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Abstract
Let a,c € Z, a > 1. The Rado number for the non-homogeneous equation x1 +axs —
x3 = ¢ in 2 colors is the least positive integer N such that any 2-coloring of the
integers in the interval [1, N] admits a monochromatic solution to the given equa-
tion. We determine exact values whenever possible, and upper and lower bounds
otherwise, for the Rado numbers for all values of c.

1. Introduction

The 2-color Rado number for the equation &, denoted by Rads (5), is the least
positive integer N such that any 2-coloring of the integers in the interval [1, N]
admits a monochromatic solution to £. Kosek & Schaal [1] considered the 2-color
Rado number for the equation 1 + - - - + ;-1 + ¢ = z,, for negative values of c.
Schaal & Zinter [3] considered the 2-color Rado number for the equation 1 + 3x2 +
¢ = x3 for ¢ > —3. They show that

6c+19 ifc=k (modk+3), keS;
6c+19 < Rada(z1 4 3z2 + c=x3) < B ifc#£k (mod k+3), k€ 9, cis odd;
Tc+22 ifcZk (modk+3),keES, ciseven,

where S = {0,1,2,4,8,10,14, 16, 20}.

In this paper, we study the equation &, . : 1 + axs + ¢ = x3 when a is a positive
integer and ¢ any integer. We give a necessary and sufficient condition for the Rado
number Rads(1,a,—1;¢) to exist, give upper and lower bounds in all cases, and
exact values in many cases. In particular, we determine the Rado number for the
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equation x1 + 3zs 4+ ¢ = x3 for ¢ > —3. Existence of Rado number requires a < ,
where « and ~y are the highest powers of 2 dividing a and ¢, respectively. The results
of this paper are summarized in Table 1.

‘ Conditions on ¢ and a ‘ Radz(1,a,—1;¢) | Result |
a7y exists
c < a, a even <(a+s%+2)(a—c)+1
¢ < a, aodd <(2a+1)(a—c)+1 Theorem 1
c>a <(a+5%)(c—a)+1
a >y does not exist
c=a 1 Proposition 1
c<a >(a+3)(a—c)+1 Theorem 2
cg—@,aodd (a+3)(a—c)+1 Theorem 3
c<0,alc (a+3)(a—c)+1 Theorem 4
alc,1<£<a+1 2 Theorem 5
c>a > [%—‘ Theorem 6
> a(a+2K+1) aodd
cs ™ 2 ’
=ma,m > a+2, aeven [7112((213—‘ =K+1 Theorem 7
c=Aa—p
> Th
(AeBat1,uellatl—N) ZAtp corem 8

Table 1. Summary of results on the 2-color Rado number for the equation x; +
arg —xr3 =c¢, a > 1.

2. Main Results

We study the Rado numbers for the equation
r1+are —x3 =c (1)

where a is a positive integer and c is any integer. Throughout this paper, we let
2% || @ and 27 || c.

By assigning the color of z; in the solution of Equation (1) to x; — 1, we note
that this is equivalent to determining the smallest positive integer R for which every
2-coloring of [0, R — 1] contains a monochromatic solution to

x1+ary —x3=C, (2)
where ¢ = ¢ — a.
Theorem 1. Let a,c € Z, a > 1, and let 2* || a and 27 || ¢. Then Radz(1,a,—1;c¢)
ezists if and only if a < ~y. Moreover, when o < -y, we have
(a+%4+2)(a—c)+1 ifc<a,a even
Rads(1,a,—1;¢) < < (2a+1)(a—c) +1 if c < a, a odd,
(a+z5)(c—a)+1 if ¢ > a.
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Proof. Let o > v. Let A : N — {0,1} be defined by

Alz) = 0 if 1<z mod27!t <27,
TV i 27 < 2 mod 27+ < 29+,

Reducing Equation (1) modulo 271 gives 21 — 23 = 27 (mod 27*!). However,
A(xz1) # A(xs), thereby proving that A is a valid coloring of N. Therefore,
Rads(1,a,—1;¢) does not exist.

Let a < 7. We consider the two cases: (i) a > ¢, and (ii) a < c¢. Write
a=2%-a1 and ¢ = 27 - ¢q, where ay,c; are both odd. Then a — ¢ = 2% - ¢, where
t=a;—27"%-¢; € Z. For the rest of this proof, we consider 2-colorings of [0, R — 1]
which contain a monochromatic solution to the modified Equation (2).

Case (a). Suppose a > c¢. Let x : [0, (a+ 5e + 2) (a = ¢)] — {0,1} be any 2-
coloring of [0, (a + 5% +2) (a — ¢)]. Without loss of generality, let x(0) = 0. We
claim that this forces

0 when k is even
k(a — = ’
X( (a C)) {1 when k is odd,

for k € [1,a1 + 2.

We use induction on k. Since 27 = x5 = 0, 3 = a—c is a solution to Equation (2),
we must have y(a — ¢) = 1 in order to avoid a monochromatic solution.

Suppose x(k(a —¢)) = kmod 2 for k € {0,1,2,...,K — 1}, K < a; + 2.

When K is odd, since 1 = (K — 1)(a — ¢), 22 = 0, 3 = K(a — ¢) is a solution
to Equation (2), we must have x (K (a —c¢)) = 1 in order to avoid a monochromatic
solution.

Let K be even. In each of the following sequences, the color of one of the z;’s is
forced in order to avoid a monochromatic solution.

e 21 = (K —1)(a—c¢) and 23 = a — ¢ implies x((a + K)(a —¢)) = 0.
e 21 =(a+ K)(a—c) and 22 = 0 implies x((a + K +1)(a — ¢)) = 1.
e ry=a—cand 23 = (a+ K + 1)(a — ¢) implies x (K (a —¢)) = 0.

Note that ¢ > 0 in this case. We next claim that x(¢) = 0. Indeed, 1 = a — ¢,
xe = t, 3 = (a1 + 2)(a — ¢) forms a monochromatic triple if x(¢) = 1. Finally,
x1 =0, 22 =1, 23 = (a1 + 1)(a — ¢) forms a monochromatic triple.

We have shown that x((a; + 1)(a — ¢)) = 0 and x((a1 + 2)(a — ¢)) = 1. To
deduce the color of these two integers, we require x((a + a1 + 2)(a — ¢)) = 1, as
shown in the argument above. Therefore, any 2-coloring of [0, (a + 5% + 2) (a — ¢)]
must admit a monochromatic solution of Equation (2).

When a is odd, note that a; = a. In this case, we show that any x : [0, (2a+1)(a—
¢)] — {0,1} admits a monochromatic solution of Equation (2). As in the general
case, we may assume without loss of generality, that x(0) = 0. The argument given
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above shows that

0 when k is even
k(a — = ’
X( (a C)) {1 when k£ is odd,

for k € [1, a).

In particular, x (a(a—c)) = 1. Since 1 = a(a—c), x2 = a—c, x3 = (2a+1)(a—c)
is a solution to Equation (2), we must have x((2a+1)(a—c)) = 0 in order to avoid
a monochromatic solution. But then z; = 0, 2 = 2(a — ¢), 3 = (2a + 1)(a — ¢)
forms a monochromatic triple. Therefore, any 2-coloring of [0, (2a + 1)(a — ¢)] must
admit a monochromatic solution of Equation (2).

Case (b). Suppose a < c¢. We make slight modifications in the argument in Case
(a). Let x : [0, (a4 5%) (¢ — a)] — {0,1} be any 2-coloring of [0, (a + %) (¢ — a)].
Without loss of generality, let x(0) = 0. We claim that this forces

0 when k is even
k(c— = ’
X( (c a)) {1 when k is odd,

for k € [1,a1 + 2].

We use induction on k.

Since ©1 = ¢ — a, ¥ = x3 = 0 is a solution to Equation (2), we must have
X(c—a) =1 in order to avoid a monochromatic solution.

Suppose x(k(c —a)) = kmod 2 for k € {0,1,2,...,K —1}, K < a; + 2.

When K is odd, since 1 = K(c —a), 2 =0, 23 = (K — 1)(c — a) is a solution
to Equation (2), we must have x(K(c—a)) =1 in order to avoid a monochromatic
solution.

Let K be even. In each of the following sequences, the color of one of the z;’s is
forced in order to avoid a monochromatic solution.

e 71 = (K —1)(c—a) and x5 = ¢ — a implies x((a + K —2)(c —a)) = 0.
e 3 =0and z3 = (a+ K —2)(c — a) implies x((a + K —1)(c — a)) = 1.
e ry=c—aand z3 = (a+ K — 1)(c — a) implies x (K (c — a)) = 0.

Note that t < 0 in this case. We next claim that x(—t) = 1. Indeed, z1 = 2(c — a),
x9 = —t, x3 = (a1 + 1)(¢c — a) forms a monochromatic triple if x(—¢) = 0. Finally,
x1 =c¢—a, xg = —t, x3 = a1(c — a) forms a monochromatic triple.

We have shown that x((a; + 1)(¢ — a)) = 0 and x((a1 + 2)(c —a)) = 1. To
deduce the color of these two integers, we require X((a +a1)(c— a)) =1, as shown
in the argument above. Therefore, any 2-coloring of [0, (a + QL) (¢—a)] must admit
a monochromatic solution of Equation (2). O

Proposition 1. For a € N, Rads(1,a,—1;a) = 1.

Proof. This follows immediately from the fact that 1 = 2o = x3 = 1 is a solution
to Equation (1). O
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3. The Case c < a
Theorem 2. Leta > 1 and c < a. If a <y, then
Rads(1,a,—1;¢) > (a+3)(a—c) + 1.
Proof. Let A : [1,(a+ 3)(a—c)] — {0,1} be defined by
Alz) = {0 %fx €l,a—dUlla+2)(a—c)+1,(a+3)(a—c);
1 ifzefa—c+1,(a+2)(a—c)].

Suppose 1, T2, x3 is a solution to Equation (1) with A(z1) = A(x2) = A(zs).
Suppose A(z;) =0 for i € {1,2,3}. If 3 € [(a+2)(a—c¢) + 1,(a+ 3)(a — ¢)],
then

r3=z1+arz —c>1+a((a+2)(a—c)+1) —c> (a+3)(a—c).

Hence z3 € [1,a — ].
If 21 € [1,a — ¢], then

a—c+1l<zi4ars—c<(a+1l)la—c)—c<(a+2)(a—c)+1.
Ifz; €l(a+2)(a—c)+1,(a+3)(a—c)], then
z3=x1+ars—c>(a+2)(a—c)+1+a—c>(a+3)(a—c).
Therefore A(x;) =1 for i € {1,2,3}, and so
z3=x1+ares —c>(a+1)(a—c+1)—c>(a+2)(a—c).

This proves that A is a valid coloring of [1, (a+3)(a—c)], so that Rads(1,a,—1;¢) >
(a+3)(a—c)+1. O

Theorem 3. Let a be odd, a > 1. If ¢ < —a(a — 3)/2 and o < vy, then
Rads(1,a,—1;¢) = (a+3)(a—c¢) + 1.

Proof. By Theorem 2, it is enough to show that Radz(1,a, —1;¢) < (a+3)(a—c)+1.
Let x : [0, (a + 3)(a — ¢)] — {0,1} be any 2-coloring of [0, (a —|— 3)(a — ¢)]. Without
loss of generality, let x(0) = 0.

In each of the following sequences, the color of one of the x;’s is forced in order
to avoid a monochromatic solution.

e 11 =23 =0 implies x(a — ¢) = 1.

e 1 =z =a— c implies x((a +2)(a —¢)) = 0.

e 7 =0and 3 = (a+ 2)(a — ¢) implies x((a + 1)(a —
e 71 = (a+2)(a—c) and 22 = 0 implies x((a + 3)(a —
e 23 =a—cand 23 = (a+3)(a — ¢) implies x(2(a — ¢))

C
C

)=
)=

OH
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o | = 2(@ - C) and z3 = 0 implies X(g(a - C)) =1

We capture this information in the table below.

| 0 | ! |
0 a—c
2(a—c¢) 3(a—c)
(@a+2)(a=¢) | (a+1)(a—c)
(@+3)(a—c)

Table 2. Some initial colorings

We divide the proof into two cases: (i) x(0) = x(1), and (ii) x(0) # x(1).

Case (i). (x(0) = x(1)). We claim that x(n) =0for 1 <n <a—c—1. Todo
this, we show that x(n) = 0 for 1 < n < a— 1 and that x(m) = x(n) if m =n
(mod a) and 1 <m,n<a—c—1.

Assume, by way of contradiction, that x(n) =1 for some n € {2,...,a—1}. We
claim that this forces

0 when £k is even,
x(k(a—c)) = {

1 when k is odd,

for k € [1,al.

We use induction on k. The base cases, k € {0,1,2,3}, are covered by the
arguments in the above paragraph; see Table 2. Suppose X(k‘(a — c)) = k mod 2 for
ke€{0,1,2,...,K} for some odd K < a.

Let k be odd, £ > 1. In each of the following sequences, the color of one of the
x;’s 1s forced in order to avoid a monochromatic solution.

e 75 = n and x5 = k(a — ¢) implies x( — an + (k — 1)(a — ¢)) = 0. Note that
we require —an+(k—1)(a—c) > 0; it is sufficient to assume —an+2(a—c) > 0.
e 21 =—an+ (k—1)(a—c) and 22 = 0 implies x( — an + k(a —¢)) = 1.
e 71 = —an+ k(a — ¢) and 3 = n implies x((k + 1)(a — ¢)) = 0.
e 21 = (k+1)(a—c) and 2o = 0 implies x((k + 2)(a — ¢)) = 1.
Therefore, for odd k, x(k(a — ¢)) = 1 implies x((k 4+ 1)(a — ¢)) = 0 and x((k +
2)(a—c)) = 1. Since x(a—c) = 1 (refer Table 2), the proof of our claim is complete.
Thus X(a(a - c)) = 1, and the argument in the above paragraph shows that

x((a+1)(a—c)) = 0, contradicting the results in Table 2. This shows that x(n) =0
forl<n<a-—1.

We next show that x(m) = x(n) if m = n(mod a) and 1 < m,n < a—c— 1.
In each of the following sequences, the color of one of the x;’s is forced in order to
avoid a monochromatic solution.

e 21 =1 and x5 = 0 implies X(l + (a — c)) =1.
e 21 =n and z, = 0 implies x(n + (a — ¢)) = 1.
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e zy=n+(a—c)and z3 =1+ (a —c) implies x(n +a+ (a+2)(a —c)) =0.
e zry=0and z3=n+a+ (a+2)(a—c)implies x(n+a+(a+1)(a—c)) =1
e xo=a—cand z3=n+a+ (a+1)(a — ¢) implies x(n + a) =0 = x(n).

We now have z1 = —¢, 22 = 1 and x3 = 2(a — ¢) as a monochromatic solution to

Equation (2).

Case (ii). (x(0) # x(1)). We claim that

0 when k is even
k(a — = ’
x(k(a =) {1 when k is odd,

for k € [1,a].

We use induction on k. The base cases, k € {0,1,2,3}, are covered by the
arguments in the above paragraph; see Table 2. Suppose X(k(a — c)) = k mod 2 for
ke{0,1,2,...,K} for some odd K < a.

Let k be odd. In each of the following sequences, the color of one of the x;’s is
forced in order to avoid a monochromatic solution.

z1 = k(a—c) and zo = 1 implies x(a + (k+ 1)(a —¢)) = 0.

21 =a+ (k+1)(a—c) and 22 = 0 implies x(a + (k+2)(a —¢)) =
22 =1and 3 =a+ (k+2)(a— c) implies x((k + 1)(a — ¢)) = 0.
21 = (k+1)(a—c) and z3 = 0 implies x((k +2)(a —¢)) = 1.

Therefore, for odd k, x(k(a — ¢)) = 1 implies x((k 4+ 1)(a —¢)) = 0 and x((k +
2)(a—c)) = 1. Since x(a—c) = 1 (refer Table 2), the proof of our claim is complete.

Thus x(a(a — ¢)) = 1, and the argument in the above paragraph shows that
x((a+1)(a —¢)) = 0, contradicting the results in Table 2. O

Remark 1. The arguments in Theorem 3 show that the range of ¢ for which the
result is valid is in fact more than the statement suggests. In addition to the
assumptions made in the theorem, if we write ¢ = ¢(mod a), 0 < t < a — 1, then
the conclusion of the theorem is valid for

CS{O ( ift € {0,a—1},

Wet=2) if ¢ ¢ {0,a — 1}.

Remark 2. Theorem 3 and Proposition 1 show that Rads(1,3, —1;¢) = 19 —6¢ for
¢ < 0, thereby confirming a conjecture of Schaal & Zinter [3], and also for ¢ = 3.
We can also show that Radz(1,3,—1;1) = 14 and Rads(1,3,—1;2) = 8. We include
a proof of these two additional Rado numbers below.

Let ¢ = 2. Let x : [1,8] — {0,1} be any 2-coloring. Suppose, without loss of
generality, that x(1) = 0. In each of the following sequences, the color of one of the
x;’s is forced in order to avoid a monochromatic solution.

e 1 = x9 = 1 implies x(2) = 1.
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x1 = x2 = 2 implies x(6) = 0.
21 = 6 and x5 = 1 implies x(7

)=1

x9 =2 and x3 = 7 implies x(3) = 0.

x1 =3 and 2 = 1 implies x(4) =1
)

e 15 =1 and z3 = 6 implies x(5) = 1.
We capture this information in the table below.

1
6
3

o] e o] |

Table 3. Forced colorings for ¢ = 2

Table 3 provides a valid 2-coloring of [1,7]. Since both monochromatic pairs
(x1,22) = (1,3), (r1,22) = (4,2) give x3 = 8, the Rado number equals 8.

Let ¢ = 1. Let x : [1,14] — {0,1} be any 2-coloring. Suppose, without loss of
generality, that x(1) = 0. In each of the following sequences, the color of one of the
x;’s is forced in order to avoid a monochromatic solution.

o 1 =29 = 1 implies x(3) = 1.

e 11 =29 = 3 implies x(11) = 0.

e 11 =11 and 23 = 1 implies x(13) = 1.

e 3 =1 and z3 = 11 implies x(9) = 1.

e 5 =3 and z3 = 13 implies x(5) = 0.

e ;1 =5 and zo = 1 implies x(7) = 1.

21 = x93 = 2 and x3 = 7 implies x(2) = 0.
x1 =2 and 29 = 1 implies x(4) = 1.

[ ]
[ ]
e 1 =4 and zo = 3 implies x(12) = 0.
e 15 =2 and z3 = 11 implies x(6) = 1.
[ ]

2 = 1 and 3 = 12 implies x(10) = 1.

Note that x(8) can be either 0 or 1. We capture this information in the table below.

(0] 1 |

1 3
11 19,13
) 7
2 4
12 10
8 6

Table 4. Forced colorings for ¢ =1
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Table 4 provides a valid 2-coloring of [1,13]. Since both monochromatic pairs
(x1,22) = (12,1), (x1,22) = (6,3) give x3 = 14, the Rado number equals 14.

The case a | ¢, ¢ < 0 is covered by Theorem 3 only for odd a. We extend this to
all a in the following theorem.

Theorem 4. Let a > 1, ¢ <0, and let a | c. Then
Rads(1,a,—1;¢) = (a+3)(a —¢) + 1.

Proof. The existence of Rads(1,a,—1;c¢) is guaranteed by Theorem 1, which holds
since @ | c. By Theorem 2, it is enough to show that Radz(1,a,—1;¢) < (a+3)(a—
¢)+ 1. Let x : [0,(a+ 3)(a—c)] — {0,1} be any 2-coloring of [0, (a + 3)(a — ¢)].
Without loss of generality, let x(0) = 0.

In each of the following sequences, the color of one of the x;’s is forced in order
to avoid a monochromatic solution. This is identical to the initial argument in
Theorem 3, but we repeat it for clarity.

e 1 = x5 =0 implies x(a —¢) = 1.

e 71 =z =a— c implies x((a +2)(a — ¢)) = 0.

e 73 =0and 3 = (a+2)(a — ¢) implies x((a + 1)(a — ¢))
e 71 = (a+2)(a—c) and z2 = 0 implies x((a + 3)(a — ¢))
e 3 =a—cand z3 = (a+ 3)(a — c) implies x(2(a — ¢)) =
e 71 =2(a—c) and 25 = 0 implies x(3(a — ¢)) = 1.

oll

We divide the proof into two cases: (i) x(0) = x(1), and (ii) x(0) # x(1).
Case (i). (x(0) = x(1)). We claim that x(n) =0for 1 <n <a—c— 1. Assume,
by way of contradiction, that x(n) =1 for some n € {2,...,a —c— 1}.

In each of the following sequences, the color of one of the x;’s is forced in order
to avoid a monochromatic solution.

e L1 =Ta="n implieS X((a + 1)” + (a’ - C)) = 0.
e z1 = a—cand 23 = n implies x(an + 2(a — ¢)) = 0.
Y xlzoand x3:an+2(a—c) lmphes X(n—’_%) =1

e z; =nand z3 = n+ “< implies x((a + 1)n+ 2(a — c)) = 0.

But now 21 = (a+1)n+(a—c), 22 =0, 25 = (a+1)n+2(a—c) is a monochromatic
solution to Equation (2). This proves our claim that x(n) =0for 1 <n <a—c—1.

We now have r; = —¢, x2 = 1, x3 = 2(a — ¢) as a monochromatic solution to
Equation (2).

Case (ii). (x(0) # x(1)). In each of the following sequences, the color of one of
the x;’s is forced in order to avoid a monochromatic solution.

o z1 = x5 =1 implies x((a + 1) + (a —¢)) = 0.
e 71 =a—cand 25 = 1 implies x(a + 2(a — ¢)) = 0.



INTEGERS: 20 (2020)

e z; =0and z3 = a+ 2(a — c) implies x (1 + 2=¢) = 1.

a

e ry=1land zo =1+

a

¢ implies x((a + 1) + 2(a — ¢)) = 0.

10

But now 21 = (a+ 1)+ (a —¢), 22 =0, 3 = (a + 1) + 2(a — ¢) is a monochromatic

solution to Equation (2).
Conjecture 1. Let a > 1 and let ¢ < 0. If a <+, then

Rads(1,a,—1;¢) = (a+3)(a—c) + 1.

4. The Case ¢ > a

Theorem 5. Let a,m be integers such that 1 <m < a+ 1. Then

Rads(1,a,—1;ma) = m.

O

Proof. The existence of Rads(1,a,—1;ma) is guaranteed by Theorem 1. The 2-
coloring A : [1,m — 1] — {0,1}, defined as A(x) = 0 for all z € [1,m — 1], is a valid
coloring, since 1+ axg —x3 < (a+1)(m—1)—1=ma— (a —m+2) < ma. Hence

Rads(1,a,—1;ma) > m.

On the other hand, since 1 = x2 = x3 = m satisfies Equation (1) for ¢ =
ma, every 2-coloring x : [1,m] — {0,1} admits a monochromatic soloution to

Equation (1). Hence Rads(1,a, —1;ma) < m.

Theorem 6. Leta > 1 and ¢ > a. If a <y, then

1+ c(a+3)
—1: > — 2 |,
Rads(1,a,—1;¢) > {1+a(a+3)—‘

Proof. For convenience, we set

and show that

Ka+1)?—cla+2)<K(a+1)—c< K.

Both inequalities are equivalent to
c
K< -.
a
From the definition of K, since ¢ > a, we have

1+ c(a+3)

K< ——m < —.
<1+a(a+3) a

Thus both inequalities in Equation (3) hold.

O
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Now

>0

1+ c(a+3) _cla+2)—ala+1)(a+3)
K(a+1)—c>(a+1)(m—l>—0— 1+a(a+3)
if ¢ > a(a + 2).
Let A: [1, K] — {0,1} be defined by
if x max a 2 —c(a a —cl;
A(x):{(l) ofthefw(ise. e Ry

We claim that A provides a valid 2-coloring of [1, K] with respect to Equation (1).
If A(Jfl) = A(.’Eg) = O, then

z3< (a+1)(K(a+1)—c) —c=K(a+1)*—cla+2).

Hence A(zg) = 1. Therefore, we must have A(z;) =1 for i € {1,2,3}.
If z; > K(a+1) — cfor i € {1,2}, then

K(a+1)>—c(a+2) = (a+1)(K(a+1)—c) —c <z1+azs—c=z3 < K(a+1) —c.
Therefore, z; € [1, K(a+ 1)* — ¢(a + 2)] for at least one i € {1,2}. Now
z3< K(a+1)?—cla+2)+Ka—c=K(1+a(a+3))—cla+3) <0,

by Equation (4), so that x5 is outside the domain of A.

We have shown that K(a+1)?—c(a+2) < K(a+1)—c for ¢ > a, and further that
K(a+1)—c > 0if ¢ > a(a+2). Thus, A provides a valid 2-coloring for ¢ > a(a+2).
For ¢ € [a+ 1, (a+1)?), it may be the case that K(a+1) —c < 1, in which case all
integers in the interval [1, K] are colored 1. Since 23 = 21 +axs —c < K(a+1) —¢,
A provides a valid 1-coloring if K(a + 1) — ¢ < 1. Therefore Rads(1,a,—1;¢) > K
in any case. O

Theorem 7. Let a,c € N, ¢ > a, and let a < . Then for

{> w if a is odd;
c

. . )
=ma,m > a+2 ifa is even,

where K = Higiiig;—‘ — 1, we have

Rada(1,a,—1;¢) = F t+elat ﬂ .

1+a(a+3)
Proof. Suppose that ¢ > a(a + 2). By Theorem 6, it suffices to prove that

1+c¢(a+3)

1 1o < | ——4MmM <%
Rads(1,a,—1;¢) < {1_’_@(@_%3)

J-xot
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where K = {%—‘ — 1, as defined in Theorem 6.
Also

(c—a)(a+3)
K>———~ )
“Tra@t3 ° 5)
when ¢ > a(a + 2).
Let x : [1,K 4+ 1] — {0,1} be any 2-coloring of the integers in the interval
[1, K + 1]. Consider the complimentary coloring ¥ : [1, K + 1] — {0,1} given by

X() = x(K+2—1z).

Then monochromatic solutions to Equation (1) under x correspond to monochro-
matic solutions to

1 +ary —x3=(K+2)a—c (6)

under Y.
From Equation (4), (K +2)a —c¢ < a (£ +2) — ¢ = 2a. Thus, we have ¢/ =
(K+2)a—c < 2aforec>ala+2). If < —@, then every 2-coloring of

[1,(a—c")(a+3)+1] admits a monochromatic solution to Equation (6) by Theorem
3 and Theorem 4. Now using the definition of K, we have

(a—c)a+3)+1

(c=(K+1)a)(a+3)+1
= l+cla+3)—(1+a(a+3))(K+1)+K+1
< K+1.

Hence every 2-coloring of [1, K + 1] also admits a monochromatic solution to Equa-
tion (1) in this case. O

Remark 3. The arguments in Theorem 7 show that the range of ¢ for which the
result is valid is in fact more than the statement suggests. In addition to the
assumptions made in the theorem, if we write ¢ = t(mod a), 0 <t < a — 1, then
the conclusion of the theorem is valid for

c>

a(K +2) ift € {0,a —1},
— et 2KA2) f g ¢ {0, — 1}

Theorem 8. Leta > 1, andletc = a—p, with3 < A <a+landl <pu<a+1-A.
If a <, then
Rady(1,a,—1;¢) > A+ p.

Proof. Suppose ¢ = da —pu, with 3 < A <a+1,1 < pu<a+1—-A Let
A [0,A+ pu—2] — {0,1} be defined by

if —2];
Adz) = 0 1 x €0, —2];
1 fze -1, A+pu—2.
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We claim that A provides a valid 2-coloring of [0, A + 1 — 2] with respect to Equa-
tion (2).
Suppose A(z1) = A(zz) = 0. Then
zg=x1+ar2s—A—1a+pu<A-2)(a+1)—A=1Da+p< -1,

so that z3 is outside the domain of A. Therefore, we must have A(z;) = 1 for
i € {1,2,3}. But then

zz3=x1+taxso—A—1la+pu>A—-1D@+1)—A=1Da+p>A+p—1,
and again x3 is outside the domain of A. Hence Rads(1,a,—1;¢) > A+ p. O

Conjecture 2. Let a > 1, and ¢ > a(K 4 2), where K = [%—‘ —1. If a <+,
then

Rads(1,a,—1;¢) = K + 1.
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