< \left(a + \frac{a}{2^{\alpha}}\right)(c - a) + 1$	Theorem 1
$\alpha > \gamma$	does not exist	
c = a	1	Proposition 1
c < a	$\geq (a+3)(a-c)+1$	Theorem 2
$c \leq -\frac{a(a-3)}{2}, a \text{ odd}$	(a+3)(a-c)+1	Theorem 3
$c \leq 0, a \mid c$	(a+3)(a-c)+1	Theorem 4
$a \mid c, 1 < \frac{c}{a} \le a + 1$	$\frac{c}{a}$	Theorem 5
c > a	$\geq \left\lceil \frac{1+c(a+3)}{1+a(a+3)} \right\rceil$	Theorem 6
$c \begin{cases} \geq \frac{a(a+2K+1)}{2}, & a \text{ odd} \\ = ma, m \geq a+2, & a \text{ even} \end{cases}$	$\left\lceil \frac{1+c(a+3)}{1+a(a+3)} \right\rceil = K+1$	Theorem 7
$c = \lambda a - \mu$ ($\lambda \in [3, a+1], \mu \in [1, a+1-\lambda]$)	$\geq \lambda + \mu$	Theorem 8

Table 1. Summary of results on the 2-color Rado number for the equation $x_1 + ax_2 - x_3 = c$, $a \ge 1$.

2. Main Results

We study the Rado numbers for the equation

$$x_1 + ax_2 - x_3 = c \tag{1}$$

where a is a positive integer and c is any integer. Throughout this paper, we let $2^{\alpha} \mid\mid a \text{ and } 2^{\gamma} \mid\mid c$.

By assigning the color of x_i in the solution of Equation (1) to $x_i - 1$, we note that this is equivalent to determining the smallest positive integer R for which every 2-coloring of [0, R-1] contains a monochromatic solution to

$$x_1 + ax_2 - x_3 = c', (2)$$

where c' = c - a.

Theorem 1. Let $a, c \in \mathbb{Z}$, $a \ge 1$, and let $2^{\alpha} \mid \mid a$ and $2^{\gamma} \mid \mid c$. Then $Rad_2(1, a, -1; c)$ exists if and only if $\alpha \le \gamma$. Moreover, when $\alpha \le \gamma$, we have

$$Rad_{2}(1, a, -1; c) \leq \begin{cases} \left(a + \frac{a}{2^{\alpha}} + 2\right)(a - c) + 1 & \text{if } c < a, a \text{ even};\\ (2a + 1)(a - c) + 1 & \text{if } c < a, a \text{ odd};\\ \left(a + \frac{a}{2^{\alpha}}\right)(c - a) + 1 & \text{if } c > a. \end{cases}$$

Proof. Let $\alpha > \gamma$. Let $\Delta : \mathbb{N} \to \{0,1\}$ be defined by

$$\Delta(x) = \begin{cases} 0 & \text{if } 1 \le x \mod 2^{\gamma+1} \le 2^{\gamma}; \\ 1 & \text{if } 2^{\gamma} < x \mod 2^{\gamma+1} \le 2^{\gamma+1}. \end{cases}$$

Reducing Equation (1) modulo $2^{\gamma+1}$ gives $x_1 - x_3 \equiv 2^{\gamma} \pmod{2^{\gamma+1}}$. However, $\Delta(x_1) \neq \Delta(x_3)$, thereby proving that Δ is a valid coloring of \mathbb{N} . Therefore, $Rad_2(1, a, -1; c)$ does not exist.

Let $\alpha \leq \gamma$. We consider the two cases: (i) a > c, and (ii) a < c. Write $a = 2^{\alpha} \cdot a_1$ and $c = 2^{\gamma} \cdot c_1$, where a_1, c_1 are both odd. Then $a - c = 2^{\alpha} \cdot t$, where $t = a_1 - 2^{\gamma - \alpha} \cdot c_1 \in \mathbb{Z}$. For the rest of this proof, we consider 2-colorings of [0, R-1] which contain a monochromatic solution to the modified Equation (2).

Case (a). Suppose a > c. Let $\chi : [0, (a + \frac{a}{2^{\alpha}} + 2)(a - c)] \to \{0, 1\}$ be any 2-coloring of $[0, (a + \frac{a}{2^{\alpha}} + 2)(a - c)]$. Without loss of generality, let $\chi(0) = 0$. We claim that this forces

$$\chi(k(a-c)) = \begin{cases} 0 & \text{when } k \text{ is even,} \\ 1 & \text{when } k \text{ is odd,} \end{cases}$$

for $k \in [1, a_1 + 2]$.

We use induction on k. Since $x_1 = x_2 = 0$, $x_3 = a - c$ is a solution to Equation (2), we must have $\chi(a - c) = 1$ in order to avoid a monochromatic solution.

Suppose $\chi(k(a-c)) \equiv k \mod 2$ for $k \in \{0, 1, 2, \dots, K-1\}, K \le a_1 + 2$.

When K is odd, since $x_1 = (K-1)(a-c)$, $x_2 = 0$, $x_3 = K(a-c)$ is a solution to Equation (2), we must have $\chi(K(a-c)) = 1$ in order to avoid a monochromatic solution.

Let K be even. In each of the following sequences, the color of one of the x_i 's is forced in order to avoid a monochromatic solution.

- $x_1 = (K-1)(a-c)$ and $x_2 = a-c$ implies $\chi((a+K)(a-c)) = 0$.
- $x_1 = (a+K)(a-c)$ and $x_2 = 0$ implies $\chi((a+K+1)(a-c)) = 1$.
- $x_2 = a c$ and $x_3 = (a + K + 1)(a c)$ implies $\chi(K(a c)) = 0$.

Note that t > 0 in this case. We next claim that $\chi(t) = 0$. Indeed, $x_1 = a - c$, $x_2 = t$, $x_3 = (a_1 + 2)(a - c)$ forms a monochromatic triple if $\chi(t) = 1$. Finally, $x_1 = 0$, $x_2 = t$, $x_3 = (a_1 + 1)(a - c)$ forms a monochromatic triple.

We have shown that $\chi((a_1 + 1)(a - c)) = 0$ and $\chi((a_1 + 2)(a - c)) = 1$. To deduce the color of these two integers, we require $\chi((a + a_1 + 2)(a - c)) = 1$, as shown in the argument above. Therefore, any 2-coloring of $[0, (a + \frac{a}{2^{\alpha}} + 2)(a - c)]$ must admit a monochromatic solution of Equation (2).

When a is odd, note that $a_1 = a$. In this case, we show that any $\chi : [0, (2a+1)(a-c)] \rightarrow \{0,1\}$ admits a monochromatic solution of Equation (2). As in the general case, we may assume without loss of generality, that $\chi(0) = 0$. The argument given

above shows that

$$\chi(k(a-c)) = \begin{cases} 0 & \text{when } k \text{ is even,} \\ 1 & \text{when } k \text{ is odd,} \end{cases}$$

for $k \in [1, a]$.

In particular, $\chi(a(a-c)) = 1$. Since $x_1 = a(a-c)$, $x_2 = a-c$, $x_3 = (2a+1)(a-c)$ is a solution to Equation (2), we must have $\chi((2a+1)(a-c)) = 0$ in order to avoid a monochromatic solution. But then $x_1 = 0$, $x_2 = 2(a-c)$, $x_3 = (2a+1)(a-c)$ forms a monochromatic triple. Therefore, any 2-coloring of [0, (2a+1)(a-c)] must admit a monochromatic solution of Equation (2).

Case (b). Suppose a < c. We make slight modifications in the argument in Case (a). Let $\chi : [0, (a + \frac{a}{2^{\alpha}}) (c - a)] \rightarrow \{0, 1\}$ be any 2-coloring of $[0, (a + \frac{a}{2^{\alpha}}) (c - a)]$. Without loss of generality, let $\chi(0) = 0$. We claim that this forces

$$\chi(k(c-a)) = \begin{cases} 0 & \text{when } k \text{ is even,} \\ 1 & \text{when } k \text{ is odd,} \end{cases}$$

for $k \in [1, a_1 + 2]$.

We use induction on k.

Since $x_1 = c - a$, $x_2 = x_3 = 0$ is a solution to Equation (2), we must have $\chi(c-a) = 1$ in order to avoid a monochromatic solution.

Suppose $\chi(k(c-a)) \equiv k \mod 2$ for $k \in \{0, 1, 2, \dots, K-1\}, K \le a_1 + 2$.

When K is odd, since $x_1 = K(c-a)$, $x_2 = 0$, $x_3 = (K-1)(c-a)$ is a solution to Equation (2), we must have $\chi(K(c-a)) = 1$ in order to avoid a monochromatic solution.

Let K be even. In each of the following sequences, the color of one of the x_i 's is forced in order to avoid a monochromatic solution.

- $x_1 = (K-1)(c-a)$ and $x_2 = c-a$ implies $\chi((a+K-2)(c-a)) = 0$.
- $x_2 = 0$ and $x_3 = (a + K 2)(c a)$ implies $\chi((a + K 1)(c a)) = 1$.
- $x_2 = c a$ and $x_3 = (a + K 1)(c a)$ implies $\chi(K(c a)) = 0$.

Note that t < 0 in this case. We next claim that $\chi(-t) = 1$. Indeed, $x_1 = 2(c-a)$, $x_2 = -t$, $x_3 = (a_1 + 1)(c-a)$ forms a monochromatic triple if $\chi(-t) = 0$. Finally, $x_1 = c - a$, $x_2 = -t$, $x_3 = a_1(c-a)$ forms a monochromatic triple.

We have shown that $\chi((a_1 + 1)(c - a)) = 0$ and $\chi((a_1 + 2)(c - a)) = 1$. To deduce the color of these two integers, we require $\chi((a + a_1)(c - a)) = 1$, as shown in the argument above. Therefore, any 2-coloring of $[0, (a + \frac{a}{2^{\alpha}})(c - a)]$ must admit a monochromatic solution of Equation (2).

Proposition 1. For $a \in \mathbb{N}$, $Rad_2(1, a, -1; a) = 1$.

Proof. This follows immediately from the fact that $x_1 = x_2 = x_3 = 1$ is a solution to Equation (1).

3. The Case c < a

Theorem 2. Let $a \ge 1$ and c < a. If $\alpha \le \gamma$, then

$$Rad_2(1, a, -1; c) \ge (a+3)(a-c)+1.$$

Proof. Let $\Delta : [1, (a+3)(a-c)] \to \{0, 1\}$ be defined by

$$\Delta(x) = \begin{cases} 0 & \text{if } x \in [1, a - c] \cup [(a + 2)(a - c) + 1, (a + 3)(a - c)];\\ 1 & \text{if } x \in [a - c + 1, (a + 2)(a - c)]. \end{cases}$$

Suppose x_1, x_2, x_3 is a solution to Equation (1) with $\Delta(x_1) = \Delta(x_2) = \Delta(x_3)$.

Suppose $\Delta(x_i) = 0$ for $i \in \{1, 2, 3\}$. If $x_2 \in [(a+2)(a-c)+1, (a+3)(a-c)]$, then

$$x_3 = x_1 + ax_2 - c \ge 1 + a((a+2)(a-c)+1) - c > (a+3)(a-c).$$

Hence $x_2 \in [1, a - c]$.

If $x_1 \in [1, a - c]$, then

$$a - c + 1 \le x_1 + ax_2 - c \le (a + 1)(a - c) - c < (a + 2)(a - c) + 1.$$

If $x_1 \in [(a+2)(a-c)+1, (a+3)(a-c)]$, then

$$x_3 = x_1 + ax_2 - c \ge (a+2)(a-c) + 1 + a - c > (a+3)(a-c).$$

Therefore $\Delta(x_i) = 1$ for $i \in \{1, 2, 3\}$, and so

$$x_3 = x_1 + ax_2 - c \ge (a+1)(a-c+1) - c > (a+2)(a-c).$$

This proves that Δ is a valid coloring of [1, (a+3)(a-c)], so that $Rad_2(1, a, -1; c) \ge (a+3)(a-c)+1$.

Theorem 3. Let a be odd, $a \ge 1$. If $c \le -a(a-3)/2$ and $\alpha \le \gamma$, then

$$Rad_2(1, a, -1; c) = (a+3)(a-c) + 1.$$

Proof. By Theorem 2, it is enough to show that $Rad_2(1, a, -1; c) \leq (a+3)(a-c)+1$. Let $\chi : [0, (a+3)(a-c)] \rightarrow \{0, 1\}$ be any 2-coloring of [0, (a+3)(a-c)]. Without loss of generality, let $\chi(0) = 0$.

In each of the following sequences, the color of one of the x_i 's is forced in order to avoid a monochromatic solution.

- $x_1 = x_2 = 0$ implies $\chi(a c) = 1$.
- $x_1 = x_2 = a c$ implies $\chi((a+2)(a-c)) = 0.$
- $x_2 = 0$ and $x_3 = (a+2)(a-c)$ implies $\chi((a+1)(a-c)) = 1$.
- $x_1 = (a+2)(a-c)$ and $x_2 = 0$ implies $\chi((a+3)(a-c)) = 1$.
- $x_2 = a c$ and $x_3 = (a + 3)(a c)$ implies $\chi(2(a c)) = 0$.

• $x_1 = 2(a - c)$ and $x_2 = 0$ implies $\chi(3(a - c)) = 1$.

We capture this information in the table below.

0	1
0	a-c
2(a-c)	3(a-c)
(a+2)(a-c)	(a+1)(a-c)
	(a+3)(a-c)

Table 2. Some initial colorings

We divide the proof into two cases: (i) $\chi(0) = \chi(1)$, and (ii) $\chi(0) \neq \chi(1)$.

Case (i). $(\chi(0) = \chi(1))$. We claim that $\chi(n) = 0$ for $1 < n \le a - c - 1$. To do this, we show that $\chi(n) = 0$ for $1 < n \le a - 1$ and that $\chi(m) = \chi(n)$ if $m \equiv n \pmod{a}$ and $1 < m, n \le a - c - 1$.

Assume, by way of contradiction, that $\chi(n) = 1$ for some $n \in \{2, ..., a-1\}$. We claim that this forces

$$\chi(k(a-c)) = \begin{cases} 0 & \text{when } k \text{ is even,} \\ 1 & \text{when } k \text{ is odd,} \end{cases}$$

for $k \in [1, a]$.

We use induction on k. The base cases, $k \in \{0, 1, 2, 3\}$, are covered by the arguments in the above paragraph; see Table 2. Suppose $\chi(k(a-c)) \equiv k \mod 2$ for $k \in \{0, 1, 2, \ldots, K\}$ for some odd K < a.

Let k be odd, k > 1. In each of the following sequences, the color of one of the x_i 's is forced in order to avoid a monochromatic solution.

- $x_2 = n$ and $x_3 = k(a-c)$ implies $\chi(-an+(k-1)(a-c)) = 0$. Note that we require $-an+(k-1)(a-c) \ge 0$; it is sufficient to assume $-an+2(a-c) \ge 0$.
- $x_1 = -an + (k-1)(a-c)$ and $x_2 = 0$ implies $\chi(-an + k(a-c)) = 1$.
- $x_1 = -an + k(a c)$ and $x_2 = n$ implies $\chi((k+1)(a c)) = 0$.
- $x_1 = (k+1)(a-c)$ and $x_2 = 0$ implies $\chi((k+2)(a-c)) = 1$.

Therefore, for odd k, $\chi(k(a-c)) = 1$ implies $\chi((k+1)(a-c)) = 0$ and $\chi((k+2)(a-c)) = 1$. Since $\chi(a-c) = 1$ (refer Table 2), the proof of our claim is complete.

Thus $\chi(a(a-c)) = 1$, and the argument in the above paragraph shows that $\chi((a+1)(a-c)) = 0$, contradicting the results in Table 2. This shows that $\chi(n) = 0$ for $1 < n \le a - 1$.

We next show that $\chi(m) = \chi(n)$ if $m \equiv n \pmod{a}$ and $1 < m, n \leq a - c - 1$. In each of the following sequences, the color of one of the x_i 's is forced in order to avoid a monochromatic solution.

- $x_1 = 1$ and $x_2 = 0$ implies $\chi(1 + (a c)) = 1$.
- $x_1 = n$ and $x_2 = 0$ implies $\chi(n + (a c)) = 1$.

- $x_1 = n + (a c)$ and $x_2 = 1 + (a c)$ implies $\chi(n + a + (a + 2)(a c)) = 0$.
- $x_2 = 0$ and $x_3 = n + a + (a + 2)(a c)$ implies $\chi(n + a + (a + 1)(a c)) = 1$.
- $x_2 = a c$ and $x_3 = n + a + (a + 1)(a c)$ implies $\chi(n + a) = 0 = \chi(n)$.

We now have $x_1 = -c$, $x_2 = 1$ and $x_3 = 2(a - c)$ as a monochromatic solution to Equation (2).

Case (ii). $(\chi(0) \neq \chi(1))$. We claim that

$$\chi(k(a-c)) = \begin{cases} 0 & \text{when } k \text{ is even,} \\ 1 & \text{when } k \text{ is odd,} \end{cases}$$

for $k \in [1, a]$.

We use induction on k. The base cases, $k \in \{0, 1, 2, 3\}$, are covered by the arguments in the above paragraph; see Table 2. Suppose $\chi(k(a-c)) \equiv k \mod 2$ for $k \in \{0, 1, 2, \ldots, K\}$ for some odd K < a.

Let k be odd. In each of the following sequences, the color of one of the x_i 's is forced in order to avoid a monochromatic solution.

- $x_1 = k(a-c)$ and $x_2 = 1$ implies $\chi(a + (k+1)(a-c)) = 0$.
- $x_1 = a + (k+1)(a-c)$ and $x_2 = 0$ implies $\chi(a + (k+2)(a-c)) = 1$.
- $x_2 = 1$ and $x_3 = a + (k+2)(a-c)$ implies $\chi((k+1)(a-c)) = 0$.
- $x_1 = (k+1)(a-c)$ and $x_2 = 0$ implies $\chi((k+2)(a-c)) = 1$.

Therefore, for odd k, $\chi(k(a-c)) = 1$ implies $\chi((k+1)(a-c)) = 0$ and $\chi((k+2)(a-c)) = 1$. Since $\chi(a-c) = 1$ (refer Table 2), the proof of our claim is complete.

Thus $\chi(a(a-c)) = 1$, and the argument in the above paragraph shows that $\chi((a+1)(a-c)) = 0$, contradicting the results in Table 2.

Remark 1. The arguments in Theorem 3 show that the range of c for which the result is valid is in fact more than the statement suggests. In addition to the assumptions made in the theorem, if we write $c \equiv t \pmod{a}$, $0 \le t \le a - 1$, then the conclusion of the theorem is valid for

$$c \leq \begin{cases} 0 & \text{if } t \in \{0, a - 1\}, \\ -\frac{a(a - t - 2)}{2} & \text{if } t \notin \{0, a - 1\}. \end{cases}$$

Remark 2. Theorem 3 and Proposition 1 show that $Rad_2(1,3,-1;c) = 19-6c$ for $c \leq 0$, thereby confirming a conjecture of Schaal & Zinter [3], and also for c = 3. We can also show that $Rad_2(1,3,-1;1) = 14$ and $Rad_2(1,3,-1;2) = 8$. We include a proof of these two additional Rado numbers below.

Let c = 2. Let $\chi : [1,8] \to \{0,1\}$ be any 2-coloring. Suppose, without loss of generality, that $\chi(1) = 0$. In each of the following sequences, the color of one of the x_i 's is forced in order to avoid a monochromatic solution.

• $x_1 = x_2 = 1$ implies $\chi(2) = 1$.

- $x_1 = x_2 = 2$ implies $\chi(6) = 0$.
- $x_1 = 6$ and $x_2 = 1$ implies $\chi(7) = 1$.
- $x_2 = 2$ and $x_3 = 7$ implies $\chi(3) = 0$.
- $x_1 = 3$ and $x_2 = 1$ implies $\chi(4) = 1$.
- $x_2 = 1$ and $x_3 = 6$ implies $\chi(5) = 1$.

We capture this information in the table below.

0	1
1	2
6	5
3	7
	4

Table 3. Forced colorings for c = 2

Table 3 provides a valid 2-coloring of [1,7]. Since both monochromatic pairs $(x_1, x_2) = (1,3), (x_1, x_2) = (4,2)$ give $x_3 = 8$, the Rado number equals 8.

Let c = 1. Let $\chi : [1, 14] \to \{0, 1\}$ be any 2-coloring. Suppose, without loss of generality, that $\chi(1) = 0$. In each of the following sequences, the color of one of the x_i 's is forced in order to avoid a monochromatic solution.

- $x_1 = x_2 = 1$ implies $\chi(3) = 1$.
- $x_1 = x_2 = 3$ implies $\chi(11) = 0$.
- $x_1 = 11$ and $x_2 = 1$ implies $\chi(13) = 1$.
- $x_2 = 1$ and $x_3 = 11$ implies $\chi(9) = 1$.
- $x_2 = 3$ and $x_3 = 13$ implies $\chi(5) = 0$.
- $x_1 = 5$ and $x_2 = 1$ implies $\chi(7) = 1$.
- $x_1 = x_2 = 2$ and $x_3 = 7$ implies $\chi(2) = 0$.
- $x_1 = 2$ and $x_2 = 1$ implies $\chi(4) = 1$.
- $x_1 = 4$ and $x_2 = 3$ implies $\chi(12) = 0$.
- $x_2 = 2$ and $x_3 = 11$ implies $\chi(6) = 1$.
- $x_2 = 1$ and $x_3 = 12$ implies $\chi(10) = 1$.

Note that $\chi(8)$ can be either 0 or 1. We capture this information in the table below.

0	1	
1	3	
11	9,13	
5	7	
2	4	
12	10	
8	6	

Table 4. Forced colorings for c = 1

Table 4 provides a valid 2-coloring of [1,13]. Since both monochromatic pairs $(x_1, x_2) = (12, 1), (x_1, x_2) = (6, 3)$ give $x_3 = 14$, the Rado number equals 14.

The case $a \mid c, c \leq 0$ is covered by Theorem 3 only for odd a. We extend this to all a in the following theorem.

Theorem 4. Let $a \ge 1$, $c \le 0$, and let $a \mid c$. Then

$$Rad_2(1, a, -1; c) = (a+3)(a-c) + 1.$$

Proof. The existence of $Rad_2(1, a, -1; c)$ is guaranteed by Theorem 1, which holds since $a \mid c$. By Theorem 2, it is enough to show that $Rad_2(1, a, -1; c) \leq (a+3)(a-c)$ c) + 1. Let $\chi : [0, (a+3)(a-c)] \rightarrow \{0, 1\}$ be any 2-coloring of [0, (a+3)(a-c)]. Without loss of generality, let $\chi(0) = 0$.

In each of the following sequences, the color of one of the x_i 's is forced in order to avoid a monochromatic solution. This is identical to the initial argument in Theorem 3, but we repeat it for clarity.

- $x_1 = x_2 = 0$ implies $\chi(a c) = 1$.
- $x_1 = x_2 = a c$ implies $\chi((a+2)(a-c)) = 0.$
- $x_2 = 0$ and $x_3 = (a+2)(a-c)$ implies $\chi((a+1)(a-c)) = 1$.
- $x_1 = (a+2)(a-c)$ and $x_2 = 0$ implies $\chi((a+3)(a-c)) = 1$.
- $x_2 = a c$ and $x_3 = (a + 3)(a c)$ implies $\chi(2(a c)) = 0$.
- $x_1 = 2(a-c)$ and $x_2 = 0$ implies $\chi(3(a-c)) = 1$.

We divide the proof into two cases: (i) $\chi(0) = \chi(1)$, and (ii) $\chi(0) \neq \chi(1)$.

Case (i). $(\chi(0) = \chi(1))$. We claim that $\chi(n) = 0$ for $1 < n \le a - c - 1$. Assume, by way of contradiction, that $\chi(n) = 1$ for some $n \in \{2, \ldots, a - c - 1\}$.

In each of the following sequences, the color of one of the x_i 's is forced in order to avoid a monochromatic solution.

- $x_1 = x_2 = n$ implies $\chi((a+1)n + (a-c)) = 0.$
- $x_1 = a c$ and $x_2 = n$ implies $\chi(an + 2(a c)) = 0$.
- $x_1 = 0$ and $x_3 = an + 2(a c)$ implies $\chi(n + \frac{a-c}{a}) = 1$.
- $x_1 = n$ and $x_2 = n + \frac{a-c}{a}$ implies $\chi((a+1)n + 2(a-c)) = 0$.

But now $x_1 = (a+1)n + (a-c)$, $x_2 = 0$, $x_3 = (a+1)n + 2(a-c)$ is a monochromatic solution to Equation (2). This proves our claim that $\chi(n) = 0$ for $1 < n \le a - c - 1$.

We now have $x_1 = -c$, $x_2 = 1$, $x_3 = 2(a - c)$ as a monochromatic solution to Equation (2).

Case (ii). $(\chi(0) \neq \chi(1))$. In each of the following sequences, the color of one of the x_i 's is forced in order to avoid a monochromatic solution.

- $x_1 = x_2 = 1$ implies $\chi((a+1) + (a-c)) = 0.$
- $x_1 = a c$ and $x_2 = 1$ implies $\chi(a + 2(a c)) = 0$.

- $x_1 = 0$ and $x_3 = a + 2(a c)$ implies $\chi(1 + \frac{a-c}{a}) = 1$. $x_1 = 1$ and $x_2 = 1 + \frac{a-c}{a}$ implies $\chi((a + 1) + 2(a c)) = 0$.

But now $x_1 = (a+1) + (a-c), x_2 = 0, x_3 = (a+1) + 2(a-c)$ is a monochromatic solution to Equation (2).

Conjecture 1. Let $a \ge 1$ and let $c \le 0$. If $\alpha \le \gamma$, then

$$Rad_2(1, a, -1; c) = (a+3)(a-c) + 1.$$

4. The Case c > a

Theorem 5. Let a, m be integers such that $1 < m \le a + 1$. Then

$$Rad_2(1, a, -1; ma) = m$$

Proof. The existence of $Rad_2(1, a, -1; ma)$ is guaranteed by Theorem 1. The 2coloring $\Delta : [1, m-1] \to \{0, 1\}$, defined as $\Delta(x) = 0$ for all $x \in [1, m-1]$, is a valid coloring, since $x_1 + ax_2 - x_3 \le (a+1)(m-1) - 1 = ma - (a-m+2) < ma$. Hence $Rad_2(1, a, -1; ma) \ge m.$

On the other hand, since $x_1 = x_2 = x_3 = m$ satisfies Equation (1) for c =ma, every 2-coloring $\chi : [1,m] \to \{0,1\}$ admits a monochromatic solution to Equation (1). Hence $Rad_2(1, a, -1; ma) \leq m$.

Theorem 6. Let $a \ge 1$ and c > a. If $\alpha \le \gamma$, then

$$Rad_2(1, a, -1; c) \ge \left\lceil \frac{1 + c(a+3)}{1 + a(a+3)} \right\rceil.$$

Proof. For convenience, we set

$$K = \left\lceil \frac{1 + c(a+3)}{1 + a(a+3)} \right\rceil - 1,$$

and show that

$$K(a+1)^2 - c(a+2) < K(a+1) - c < K.$$
(3)

Both inequalities are equivalent to

$$K < \frac{c}{a}.$$

From the definition of K, since c > a, we have

$$K < \frac{1 + c(a+3)}{1 + a(a+3)} < \frac{c}{a}.$$
(4)

Thus both inequalities in Equation (3) hold.

Now

$$K(a+1) - c \ge (a+1)\left(\frac{1+c(a+3)}{1+a(a+3)} - 1\right) - c = \frac{c(a+2) - a(a+1)(a+3)}{1+a(a+3)} > 0$$

if c > a(a+2).

Let $\Delta:[1,K]\to\{0,1\}$ be defined by

$$\Delta(x) = \begin{cases} 0 & \text{if } x \in \left(\max\{0, K(a+1)^2 - c(a+2)\}, K(a+1) - c\right]; \\ 1 & \text{otherwise.} \end{cases}$$

We claim that Δ provides a valid 2-coloring of [1, K] with respect to Equation (1). If $\Delta(x_1) = \Delta(x_2) = 0$, then

$$x_3 \le (a+1)(K(a+1)-c) - c = K(a+1)^2 - c(a+2)$$

Hence $\Delta(x_3) = 1$. Therefore, we must have $\Delta(x_i) = 1$ for $i \in \{1, 2, 3\}$. If $x_i > K(a+1) - c$ for $i \in \{1, 2\}$, then

$$K(a+1)^2 - c(a+2) = (a+1)(K(a+1) - c) - c < x_1 + ax_2 - c = x_3 \le K(a+1) - c.$$

Therefore, $x_i \in [1, K(a+1)^2 - c(a+2)]$ for at least one $i \in \{1, 2\}$. Now

$$x_3 \le K(a+1)^2 - c(a+2) + Ka - c = K(1 + a(a+3)) - c(a+3) \le 0,$$

by Equation (4), so that x_3 is outside the domain of Δ .

We have shown that $K(a+1)^2 - c(a+2) < K(a+1) - c$ for c > a, and further that K(a+1) - c > 0 if c > a(a+2). Thus, Δ provides a valid 2-coloring for c > a(a+2). For $c \in [a+1, (a+1)^2)$, it may be the case that K(a+1) - c < 1, in which case all integers in the interval [1, K] are colored 1. Since $x_3 = x_1 + ax_2 - c \leq K(a+1) - c$, Δ provides a valid 1-coloring if K(a+1) - c < 1. Therefore $Rad_2(1, a, -1; c) > K$ in any case.

Theorem 7. Let $a, c \in \mathbb{N}$, c > a, and let $\alpha \leq \gamma$. Then for

$$c \begin{cases} \geq \frac{a(a+2K+1)}{2} & \text{if } a \text{ is odd;} \\ = ma, m \geq a+2 & \text{if } a \text{ is even,} \end{cases}$$

where $K = \left\lceil \frac{1+c(a+3)}{1+a(a+3)} \right\rceil - 1$, we have

$$Rad_2(1, a, -1; c) = \left\lceil \frac{1 + c(a+3)}{1 + a(a+3)} \right\rceil$$

Proof. Suppose that c > a(a+2). By Theorem 6, it suffices to prove that

$$Rad_2(1, a, -1; c) \le \left\lceil \frac{1 + c(a+3)}{1 + a(a+3)} \right\rceil = K + 1,$$

where $K = \left\lceil \frac{1+c(a+3)}{1+a(a+3)} \right\rceil - 1$, as defined in Theorem 6. Also

$$K \ge \frac{(c-a)(a+3)}{1+a(a+3)} > a \tag{5}$$

when c > a(a+2).

Let $\chi : [1, K + 1] \to \{0, 1\}$ be any 2-coloring of the integers in the interval [1, K + 1]. Consider the complementary coloring $\overline{\chi} : [1, K + 1] \to \{0, 1\}$ given by

$$\overline{\chi}(x) = \chi(K+2-x).$$

Then monochromatic solutions to Equation (1) under χ correspond to monochromatic solutions to

$$x_1 + ax_2 - x_3 = (K+2)a - c \tag{6}$$

under $\overline{\chi}$.

From Equation (4), $(K + 2)a - c < a\left(\frac{c}{a} + 2\right) - c = 2a$. Thus, we have c' = (K + 2)a - c < 2a for c > a(a + 2). If $c' \le -\frac{a(a-3)}{2}$, then every 2-coloring of [1, (a - c')(a + 3) + 1] admits a monochromatic solution to Equation (6) by Theorem 3 and Theorem 4. Now using the definition of K, we have

$$(a - c')(a + 3) + 1 = (c - (K + 1)a)(a + 3) + 1$$

= 1 + c(a + 3) - (1 + a(a + 3))(K + 1) + K + 1
 $\leq K + 1.$

Hence every 2-coloring of [1, K+1] also admits a monochromatic solution to Equation (1) in this case.

Remark 3. The arguments in Theorem 7 show that the range of c for which the result is valid is in fact more than the statement suggests. In addition to the assumptions made in the theorem, if we write $c \equiv t \pmod{a}$, $0 \le t \le a - 1$, then the conclusion of the theorem is valid for

$$c \geq \begin{cases} a(K+2) & \text{if } t \in \{0, a-1\}, \\ -\frac{a(a-t+2K+2)}{2} & \text{if } t \notin \{0, a-1\}. \end{cases}$$

Theorem 8. Let $a \ge 1$, and let $c = \lambda a - \mu$, with $3 \le \lambda \le a + 1$ and $1 \le \mu \le a + 1 - \lambda$. If $\alpha \le \gamma$, then

$$Rad_2(1, a, -1; c) \ge \lambda + \mu$$

Proof. Suppose $c = \lambda a - \mu$, with $3 \leq \lambda \leq a + 1$, $1 \leq \mu \leq a + 1 - \lambda$. Let $\Delta : [0, \lambda + \mu - 2] \rightarrow \{0, 1\}$ be defined by

$$\Delta(x) = \begin{cases} 0 & \text{if } x \in [0, \lambda - 2]; \\ 1 & \text{if } x \in [\lambda - 1, \lambda + \mu - 2] \end{cases}$$

We claim that Δ provides a valid 2-coloring of $[0, \lambda + \mu - 2]$ with respect to Equation (2).

Suppose $\Delta(x_1) = \Delta(x_2) = 0$. Then

$$x_3 = x_1 + ax_2 - (\lambda - 1)a + \mu \le (\lambda - 2)(a + 1) - (\lambda - 1)a + \mu \le -1,$$

so that x_3 is outside the domain of Δ . Therefore, we must have $\Delta(x_i) = 1$ for $i \in \{1, 2, 3\}$. But then

$$x_3 = x_1 + ax_2 - (\lambda - 1)a + \mu \ge (\lambda - 1)(a + 1) - (\lambda - 1)a + \mu \ge \lambda + \mu - 1,$$

and again x_3 is outside the domain of Δ . Hence $Rad_2(1, a, -1; c) \ge \lambda + \mu$.

Conjecture 2. Let $a \ge 1$, and $c \ge a(K+2)$, where $K = \left\lceil \frac{1+c(a+3)}{1+a(a+3)} \right\rceil - 1$. If $\alpha \le \gamma$, then

$$Rad_2(1, a, -1; c) = K + 1.$$

Acknowledgement. The authors wish to thank the anonymous referee for carefully reading the original manuscript and suggesting numerous changes.

References

- [1] W. Kosek and D. Schaal, Rado numbers for the equation $\sum_{i=1}^{m-1} x_i + c = x_m$ for negative values of c, Adv. Appl. Math. 27 (4) (2001), 805-815.
- [2] B. M. Landman and A. Robertson, Ramsey Theory on the Integers, Second Edition, Student Mathematics Library, 73, Amer. Math. Soc., Providence, RI, 2014.
- [3] D. Schaal and M. Zinter, Rado numbers for the equation $x_1 + 3x_2 + c = x_3$, Congr. Numer. **211** (2012), 65-71.