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Abstract

Let a, c,m ∈ Z, 4 ≤ m ≤ a. The 2-color Rado number for the equation
∑m−2
i=1 xi +

axm−1−xm = c is the least positive integer N such that any 2-coloring of {1, . . . , N}
admits a monochromatic solution to the given equation. We determine exact values
whenever possible, and upper and lower bounds otherwise, of Rado numbers for all
values of c. This generalizes a recent work of the authors concerning the case of
m = 3.

1. Introduction

The r-color Rado number for an equation E , denoted by Radr
(
E
)
, is the least

positive integer N such that any r-coloring of {1, . . . , N} admits a monochromatic

solution to E . There has been considerable interest in the study of Rado numbers in

the past four decades, particularly in the case r = 2; see for instance [1–14, 16–18].

An introductory study of Rado numbers and a comprehensive list of references may

be found in [15].

Schaal and Zinter [18] considered the 2-color Rado number for the non-homogene-

ous equation x1+3x2+c = x3 for c ≥ −3, and found exact values in some cases and

bounds in others. This was recently generalized to the non-homogeneous equation

Ea,c : x1 + ax2 − x3 = c by Dwivedi and Tripathi [5], who gave necessary and

sufficient conditions for existence of the Rado number of Ea,c, determined exact

values whenever possible, and upper and lower bounds otherwise, for all values of a

and c. In this paper, we study the non-homogeneous equation Ea,c;m :
∑m−2
i=1 xi +

axm−1 − xm = c when 4 ≤ m ≤ a. We give a necessary condition and a sufficient

condition for the Rado number to exist, give upper and lower bounds in all cases,

and exact values in many cases. Throughout this paper, we denote the Rado number

of Ea,c;m by R(a, c;m).
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We have divided the results of this paper into three sections. Section 2 is about

existence of R(a, c;m). We show that R(a, c;m) does not exist when c(a+m) is odd

(Theorem 1), and give upper bounds for R(a, c;m) when a + m is even (Theorem

2) and when c is even under some restrictions (Theorem 3). These results imply

R(a, c;m) exists if and only if c(a + m) is even, except possibly when a + m is

odd and for some even values of c (Theorem 4). Under the assumption R(a, c;m)

exists, we deal with the cases c < a + m − 3 and c > a + m − 3 in Section 3

and Section 4, respectively. In Section 3, we provide a lower bound for R(a, c;m)

when c < a + m − 3 (Theorem 5), which together with the two upper bounds for

R(a, c;m), provides bounds in this case. We obtain the exact value of R(a, c;m)

when c < −(a− 2)(a+m− 3) (Theorem 6), and conjecture this value of R(a, c;m)

to hold for all c ≤ 0 (Conjecture 1). In Section 4, we provide a lower bound for

R(a, c;m) when c > a + m − 3 (Theorem 8), which together with the two upper

bounds for R(a, c;m), provides bounds in this case. We obtain the exact value of

R(a, c;m) when a+m− 3 divides c (Theorem 7) and when c > (a+ κ)(a+m− 3)

(Theorem 9). For a + m − 3 < c < (a + κ)(a + m − 3), we provide a better lower

bound for R(a, c;m) (Theorem 10) than the one in Theorem 8. The results of this

paper are summarized in Table 1.

Conditions on c and a R(a, c;m) Result

c(a+m) odd condition for non-existence Theorem 1
c < a+m− 3 ≤ (2a+m− 3)(a+m− c− 3) + 1

Theorem 2c > a+m− 3 ≤ (2a+m− 5)(c− a−m+ 3) + 1
(a,m same parity)

c < a+m− 3 ≤
(
a+ a

2a
+ 2m− 4

)
(a+m− c− 3) + 1

Theorem 3
c > a+m− 3 ≤

(
a+ a

2a
+ 2m− 8

)
(c− a−m+ 3) + 1(

2α‖a, 2γ‖c, 2α‖(m− 3)
)

(1 ≤ α ≤ γ)
a+m even

condition for existence Theorem 4
a, c even, m odd(

2α‖a, 2γ‖c, 2α‖(m− 3)
)

(1 ≤ α ≤ γ)
c < a+m− 3 ≥ (a+m)(a+m− c− 3) + 1 Theorem 5

c < −(a− 2)(a+m− 3)
(a+m)(a+m− c− 3) + 1 Theorem 6

(a,m same parity)
c = k(a+m− 3)

k Theorem 7
(1 ≤ k ≤ a+m− 2)

c > a+m− 3 ≥
⌈

1+c(a+m)
1+(a+m)(a+m−3)

⌉
Theorem 8

c > (a+ κ)(a+m− 3)
κ =

⌈
1+c(a+m)

1+(a+m)(a+m−3)

⌉
− 1 Theorem 9

(a,m same parity)
c = λ(a+m− 3)− µ

≥ λ+ µ Theorem 103 ≤ λ ≤ a+m− 2
1 ≤ µ ≤ a+m− 2− λ

Table 1: Summary of results on the 2-color Rado number for the equation
∑m−2
i=1 xi+

axm−1 − xm = c, 4 ≤ m ≤ a.
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2. Preliminaries and Existential Results

For positive integers N , by [1, N ] we mean the set {1, 2, 3 . . . , N}. By a 2-coloring
of [1, N ] we mean a mapping χ : [1, N ] → {0, 1}. It is customary to allow distinct
variables in a given equation E to take the same values for purposes of computing
Rado numbers. A 2-coloring χ of [1, N ] is said to monochromatic for the equation
E if χ(xi) is constant for each variable xi in E , and valid for the equation E if
χ(xi) 6= χ(xj) for some pair of distinct variables xi, xj satisfying E .

To prove that a positive integer U is an upper bound for the Rado number
Rad2

(
E
)

we must show that every 2-coloring χ of [1, N ] admits a monochromatic
solution for the equation E . To prove that a positive integer L is a lower bound
for Rad2

(
E
)

we must show the existence of a valid 2-coloring of [1, L − 1] for the

equation E . Together, these two arguments provide the bounds L ≤ Rad2
(
E
)
≤ U .

The goal of studying Rado numbers is to determine Rad2
(
E
)
, and when that is not

possible, to find bounds U and L which are as close as possible.

In this paper, we study the 2-color Rado number for the equation

m−2∑
i=1

xi + axm−1 − xm = c (1)

where a,m are positive integers and c is any integer. The case m = 3 was studied
by the present authors in [5]. We assume 4 ≤ m ≤ a throughout this paper, and
denote these 2-color Rado numbers by

Rad2
(

1, . . . , 1︸ ︷︷ ︸
m−2 times

, a,−1; c
)
,

or more briefly by R(a, c;m), as stated in the Introduction. Limited data that we
worked with indicate that our results do not extend to the cases m > a.

The computation of the 2-color Rado number involves assigning colors to each
integer in [1, N ], and in particular, to each xi in the solution of Equation (1), as
long as xi ∈ [1, N ]. In some cases, it is more beneficial to consider the translated
2-coloring of the integers in [0, N − 1] by assigning the color of xi in the solution of
Equation (1) to xi−1. This translation results in solving the equivalent problem of
determining the smallest positive integer N for which every 2-coloring of [0, N − 1]
contains a monochromatic solution to

m−2∑
i=1

xi + axm−1 − xm = c′, (2)

where c′ = c− a′ and a′ = a+m− 3.

We show the non-existence of R(a, c;m) when c(a + m) is odd by providing a
valid 2-coloring of the set of positive integers for the equation Ea,c;m. We show
the existence of R(a, c;m) when a + m is even, or when a, c are both even and m
is odd under some restrictions, by exhibiting suitable choices of R such that every
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2-coloring of [1, R] admits a monochromatic solution to Equation (1). The existence
of R not only shows the existence of R(a, c;m) but also serves as an upper bound
for R(a, c;m) in these cases.

Theorem 1. Let a, c,m ∈ Z and 4 ≤ m ≤ a. Then R(a, c;m) does not exist if
c(a+m) is odd.

Proof. Assume that a+m and c are both odd. Define the coloring χ : N → {0, 1}
by χ(i) ≡ i (mod 2). We show that this coloring does not admit a monochromatic
solution to Equation (1). By way of contradiction, assume there exists a monochro-
matic solution x1, . . . , xm, which means that x1, . . . , xm are of the same parity. But
then c =

∑m−2
i=1 xi+axm−1−xm has the same parity as a+m−3, which contradicts

our assumption.

We first show the existence of R(a, c;m) when a+m is even.

Theorem 2. Let 4 ≤ m ≤ a, with a,m of the same parity. Then

R(a, c;m) ≤

{
(2a+m− 3)(a+m− c− 3) + 1 if c < a+m− 3;

(2a+m− 5)(c− a−m+ 3) + 1 if c > a+m− 3.

Proof. Let a′ = a + m − 3 throughout this proof. We consider the two cases (i)
c < a′, (ii) c > a′ separately. In each case, we show that every 2-coloring of [0, R−1]
exhibits a monochromatic solution to the translated Equation (2).

Case (i): c < a′. Let χ : [0, (a′+ a)(a′− c)]→ {0, 1} be any 2-coloring of [0, (a′+
a)(a′−c)]. Without loss of generality, let χ(0) = 0. Assume, by way of contradiction,
that χ is a valid coloring, which means that there is no monochromatic solution to
Equation (2) under χ.

When a,m are both even, we claim that

χ
(
k(a′ − c)

)
=

{
0 when k is even,

1 when k is odd,

for k ∈ [1, a− 1].

We use induction on k. With each xi = 0 for 1 ≤ i ≤ m − 1 in Equation (2),
xm = a′ − c, so that χ(a′ − c) = 1. Suppose χ

(
k(a′ − c)

)
≡ k (mod 2) for k ∈

{0, 1, 2, . . . ,K − 1} where K ≤ a− 1.

Let K be odd. Since x1 = (K−1)(a′−c), xi = 0 for 2 ≤ i ≤ m−1, xm = K(a′−c)
is a solution Equation (2), and (K − 1)(a′ − c) and 0 are both colored 0, we must
have χ

(
K(a′ − c)

)
= 1, as χ is a valid coloring.

Let K be even. Each step in the following sequence forces a color on some number
in the given range in order to avoid a mononchromatic solution to Equation (2), so
that χ remains a valid coloring.

• x1 = (K − 1)(a′ − c), xi = a′ − c for 2 ≤ i ≤ m − 1 imply χ
(
(a + K + m −

3)(a′ − c)
)

= 0.
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• x1 = (a+K +m− 3)(a′− c), xi = 0 for 2 ≤ i ≤ m− 1 imply χ
(
(a+K +m−

2)(a′ − c)
)

= 1.

• xi = a′−c for 2 ≤ i ≤ m−1, xm = (a+K+m−2)(a′−c) imply χ
(
K(a′−c)

)
=

0.

We have shown that χ
(
(a−2)(a′− c)

)
= 0 and χ

(
(a−1)(a′− c)

)
= 1. To deduce

the color of these two integers, we require χ
(
(2a + m − 4)(a′ − c)

)
= 1, as shown

in the argument above. Since x1 = (a − 1)(a′ − c), xi = a′ − c for 2 ≤ i ≤ m − 1,
xm = (2a+m−3)(a′−c) is a solution to Equation (2), and a′−c and (a−1)(a′−c)
are both colored 1, we must have χ

(
(2a+m−3)(a′−c)

)
= 0 as χ is a valid coloring.

Since m ≤ a and a,m are both even, we have χ
(
(m − 4)(a′ − c)

)
= 0. But then

x1 = (m − 4)(a′ − c), each xi = 0 for 2 ≤ i ≤ m − 2, and xm−1 = 2(a′ − c),
xm = (2a + m − 3)(a′ − c) forms a monochromatic solution to Equation (2). This
contradicts our assumption that χ is a valid coloring.

When a,m are both odd, a similar argument shows that

χ
(
k(a′ − c)

)
=

{
0 when k is even,

1 when k is odd,

for k ∈ [1, a− 1].

In this case, we have χ
(
(2a+m−3)(a′−c)

)
= 1 and χ

(
(a−1)(a′−c)

)
= 0. Since

xi = a′− c for 1 ≤ i ≤ m−1, xm = (a+m−1)(a′− c) is a solution to Equation (2),
and χ(a′ − c) = 1 as χ is a valid coloring. But now we have the monochromatic
solution x1 = (a − 1)(a′ − c), x2 = (m − 1)(a′ − c), xi = 0 for 3 ≤ i ≤ m − 1, and
xm = (a+m− 1)(a′ − c), to Equation (2). This again contradicts our assumption
that χ is a valid coloring.

Therefore any 2-coloring of [0, (a′ + a)(a′ − c)] must admit a monochromatic
solution of Equation (2), and so any 2-coloring of [1, (a′+a)(a′− c)+1] must admit
a monochromatic solution of Equation (1). Hence, we obtain the upper bound.

Case (ii): c > a′. We make slight modifications in the argument in Case (i). Let
χ : [0, (a′ + a − 2)(c − a′)] → {0, 1} be any 2-coloring of [0, (a′ + a − 2)(c − a′)].
Without loss of generality, let χ(0) = 0, and by way of contradiction, suppose that
χ is a valid coloring.

When a,m are both odd, we claim that

χ
(
k(c− a′)

)
=

{
0 when k is even,

1 when k is odd,

for k ∈ [1, a− 1].

We use induction on k. With x1 = c − a′ and xi = 0 for 2 ≤ i ≤ m − 1 in
Equation (2), we have xm = 0, so that χ(c − a′) = 1. Suppose χ

(
k(c − a′)

)
≡ k

(mod 2) for k ∈ {0, 1, 2, . . . ,K − 1} for K ≤ a− 1.

Let K be odd. Since x1 = K(c−a′), xi = 0 for 2 ≤ i ≤ m−1, xm = (K−1)(c−a′)
is a solution to Equation (2), and since K(c−a′) and 0 are colored 0, we must have
χ
(
K(c− a′)

)
= 1 as χ is a valid coloring.
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Let K be even. Each step in the following sequence forces a color on some number
in the given range in order to avoid a mononchromatic solution to Equation (2), so
that χ remains a valid coloring.

• x1 = (K − 1)(c − a′), xi = c − a′ for 2 ≤ i ≤ m − 1 imply χ
(
(a + K + m −

5)(c− a′)
)

= 0.

• xi = 0 for 2 ≤ i ≤ m − 1, xm = (a + K + m − 5)(c − a′) imply χ
(
(a + K +

m− 4)(c− a′)
)

= 1.

• xi = c−a′ for 2 ≤ i ≤ m−1, xm = (a+K+m−4)(c−a′) imply χ
(
K(c−a′)

)
=

0.

From the second deduction we have χ
(
(2a + m − 5)(c − a′)

)
= 1, and we can

use this to show χ
(
(a − 1)(c − a′)

)
= 0. Since xi = c − a′ for 1 ≤ i ≤ m − 1,

xm = (a+m−3)(c−a′) is a solution to Equation (2), and since χ(c−a′) = 1, we must
have χ

(
(a+m−3)(c−a′)

)
= 0 as χ is a valid coloring. But then x1 = (a−1)(c−a′),

x2 = (m − 1)(c − a′), xi = 0 for 3 ≤ i ≤ m − 1, xm = (a + m − 3)(c − a′) is a
monochromatic solution to Equation (2). This contradicts our assumption that χ
is a valid coloring.

When a,m are both even, a similar argument shows that

χ
(
k(c− a′)

)
=

{
0 when k is even,

1 when k is odd,

for k ∈ [1, a− 1].

In this case, we have χ
(
(a − 1)(c − a′)

)
= 1. With x1 = (a − 1)(c − a′), xi =

c − a′ for 2 ≤ i ≤ m − 1 in Equation (2), xm = (2a + m − 5)(c − a′), so that
χ((2a+m− 5)(c− a′)) = 0. Now x1 = (m− 4)(c− a′), xi = 0 for 2 ≤ i ≤ m− 2,
xm−1 = 2(c − a′), xm = (2a + m − 5)(c − a′) is a monochromatic solution to
Equation (2). This again contradicts our assumption that χ is a valid coloring.

Therefore, any 2-coloring of [0, (a′+ a− 2)(c− a′)] must admit a monochromatic
solution of Equation (2), and so any 2-coloring of [1, (a′+a−2)(c−a′)+1] must admit
a monochromatic solution of Equation (1). Hence, we obtain the upper bound.

We next show the existence of R(a, c;m) when both a and c is even and m is
odd, but under the conditions imposed by Theorem 3 stated below. By pe || n we
mean pe | n and pe+1 - n.

Theorem 3. Let 4 ≤ m ≤ a, with a even and m odd. If 2α || a, 2γ || c, α ≤ γ, and
2α || (m− 3), then

R(a, c;m) ≤

{(
a+ a

2α + 2m− 4
)
(a+m− c− 3) + 1 if c < a+m− 3;(

a+ a
2α + 2m− 8

)
(c− a−m+ 3) + 1 if c > a+m− 3.
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Proof. Let a′ = a + m − 3 throughout this proof. We consider the two cases: (i)
c < a′, (ii) c > a′ separately. In each case, we show that every 2-coloring of [0, R−1]
exhibits a monochromatic solution to the translated Equation (2). Write a = 2α ·a1,
c = 2γ · c1, m− 3 = 2α ·m1, where a1, c1,m1 are all odd. Then a′− c = 2α · t, where
t = a1 +m1 − 2γ−α · c1 ∈ Z.

Case (i): c < a′. Let χ : [0,
(
a+ a

2α + 2m− 4
)
(a′ − c)]→ {0, 1} be any 2-coloring

of [0,
(
a+ a

2α + 2m− 4
)
(a′ − c)]. Without loss of generality, let χ(0) = 0. Assume,

by way of contradiction, that χ is a valid coloring. We claim that this implies

χ
(
k(a′ − c)

)
=

{
0 when k is even,

1 when k is odd,

for k ∈
[
0, a2α +m− 1

]
.

We use induction on k to show this along the lines of Theorem 2, Case (i). The
details are omitted. Note that t > 0 in this case. Since xi = 0 for 1 ≤ i ≤ m − 2,
xm−1 = t, xm =

(
a
2α+1)(a′−c) is a solution to Equation (2), and since ( a

2α+1)(a′−c)
and 0 are colored the same, we must have χ(t) = 1 since χ is a valid coloring.

We have shown that χ
(
( a2a +m−2)(a′−c)

)
= 0 and χ

(
( a2a +m−1)(a′−c)

)
= 1.

To deduce the color of these two integers, we require χ
(
(a+ a

2a +2m−4)(a′−c)
)

= 1,
as shown in the argument above. But then xi = a′− c for 1 ≤ i ≤ m− 2, xm−1 = t,
xm =

(
a
2a +m− 1

)
(a′− c) is a monochromatic solution to Equation (2). Therefore,

any 2-coloring of
[
0,
(
a+ a

2α +2m−4
)
(a′−c)

]
must admit a monochromatic solution

of Equation (2), and so any 2-coloring of
[
1,
(
a+ a

2α +2m−4
)
(a′−c)+1

]
must admit

a monochromatic solution of Equation (1). Hence, we obtain the upper bound.

Case (ii): c > a′. We make slight modifications in the argument in Case (i).
Let χ :

[
0,
(
a + a

2α + 2m − 8
)
(c − a′)

]
→ {0, 1} be any 2-coloring of

[
0,
(
a + a

2α +

2m − 8
)
(c − a′)

]
. Without loss of generality, let χ(0) = 0, and assume by way of

contradiction that χ is a valid coloring. An argument similar to Case (i) shows that

χ
(
k(c− a′)

)
=

{
0 when k is even,

1 when k is odd,

for k ∈
[
0, a2α +m− 3

]
. Note that t < 0 in this case. Since xi = 0 for 1 ≤ i ≤

m − 2, xm−1 = −t, xm =
(
a
2α − 1)(c − a′) is a solution to Equation (2), and since

( a
2α − 1)(c − a′) and 0 are colored 0, we must have χ(−t) = 1 since χ is a valid

coloring.

We have shown that χ
((

a
2a +m−4

)
(c−a′)

)
= 0 and χ

((
a
2a +m−3

)
(c−a′)

)
= 1.

To deduce the color of these two integers, we require χ
((
a+ a

2a +2m−8
)
(c−a′)

)
= 1,

as shown in the argument above. But then xi = c−a′ for 1 ≤ i ≤ m−2, xm−1 = −t,
xm =

(
a
2a +m− 3

)
(c−a′) is a monochromatic solution to Equation (2). Therefore,

any 2-coloring of
[
0,
(
a+ a

2α +2m−8
)
(c−a′)

]
must admit a monochromatic solution

of Equation (2), and so any 2-coloring of
[
1,
(
a+ a

2α +2m−8
)
(c−a′)+1

]
must admit

a monochromatic solution of Equation (1). Hence, we obtain the upper bound.
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Theorem 1 shows that R(a, c;m) does not exist if c(a+m) is odd and Theorem
2 shows that R(a, c;m) exists if a+m is even. Theorem 3 covers some of the cases
where a+m is odd and c is even, but not all. Covering the remaining cases would
lead to the desirable result that R(a, c;m) exists if and only if c(a+m) is even.

Theorem 4. Let a, c,m ∈ Z and 4 ≤ m ≤ a. Then

(i) R(a, c;m) does not exist if c(a+m) is odd;

(ii) R(a, c;m) exists if a + m is even or if 2α || a, 2γ || c, 2α || (m − 3), where
1 ≤ α ≤ γ.

Proof. These results are due to Theorem 1, Theorem 2 and Theorem 3.

3. The Case c < a + m − 3

We deal with the case c < a + m − 3 in this section. Theorem 2 and Theorem 3
provide upper bounds for R(a, c;m) when a+m is even, and in some cases where c
is even and a+m is odd. We provide a lower bound for R(a, c;m) in this section,
so that we have both lower and upper bounds in cases where R(a, c;m) exists. We
further show this lower bound is also an upper bound when c < −(a−2)(a+m−3),
thereby achieving the exact value of R(a, c;m) in these cases. Some computer aided
programmes suggest the same formula for R(a, c;m) extends to all c ≤ 0, but not
to 0 < c < a+m− 3.

Theorem 5. Let 4 ≤ m ≤ a. For c < a+m− 3, we have

R(a, c;m) ≥ (a+m)(a+m− c− 3) + 1.

Proof. Let c′ = a′−c = a+m−3−c throughout this proof. Let ∆ : [1, (a+m)c′]→
{0, 1} be defined by

∆(x) =

{
0 if x ∈ [1, c′] ∪ [(a+m− 1)c′ + 1, (a+m)c′];

1 if x ∈ [c′ + 1, (a+m− 1)c′].

Let A = [1, c′], B = [c′ + 1, (a + m− 1)c′], and C = [(a + m− 1)c′ + 1, (a + m)c′].
Suppose x1, . . . , xm is a solution to Equation (1) with ∆(x1) = · · · = ∆(xm).

Suppose ∆(xi) = 0 for i ∈ {1, . . . ,m}. If x1, . . . , xm−1 all belong to A, then

c′ + 1 ≤ xm =

m−2∑
i=1

xi + axm−1 − c ≤ (a+m− 2)c′ − c ≤ (a+m− 1)c′.

Hence xm ∈ B, and so χ(xm) = 1.

If at least one of x1, . . . , xm−1 belongs to C, then

xm =

m−2∑
i=1

xi + axm−1 − c ≥ c′ + minC = (a+m)c′ + 1.
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Hence xm is outside the domain of ∆. Therefore ∆(xi) = 1 for i ∈ {1, . . . ,m}, and
so

xm =

m−2∑
i=1

xi + axm−1 − c ≥ (a+m− 2) ·minB − c ≥ (a+m− 1)c′ + 1.

Hence xm /∈ B. This proves that ∆ is a valid coloring of [1, (a+m)(a+m− c− 3)],
so that R(c) ≥ (a+m)(a+m− c− 3) + 1.

Theorem 6. Let 4 ≤ m ≤ a. If a,m are of the same parity and c < −(a− 2)(a+
m− 3), we have

R(a, c;m) = (a+m)(a+m− c− 3) + 1.

Proof. Let a′ = a + m − 3 throughout this proof. By Theorem 5, it is enough to
show that R(a, c;m) ≤ (a + m)(a′ − c) + 1. We show that every 2-coloring χ of
[0, (a+m)(a′−c)] exhibits a monochromatic solution to the translated Equation (2).
Without loss of generality, let χ(0) = 0, and by way of contradiction, assume χ is a
valid coloring. The following sequences forces a color on some number in the given
range in order to avoid a mononchromatic solution to Equation (2).

• xi = 0 for 1 ≤ i ≤ m− 1 imply χ(a′ − c) = 1.

• xi = a′ − c for 1 ≤ i ≤ m− 1 imply χ
(
(a+m− 1)(a′ − c)

)
= 0.

• xi = 0 for 2 ≤ i ≤ m−1, xm = (a+m−1)(a′−c) imply χ
(
(a+m−2)(a′−c)

)
=

1.

• x1 = (a+m−1)(a′−c), xi = 0 for 2 ≤ i ≤ m−1 imply χ
(
(a+m)(a′−c)

)
= 1.

• xi = a′ − c for 2 ≤ i ≤ m− 1, xm = (a+m)(a′ − c) imply χ
(
2(a′ − c)

)
= 0.

• x1 = 2(a′ − c), xi = 0 for 2 ≤ i ≤ m− 1 imply χ
(
3(a′ − c)

)
= 1.

We capture this information in the table below.

0 1

0 a′ − c
2(a′ − c) 3(a′ − c)

(a+m− 1)(a′ − c) (a+m− 2)(a′ − c)
(a+m)(a′ − c)

Table 2: Some initial colorings

We divide the proof into two cases: (i) χ(0) = χ(1), and (ii) χ(0) 6= χ(1).

Case (i): χ(0) = χ(1). We claim that χ(n) = 0 for 1 < n ≤ a′− c−1. To do this,
we show that χ(n) = 0 for 1 < n ≤ a− 1 and that χ(m) = χ(n) if m ≡ n (mod a)
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and 1 < m,n ≤ a′− c−1. Assume, by way of contradiction, that χ(n) = 1 for some
n ∈ {2, . . . , a− 1}. We claim that this forces

χ
(
k(a′ − c)

)
=

{
0 when k is even,

1 when k is odd,

for k ∈ [1, a+m− 2].

We use induction on k. The base cases, k ∈ {0, 1, 2, 3}, are covered by the
arguments in the above paragraph; see Table 2. Suppose χ

(
k(a′ − c)

)
≡ k (mod 2)

for k ∈ {0, 1, 2, . . . ,K} for some odd K < a + m − 2. When k is odd, k > 1, the
following sequences force a color on some number in the given range in order to
avoid a mononchromatic solution to Equation (2).

• x1 = k(a′−c), xi = n for 2 ≤ i ≤ m−1 imply χ
(
(k+1)(a′−c)+(a+m−3)n

)
=

0.

• x1 = (k + 1)(a′ − c) + (a + m − 3)n, xi = 0 for 2 ≤ i ≤ m − 1 imply
χ
(
(k + 2)(a′ − c) + (a+m− 3)n

)
= 1.

• xi = n for 2 ≤ i ≤ m − 1, xm = (k + 2)(a′ − c) + (a + m − 3)n imply
χ
(
(k + 1)(a′ − c)

)
= 0.

• x1 = (k + 1)(a′ − c), xi = 0 for 2 ≤ i ≤ m− 1 imply χ
(
(k + 2)(a′ − c)

)
= 1.

Therefore, for odd k, χ
(
k(a′ − c)

)
= 1 implies χ

(
(k + 1)(a′ − c)

)
= 0 and

χ
(
(k + 2)(a′ − c)

)
= 1. Since χ(a′ − c) = 1 (refer Table 2), the proof of our claim

is complete.

Thus χ
(
(a + m − 2)(a′ − c)

)
= 0, contradicting the results in Table 2. This

shows that χ(n) = 0 for 1 < n ≤ a − 1. However, in order to show that χ
(
(a +

m − 2)(a′ − c)
)

= 0 we need χ
(
(a + m − 1)(a′ − c) + (a + m − 3)n

)
= 1 and

(a+m− 1)(a′ − c) + (a+m− 3)n < (a+m)(a′ − c). Thus we must have a′ − c >
(a + m − 3)(a − 1). We next show that χ(m) = χ(n) if m ≡ n (mod a) and
1 < m,n ≤ a′ − c− 1. We assume χ(n) = 0.

• x1 = 1, xi = 0 for 2 ≤ i ≤ m− 1 imply χ
(
1 + (a′ − c)

)
= 1.

• x1 = n, xi = 0 for 2 ≤ i ≤ m− 1 imply χ
(
n+ (a′ − c)

)
= 1.

• x1 = n + (a′ − c), xi = a′ − c for 2 ≤ i ≤ m − 2, xm−1 = 1 + (a′ − c) imply
χ
(
n+ a+ (a+m− 1)(a′ − c)

)
= 0.

• xi = 0 for 2 ≤ i ≤ m− 1, xm = n+ a+ (a+m− 1)(a′ − c) imply χ
(
n+ a+

(a+m− 2)(a′ − c)
)

= 1.

• xi = a′ − c for 2 ≤ i ≤ m − 1, xm = n + a + (a + m − 2)(a′ − c) imply
χ(n+ a) = 0.
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We now have x1 = −c, xi = 0 for 2 ≤ i ≤ m − 2, xm−1 = 1, xm = 2(a′ − c) is a
monochromatic solution to Equation (2).

Case (ii): χ(0) 6= χ(1). We claim that

χ
(
k(a′ − c)

)
=

{
0 when k is even,

1 when k is odd,

for k ∈ [1, a]. We use induction on k. The base cases, k ∈ {0, 1, 2, 3}, are covered
by the arguments in the above paragraph; see Table 2. Suppose χ

(
k(a′ − c)

)
≡ k

(mod 2) for k ∈ {0, 1, 2, . . . ,K} for some odd K < a. When k is odd, the following
sequences force a color on some number in the given range in order to avoid a
mononchromatic solution to Equation (2).

• x1 = k(a′− c), xi = a′− c for 2 ≤ i ≤ m− 2, xm−1 = 1 imply χ
(
a+ (k+m−

2)(a′ − c)
)

= 0.

• x1 = a+ (k +m− 2)(a′ − c), xi = 0 for 2 ≤ i ≤ m− 1 imply χ
(
a+ (k +m−

1)(a′ − c)
)

= 1.

• xi = a′ − c for 2 ≤ i ≤ m− 2, xm−1 = 1, xm = a+ (k +m− 1)(a′ − c) imply
χ
(
(k + 1)(a′ − c)

)
= 0.

• x1 = (k + 1)(a′ − c), xi = 0 for 2 ≤ i ≤ m− 1 imply χ
(
(k + 2)(a′ − c)

)
= 1.

Therefore, for odd k, χ
(
k(a′ − c)

)
= 1 implies χ

(
(k + 1)(a − c)

)
= 0 and χ

(
(k +

2)(a′ − c)
)

= 1. Since χ(a′ − c) = 1 (refer Table 2), the proof of our claim is
complete.

If a,m are both odd, then x1 = (a− 1)(a′ − c), x2 = (m− 1)(a′ − c), xi = 0 for
3 ≤ i ≤ m−1, xm = (a+m−1)(a′−c) is a monochromatic solution to Equation (2).
Therefore, any 2-coloring of

[
0, (a+m)(a′−c)

]
must admit a monochromatic solution

of Equation (2).

If a,m are both even, then x1 = a(a′ − c), x2 = (m − 2)(a′ − c), xi = 0 for
3 ≤ i ≤ m−1, xm = (a+m−1)(a′−c) is a monochromatic solution to Equation (2).

Therefore, any 2-coloring of
[
0, (a + m)(a′ − c)

]
must admit a monochromatic

solution of Equation (2), and so any 2-coloring of
[
1, (a + m)(a′ − c) + 1

]
must

admit a monochromatic solution of Equation (1) in both cases. Hence, we obtain
the upper bound.

We end this section by conjecturing that the formula in Theorem 6 extends to
c ≤ 0.

Conjecture 1. Let 4 ≤ m ≤ a and c ≤ 0. Then

R(a, c;m) = (a+m)(a+m− c− 3) + 1,

provided R(a, c;m) exists.
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4. The Case c > a + m − 3

We deal with the case c > a+m− 3 in this section. We first single out the special
case where c is a multiple of a+m− 3. Theorem 2 and Theorem 3 provide upper
bounds for R(a, c;m) when a + m is even, and in some cases where c is even and
a + m is odd. We provide a lower bound for R(a, c;m) in this section, so that we
have both lower and upper bounds in cases where R(a, c;m) exists. We further
show this lower bound is also an upper bound when c > (a + κ)(a + m − 3) (κ
is defined in Theorem 9), thereby achieving the exact value of R(a, c;m) in these
cases. We close the section by providing a better lower bound for R(a, c;m) that
cover most of the integers c lying between a+m− 3 and (a+ κ)(a+m− 3).

Theorem 7. Let 4 ≤ m ≤ a and c = k(a+m− 3), 1 < k ≤ a+m− 2. Then

R(a, c;m) = k.

Proof. The coloring ∆ : [1, k − 1] → {0, 1}, defined by ∆(x) = 0 for x ∈ [1, k − 1],
is a valid coloring since

m−2∑
i=1

xi + axm−1 − xm ≤ (a+m− 2)(k − 1)− 1

= k(a+m− 3) + (k − 2)− (a+m− 3)

< k(a+m− 3).

Hence R(a, c;m) ≥ k.

On the other hand, since x1 = · · · = xm = k satisfies Equation (1) for c =
k(a + m − 3), every coloring χ : [1, k] → {0, 1} admits a monochromatic soloution
to Equation (1). Hence R(a, c;m) ≤ k.

Theorem 8. Let 4 ≤ m ≤ a and c > a+m− 3. Then

R(a, c;m) ≥
⌈

1 + c(a+m)

1 + (a+m)(a+m− 3)

⌉
.

Proof. For convenience, we set

κ =

⌈
1 + c(a+m)

1 + (a+m)(a+m− 3)

⌉
− 1,

and show that

κ(a+m− 2)2 − c(a+m− 1) < κ(a+m− 2)− c < κ. (3)

Both inequalities are equivalent to

κ <
c

a+m− 3
.
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From the definition of κ, since c > a+m− 3, we have

κ <
1 + c(a+m)

1 + (a+m)(a+m− 3)
<

c

a+m− 3
. (4)

Thus both inequalities in Inequation (3) hold. Now

κ(a+m− 2)− c ≥ (a+m− 2)

(
1 + c(a+m)

1 + (a+m)(a+m− 3)
− 1

)
− c

=
c(a+m− 1)− (a+m)(a+m− 2)(a+m− 3)

1 + (a+m)(a+m− 3)

> 0

if c ≥ (a+m− 1)(a+m− 3).

Let ∆ : [1, κ]→ {0, 1} be defined by

∆(x) =

{
0 if x ∈

(
max{0, κ(a+m− 2)2 − c(a+m− 1)}, κ(a+m− 2)− c

]
;

1 otherwise.

We claim that ∆ provides a valid 2-coloring of [1, κ] with respect to Equation (1).
If ∆(xi) = 0 for 1 ≤ i ≤ m− 1, then

xm ≤ (a+m− 2)
(
κ(a+m− 2)− c

)
− c = κ(a+m− 2)2 − c(a+m− 1).

Hence ∆(xm) 6= 0. Therefore, we must have ∆(xi) = 1 for i ∈ {1, . . . ,m}.
If xi > κ(a+m− 2)− c for i ∈ {1, . . . ,m− 1}, then

κ(a+m− 2)2 − c(a+m− 1) = (a+m− 2)
(
κ(a+m− 2)− c

)
− c

<

m−2∑
i=1

xi + axm−1 − c

= xm

≤ κ(a+m− 2)− c.

Therefore, xi ∈
[
1, κ(a+m−2)2−c(a+m−1)

]
for at least one i ∈ {1, . . . ,m−1}.

Now

xm ≤ κ(a+m− 2)2 − c(a+m− 1) + κ(a+m− 3)− c
= κ

(
1 + (a+m)(a+m− 3)

)
− c(a+m)

≤ 0,

so that xm is outside the domain of ∆. We note that κ(a+m−2)2−c(a+m−1) <
κ(a + m − 2) − c for c > a + m − 3, and further that κ(a + m − 2) − c > 0 if c >
(a+m−1)(a+m−3). Thus ∆ provides a valid 2-coloring for c > (a+m−1)(a+m−3).
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For c ∈ [a+m− 2, (a+m− 2)2), it may be the case that κ(a+m− 2)− c < 1, in
which case all integers in the interval [1, κ] are colored 1. Since

xm =

m−2∑
i=1

xi + axm−1 − c ≤ κ(a+m− 2)− c,

∆ provides a valid 1-coloring if κ(a+m− 2)− c < 1. Therefore, R(a, c;m) > κ in
any case.

Theorem 9. Let 4 ≤ m ≤ a and let a,m be of the same parity. Then

R(a, c;m) = κ+ 1 if c > (a+ κ)(a+m− 3),

where

κ =

⌈
1 + c(a+m)

1 + (a+m)(a+m− 3)

⌉
− 1.

Proof. Let κ be defined as in Theorem 8, and let c > (a+m− 1)(a+m− 3). Then

κ =

⌈
1 + c(a+m)

1 + (a+m)(a+m− 3)

⌉
− 1 ≥ (c− a−m+ 3)(a+m)

1 + (a+m)(a+m− 3)
> a+m− 3. (5)

Since c > (a + κ)(a + m − 3) by assumption, by Theorem 8, it suffices to prove
that

R(c) ≤
⌈

1 + c(a+m)

1 + (a+m)(a+m− 3)

⌉
= κ+ 1.

Let χ : [1, κ+1]→ {0, 1} be any 2-coloring of the integers in the interval [1, κ+1].
Consider the complimentary coloring χ : [1, κ+ 1]→ {0, 1} given by

χ(x) = χ(κ+ 2− x).

Then monochromatic solutions to Equation (1) under χ correspond to monochro-
matic solutions to

m−2∑
i=1

xi + axm−1 − xm = (κ+ 2)(a+m− 3)− c (6)

under χ.

From Inequation (4), (κ + 2)(a + m− 3)− c < (a + m− 3)
(

c
a+m−3 + 2

)
− c =

2(a + m − 3). Thus we have c′ = (κ + 2)(a + m − 3) − c < 2(a + m − 3) for
c > (a + m − 1)(a + m − 3). If c′ < −(a + m − 3)(a − 2), then every 2-coloring of
[1, (a + m − c′ − 3)(a + m) + 1] admits a monochromatic solution to Equation (6)
by Theorem 6. Now using Inequation (5) we have

(a+m− c′ − 3)(a+m) + 1 =
(
c− (κ+ 1)(a+m− 3)

)
(a+m) + 1

= 1 + c(a+m)−
(
1 + (a+m)(a+m− 3)

)
(κ+ 1)

+κ+ 1

≤ κ+ 1.
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Hence, every 2-coloring of [1, κ+1] admits a monochromatic solution to Equation (1)
in this case.

Theorem 10. Let 4 ≤ m ≤ a and c > a+m− 3. Let c = λ(a+m− 3)− µ, with
3 ≤ λ ≤ a+m− 2 and 1 ≤ µ ≤ a+m− 2− λ. Then

R(a, c;m) ≥ λ+ µ.

Proof. Let ∆ : [0, λ+ µ− 2]→ {0, 1} be defined by

∆(x) =

{
0 if x ∈ [0, λ− 2];

1 if x ∈ [λ− 1, λ+ µ− 2].

We claim that ∆ provides a valid 2-coloring of [0, λ+ µ− 2] with respect to Equa-
tion (2). Suppose ∆(x1) = · · · = ∆(xm−1) = 0. Then

xm =

m−2∑
i=1

xi + axm−1 − (λ− 1)(a+m− 3) + µ

≤ (λ− 2)(a+m− 2)− (λ− 1)(a+m− 3) + µ

≤ −1,

so that xm is outside the domain of ∆. Therefore, we must have ∆(xi) = 1 for
i ∈ {1, . . . ,m}. But then

xm =

m−2∑
i=1

xi + axm−1 − (λ− 1)(a+m− 3) + µ

≥ (λ− 1)(a+m− 2)− (λ− 1)(a+m− 3) + µ ≥ λ+ µ− 1,

and again xm is outside the domain of ∆. Hence R(a, c;m) ≥ λ+ µ.
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