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Abstract: Ramsey’s theorem is an integral part of results of the
type that may loosely be classified as those that satisfy the prop-
erty that if a large enough system is partitioned arbitrarily into
finitely many subsystems, at least one subsystem has that particu-
lar property. Although initially stated as a result in mathematical
Logic, Ramsey’s theorem is now considered one of the cornerstones
of Combinatorics.
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Frank Plumpton Ramsey

(1903 – 1930)

Frank Ramsey was a British mathematician who, in addition to Mathematics,
made significant contributions in Philosophy and Economics at an early age before
his death at the age of 26. Frank was born on 22 February 1903 in Cambridge where
his father Arthur, also a mathematician, was President of Magdalene College. He
was the eldest of two brothers and two sisters, and his brother Michael, the only
one of the four siblings who was to remain Christian, later became Archbishop of
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Canterbury. He entered Winchester College in 1915 and later returned to Cam-
bridge to study Mathematics at Trinity College. With support from the economist
John Maynard Keynes he became a Fellow of King’s College, Cambridge in
1924, being the second person ever to be elected without having previously studied
at King’s College. In 1926 he became a University Lecturer in Mathematics and
later a Director of Studies in Mathematics at King’s College.

In 1927 Ramsey published the influential article Facts and Propositions, in which
he proposed what is sometimes described as a Redundancy Theory of Truth. His
other philosophical works include Universals (1925), Universals of Law and of
Fact (1928), Knowledge (1929), Theories (1929), and General Propositions and
Causality (1929). The philosopher Ludwig Wittgenstein, whose work Tracta-
tus Logico-Philosophicus he helped translate into English, mentions him in the
introduction to his Philosophical Investigations as an influence.

Ramsey’s three papers in Economics were on Subjective Probability and Util-
ity (1926), Optimal Taxation (1927) and Optimal One–sector Economic Growth
(1928). The economist Paul Samuelson described them in 1970 as “three great
legacies – legacies that were for the most part mere by-products of his major interest
in the foundations of mathematics and knowledge.”

One of the theorems proved by Ramsey in his 1930 paper “On a problem of formal
logic” now bears his name. While this theorem is the work Ramsey is probably best
remembered for, he only proved it in passing, as a minor lemma along the way to
his true goal in the paper – solving a special case of the Decision Problem for
First–order Logic, namely the Decidability of Bernays-Scönfinkel–Ramsey Class
of First–order Logic. A great amount of later work in Mathematics was fruitfully
developed out of the ostensibly minor lemma, which turned out to be an important
early result in Combinatorics, supporting the idea that within some sufficiently
large systems, however disordered, there must be some order.

Easy going, simple and modest, Ramsey had many interests besides his scientific
work. He was immensely widely read in English literature; he enjoyed classics
though he was on the verge of plunging into being a mathematical specialist. He
was very interested in politics, and well–informed; he had got a political concern
and a sort of left-wing caring–for–the–underdog kind of outlook about politics.

Suffering from chronic liver problems, Ramsey contracted jaundice after an ab-
dominal operation and died on 19 January 1930 at Guy’s Hospital in London a
month before turning 27.

The Decision Analysis Society annually awards the Frank P. Ramsey Medal to
recognise substantial contributions to Decision Theory and its application to im-
portant classes of real decision problems.

1. Ramsey’s Theorem

The newest of the three major results on Ramsey–type theorems – the theorem of
Ramsey in Combinatorics that bears his name – was enunciated as a result in Logic.
Ramsey’s Theorem may be considered as a refinement of the Pigeonhole Principle,
but one in which we are not only guaranteed a certain number of elements in a
particular class but also guaranteed that these elements share a given property.
The following problem, considered folklore, amply describes this situation.
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Problem 1.1 (The Party Problem)

At a party consisting of six persons, there must be three mutual acquaintances or
three mutual strangers.

A simple application of the Pigeonhole Principle provides a proof of this problem.
Consider the complete graph K6, with vertices 0, . . . , 5, each representing a party–
goer, and colour the edges between acquaintances blue and those between strangers
red. By a triangle we mean those three–sided figures with all vertices 0, . . . , 5. Thus,
a triangle with all sides blue will depict the situation where the three vertices
represent persons who are mutual acquaintances, and a triangle with all sides red
will depict the situation where the three vertices represent persons who are mutual
strangers. A proof must consist of showing that no matter how we colour each edge
in one of two colurs blue, red, one of these two monochromatic triangles must arise.
By the Pigeonhole Principle, at least three of the edges 01, 02, 03, 04, 05 must be
of one colour, say blue. By renumbering, if necessary, suppose the edges 01, 02, and
03 are colored blue. If any one of the edges 12, 23, 13 is coloured blue, then the
triangle with vertices 0 and the two endpoints of the blue edge form a blue triangle.
If none of the edges 12, 23, 13 is coloured blue, then the triangle with vertices 1,
2, 3 form a red triangle. If three of the edges 01, 02, 03, 04, 05 are coloured red,
the same argument with the roles of blue and red interchanged again results in a
monochromatic triangle.

The mathematical statement captured by this statement of this problem is
R(3, 3) ≤ 6. The two 3’s represent the two relationships (acquaintances, strangers)
or the two colour classes (blue, red), whereas the 6 represents that fact that six
people suffice to capture one or the other situation. More generally, given positive
integers m,n, the statement

R(m,n) = N

is the combination of the following two statements:

• If all the edges of KN are coloured either blue or red in any manner, then
there must exist m vertices such that all the edges formed by the graph Km

on these vertices are coloured blue, or there must exist n vertices such that
all the edges formed by the graph Kn on these vertices are coloured red, and
• There is a colouring of the edges of KN−1 in blue and red such that neither

of the two situations listed above arises.

The first of these situations is captured by the statement R(m,n) ≤ N , and the
second by R(m,n) > N − 1. Therefore, together these imply R(m,n) = N . Note
that the roles of blue and red are interchangeable. Hence R(m,n) = R(n,m), and it
is customary to use R(m,n) with m ≥ n ≥ 1. It is trivial that R(m, 1) = 1. To see
why R(m, 2) = m, colouring all edges of Km−1 blue simultaneously avoids a blue
Km and a red K2, and hence implies R(m, 2) > m−1. On the other hand, the only
way to avoid a red K2 in a blue–red edge colouring of Km is by colouring all edges
blue, in which case there is a blue Km. Hence there is always either a blue Km or a
red K2 in every blue–red edge colouring of Km, implying that R(m, 2) ≤ m, so that
R(m, 2) = m. The nontrivial values of R(m,n) therefore start with m ≥ n ≥ 3, and
R(3, 3) is the first of these. The choice of the Party Problem as an initial example
mentioned at the start of this section is therefore quite natural.

The proof of the Party Problem implies R(3, 3) ≤ 6. In fact, it is true that
R(3, 3) = 6. If we colour the outer five edges of K5 blue and the inner diagonals
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red, we find no triangle of the same colour. This solitary example of 2-colouring
the edges of K5 shows that R(3, 3) > 5, and hence also that R(3, 3) = 6. The
numbers R(m,n) are the simplest examples of Ramsey numbers. Their existence
is guaranteed by the following theorem.

Theorem 1.2 The Ramsey numbers R(m,n) satisfy the recurrence

R(m,n) ≤ R(m− 1, n) + R(m,n− 1)

for m,n ≥ 2. Moreover, if both R(m− 1, n) and R(m,n− 1) are even, we have

R(m,n) ≤ R(m− 1, n) + R(m,n− 1)− 1.

The Ramsey numbers R(m,n) satisfy the bounds

(m− 1)(n− 1) + 1 ≤ R(m,n) ≤
(
m+ n− 2

m− 1

)
=

(
m+ n− 2

n− 1

)

for m,n ≥ 2.

Proof. Let us write N = R(m− 1, n) +R(m,n− 1) for convenience. To prove the
general upper bound, we must show that in any blue–red colouring of the edges of
KN , there must exist either a blue Km or a red Kn.

Let V and E denote the set of vertices and edges, respectively, of KN , and
consider any blue–red colouring of the edges of KN . Choose any v ∈ V , and par-
tition the set V \ {v} into sets B = {x ∈ V : xv ∈ E and is coloured blue }
and R = {x ∈ V : xv ∈ E and is coloured red }. Then |B| + |R| = N − 1 =
R(m − 1, n) + R(m,n − 1) − 1, so that |B| < R(m − 1, n) and |R| < R(m,n − 1)
is not simultaneously possible. Therefore at least one of |B| ≥ R(m − 1, n) and
|R| ≥ R(m,n− 1) must hold.

Consider the case |B| ≥ R(m− 1, n); the parallel case |R| ≥ R(m,n− 1) can be
argued by replacing the role of blue with red. Since the subgraph of KB of KN has
at least R(m − 1, n) vertices, KB must contain either a blue Km−1 or a red Kn

by definition of Ramsey number R(m− 1, n). If the first of these cases hold, then
the vertex v together with those of Km−1 forms a blue Km by construction of B.
Thus, in any case, KN must contain either a blue Km or a red Kn. This completes
the assertion that R(m,n) ≤ R(m− 1, n) + R(m,n− 1) for m,n ≥ 2.

To prove the stronger upper bound in the special case where both R(m − 1, n)
and R(m,n−1) are even, consider any blue–red colouring of the edges of KN−1 and
choose a vertex v ∈ V of even degree; this choice is made possible because the sum
of degrees of all vertices in a graph equals twice the number of edges in the graph
and N −1 is odd. With B and R as defined earlier, we now have |B|+ |R| = N −2.
If |B| ≥ R(m− 1, n), the earlier argument implies KN−1 must contain a blue Km.
Otherwise, |R| ≥ R(m,n − 1) since deg v is even, and again the earlier argument
implies KN−1 must contain a red Kn.

The proof of the upper bound the Ramsey numbers R(m,n) may be accomplished
by induction on k = m + n. We may easily verify the bound for all cases where
k ≤ 5, since R(m, 1) = 1 and R(m, 2) = 2. For the same reason we may also
assume m,n ≥ 3. Assume the bound holds for all pairs of positive integers m,n
with m + n < k and m,n ≥ 3, and consider R(m,n) where m + n = k, m,n ≥ 3.
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By inductive hypothesis

R(m− 1, n) ≤
(
m+ n− 3

m− 2

)
and R(m,n− 1) ≤

(
m+ n− 3

m− 1

)
.

Applying the recurrence satisfied by the Ramsey numbers R(m,n) yields

R(m,n) ≤ R(m−1, n)+R(m,n−1) ≤
(
m+ n− 3

m− 2

)
+

(
m+ n− 3

m− 1

)
=

(
m+ n− 2

m− 1

)
.

This completes the proof of the upper bound for R(m,n) by induction.
To prove the lower bound, we need to 2-colour the edges of K(m−1)(n−1) such that

there is no blue Km−1 and there is no red Kn−1. Place the (m− 1)(n− 1) vertices
of K(m−1)(n−1) in a rectangular array in m − 1 rows and n − 1 columns. Colour
any two vertices in the same row red, and in different rows blue. Then the red
edges form m−1 copies of Kn−1, and so there is no red Kn. There are also no blue
Km, for among any m vertices two must be in the same row and must be joined
by a red edge. Therefore the given blue-red colouring has neither a blue Km nor
a red Kn. This completes the proof of the lower bound for R(m,n) by an example. �

Theorem 1.2 gives R(m, 3) ≤ 1
2(m2 + m) for m ≥ 3. This upper bound can be

improved quite easily to R(m, 3) ≤ 1
2(m2 + 3) for m ≥ 3 by induction. However,

actual rate of growth for the Ramsey numbers R(m, 3) is m2/ logm for large m.

Theorem 1.3 ([1, 18]) There exist constants c1 and c2 such that

c1
m2

logm
≤ R(m, 3) ≤ c2

m2

logm
.

The lower bound is due to Kim [18]; the upper bound to Ajtai, Komlós and
Szemerédi [1].

The diagonal Ramsey numbers R(n, n) have received considerable attention. The
upper bound R(n, n) from Theorem 1.2 is

(
2n−2
n−1

)
; this is asymptotically c4n/

√
n.

For the lower bound, the following theorem, due to Erdős, is asymptotically sharp.
This proof is significant also because probabilistic methods were introduced for the
first time in Ramsey theory.

Theorem 1.4 ([9])

R(n, n) > (e
√

2)−1n2n/2
(
1 + o(1)

)
.

Proof. We sketch a proof of the weaker lower bound R(n, n) > 2(n−2)/2.
Let N be a positive integer, which is to be specified later and which will serve

as a lower bound. Let the vertices of KN be labelled 1, 2, 3, . . . , N , and randomly
colour all edges of KN either red or blue, independently and with equal probability
1/2. Consider any n-subset X of [N ]. There are

(
n
2

)
edges in X; the probability

that all are coloured either red or blue is 2−(n

2). Therefore the probability that all

edges in X have the same colour is 2 · 2−(n

2). Since there are
(
N
n

)
ways of choosing

n-subsets of [N ], the total probability that there exists a monochromatic n-subset

of [N ] is
(
N
n

)
· 21−(n

2).
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For fixed n, if we choose N such that this probability
(
N
n

)
· 21−(n

2) is less than 1,
then we must have a colouring which contains no monochromatic n-set. The weak
estimates (

N

n

)
< Nn and 1−

(
n

2

)
< −n(n− 2)

2
(1)

yield (
N

n

)
· 21−(n

2) < Nn · 2−n(n−2)/2 =
(
N · 2−(n−2)/2

)n
.

Thus, the probability
(
N
n

)
· 21−(n

2) is less than 1 if N = 2(n−2)/2.
The bound in the theorem is a consequence of applying stronger bounds in

eqn. (1) via Stirling’s formula:

n! =
√

2πn
(n
e

)n(
1 + O

(
1

n

))
.

�

Putting together the two bounds for R(n, n) leads to

√
2 ≤ lim inf n

√
R(n, n) ≤ lim sup n

√
R(n, n) ≤ 4. (2)

Problem 1.5 (Open Problem)

• Does lim n
√
R(n, n) exist?

• Determine lim n
√

R(n, n), if it exists.

n
m

3 4 5 6 7 8 9 10 11 12 13 14 15

3 6 9 14 18 23 28 36
40 47 53 60 67 74
42 50 59 68 77 87

4 18 25
36 49 59 73 92 102 128 138 147 155

41 61 84 115 149 191 238 291 349 417

5
43 58 80 101 133 149 183 203 233 267 269
48 87 143 216 316 442 633 848 1138 1461 1878

6
102 115 134 183 204 256 294 347 401

165 298 495 780 1171 1804 2566 3703 5033 6911

7
205 217 252 292 405 417 511

540 1031 1713 2826 4553 6954 10578 15263 22112

8
282 329 343 817 865
1870 3583 6090 10630 16944 27485 41525 63609

9
565 581

6588 12677 22325 38832 64864

10
798 1265

23556 45881 81123

Table of the Ramsey numbers R(m,n): Exact Values & Bounds

With r parameters, r > 2, the definition of the Ramsey numbers R(n1, . . . , nr)
have a natural extension. The Ramsey number R(n1, . . . , nr) denotes the least
positive integer N for which the following property holds: if we colour each edge
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in KN with one of r fixed colours randomly, there must exist a Kn1
in colour 1,

or a Kn2
in colour 2, or a Kn3

in colour 3, and so on. The case r = 2 is obviously
a special case. The following generalization of Theorem 1.2 settles the question of
existence of the Ramsey numbers R(n1, . . . , nr).

Theorem 1.6 The Ramsey numbers R(n1, . . . , nr) satisfy the recurrence

R(n1, . . . , nr) ≤
r∑

i=1

R(n1, . . . , ni−1, ni − 1, ni+1, . . . , nr)

for n1, . . . , nr ≥ 2.
The Ramsey numbers R(n1, . . . , nr) have the upper bound

R(n1, . . . , nr) ≤
(
n1 + · · ·+ nr − r
n1 − 1, . . . , nr − 1

)
valid for n1, . . . , nr ≥ 2.

The general version of Ramsey’s theorem is considerably more complicated.
Given positive integers k and r, and sufficiently large N , each k–subset of [N ]
is assigned one of r colours. Ramsey’s theorem assures the existence of such N .
More precisely, if k is any positive integer, `1, . . . , `r satisfy `i ≥ k for each i, and
we r–colour all k–subsets of [N ], for some sufficently large N , then all k–subsets
of some `i numbers chosen from [N ] must necessarily be coloured i.

Theorem 1.7 (Ramsey’s Theorem)

For positive integers k, `1, . . . , `r, with each `i ≥ k, there exists a least positive
integer N = Rk(`1, . . . , `r) such that, for every r–colouring of all k–subsets of [N ],
there exists a monochromatic set of size `i for some i ∈ [r].

When `1 = · · · = `r = `, we write Rk(`; r) for Rk(`1, . . . , `r). If k = 2, we usually
suppress the subscript and write R(`1, . . . , `r) for R2(`1, . . . , `r). Proof of existence
of the generalized Ramsey numbers Rk(`1, . . . , `r) is considerably harder to prove;
see [15] for instance.

2. Graph Ramsey Theory

Graph Ramsey theory involves graphs in Ramsey theory, as the name suggests, and
graph Ramsey numbers have graphs as inputs instead of positive integers. More
specifically, given any finite collection of graphs G1, . . . , Gr, r ≥ 2, there exists N
such that every edge colouring of KN in r colours contains a copy of G1 in colour
1, or a copy of G2 in colour 2, or a copy of G3 in colour 3, and so on. The existence
of such an N follows for the Ramsey number R(n1, . . . , nr), where ni denotes the
number of vertices in the graph Gi, 1 ≤ i ≤ r. Recall that the Ramsey number
corresponding to positive integers n1, . . . , nr involve positive integers N for which
every r-colouring of edges in KN must contain a Kni

in colour i for at least one
i. The graph Ramsey number R(G1, . . . , Gr) is the least positive integer N for
which the above mentioned property holds. Since each Gi is contained in Kni

,
the existence of graph Ramsey numbers follow from the corresponding Ramsey
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numbers. In fact,

R(G1, . . . , Gr) ≤ R(n1, . . . , nr),

where ni denotes the order of Gi, 1 ≤ i ≤ r.
Graph Ramsey theory has attracted a lot of interest, specially since the late 60’s.

As in the case with Ramsey numbers, most of research has centered around the
case r = 2 because of expected simplicity in the argument in this case as opposed
to the cases r > 2. Finding exact values of graph Ramsey numbers is an extremely
challenging problems, even in the case r = 2. For instance, the statement

R(G1, G2) = N

is the combination of the following two statements:

• If all the edges of KN are coloured either blue or red in any manner, the graph
formed by considering only the blue edges must contain G1 as a subgraph,
or the graph formed by considering only the red edges must contain G2 as a
subgraph, and
• There is a colouring of the edges of KN−1 in blue and red such that neither

of the two situations listed above arises.

The first of these situations is captured by the statement R(G1, G2) ≤ N , and the
second by R(G1, G2) > N − 1. Therefore, together these imply R(G1, G2) = N .
Note that the roles of blue and red are interchangeable.

Some of the earliest results in graph Ramsey theory include determining
R(Pm, Pn), R(Cm, Cn), R(Tm,Kn), and R(K1,n1

, . . . ,K1,nr
). Here Pn, Cn, Tn de-

note path, cycle, tree, respectively, each of order n, and K1,n denotes a complete
bipartite graph with partite sets of orders 1 and n, and is called a star graph.

Theorem 2.1 ([13])

For integers m,n, with 2 ≤ n ≤ m,

R(Pm, Pn) = m+ bn2 c − 1.

Theorem 2.2 ([12, 26, 27])

For integers m,n, with 3 ≤ n ≤ m,

R(Cm, Cn) =


2m− 1 if n is odd, (m,n) 6= (3, 3);

m+ n
2 − 1 if m,n are even, (m,n) 6= (4, 4);

max{m+ n
2 − 1, 2n− 1} if m is odd and n is even;

6 if m = n ∈ {3, 4}.

Theorem 2.3 ([6])

If Tm is any tree of order m and n is a positive integer, then

R(Tm,Kn) = (m− 1)(n− 1) + 1.
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Theorem 2.4 ([4])

Let n1, . . . , nk be positive integers, e of which are even. Then

R(K1,n1
, . . . ,K1,nk

) =

{
N + 1 if e is even and positive,

N + 2 otherwise,

where N =
∑k

i=1(ni − 1).

We close this section with a sketch of the proof of Theorem 2.3.

Proof of Theorem 2.3.

To establish the lower bound R(Tm,Kn) > (m − 1)(n − 1), we must exhibit a
colouring of each of the edges of K(m−1)(n−1) in red or blue for which there is no
red Tm and no blue Kn. Place the (m − 1)(n − 1) vertices in a (m − 1) × (n − 1)
rectangular grid, and join any two vertices in the same row by a blue edge and
any two vertices in different rows by a red edge. The subgraph with blue edges
form m− 1 copies of Kn−1, thereby avoiding a blue Kn. On the other hand, any m
vertices in the subgraph with red edges must contain at least two from the same
row, by Pigeonhole Principle. But these two vertices must be joined by a blue
edge, which is a contradiction to our assumption that we are in the red subgraph.
Therefore we have exhibited a colouring of each of the edges of K(m−1)(n−1) in red
or blue for which there is no red Tm and no blue Kn, as desired.

To establish the upper bound R(Tm,Kn) ≤ (m−1)(n−1)+1, we use the following
result on trees:

If T is any tree with k − 1 vertices and G is any graph with minimum vertex degree
δ(G) ≥ k, then T is a subgraph of G.

Consider any colouring of the edges of K(m−1)(n−1)+1 in red or blue, and let v be
any vertex in this graph. The proof we present runs on inducting on n. The base
case n = 1 is trivial. If v has more than (m− 1)(n− 2) neighbours along the blue
edges, then there must exist a red Tm or a blue Kn−1 among these, by induction
hypothesis. Together with the vertex v, the graph G then must contain either a
red Tm or a blue Kn.

Otherwise, every vertex must have at most (m − 1)(n − 2) incident blue edges,
and hence at least m− 1 incident red edges. The quoted result on trees now shows
the existence of a red Tm. This completes the sketch of the proof. �

3. Noncomplete Ramsey Theory

Noncomplete Ramsey theory generalize both classical Ramsey theory and graph
Ramsey theory. For any collection of graphs G1, . . . , Gr, we say that a graph G
“arrows into” (G1, . . . , Gr), and write

G→ (G1, . . . , Gr), (3)

provided any r–colouring of the edges of G yields a monochromatic spanning sub-
graph each of whose edges is coloured i and that contains a Gi, for some i ∈ [r].
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Otherwise stated,

G = F1 ⊕ · · · ⊕ Fr =⇒ Fi ⊇ Gi for at least one i ∈ [r].

The graphs F1, . . . , Fr are spanning subgraphs of G, and are called “factors” of G.
By the containment Fi ⊇ Gi one means simply that Gi is a subgraph of Fi, not
necessarily a spanning subgraph. Colouring the edges of G by one of r available
colours induces a factorization of G, each given by the spanning subgraph with
edges of one colour. Conversely, each factorizaton of G leads to a colouring of the
edges of G, with one colour assigned to all edges of each factor. Thus there is a
natural correspondence between factorization of G and edge–colouring of G and
the two terms may be used interchangeably.

The arrows notation may also be used to state Ramsey’s theorem 1.7 concisely.
Given positive integers `1, . . . , `r, k, with each `i ≥ k, the notation

N → (`1, . . . , `r)
k

stands for the statement of Theorem 1.7, and the least such N for which this
statement holds is Rk(`1, . . . , `r).

The main problem of non–complete Ramsey Theory is to characterize graphs G
that arrow into a given collection of graphs G1, . . . , Gr.

For any collection of graphs G1, . . . , Gr, the smallest positive integer n for which
Kn → (G1, . . . , Gr) is the graph Ramsey number of G1, . . . , Gr, and is denoted by
R(G1, . . . , Gr). Being able to characterize G resolves many problems invoving the
given graphs G1, . . . , Gr. For instance, the graph Ramsey number R(G1, . . . , Gr),
which is the least positive integer n such that

Kn → (G1, . . . , Gr),

may be easily determined from the characterization of G in eqn. (3). In particular,
the case when each Gi is also a complete graph K`i , the corresponding graph
Ramsey number R(K`1 , . . . ,K`r) coincides with the Ramsey number R(`1, . . . , `r).

One of the first instances of a solution to the main problem of characterization
of G in eqn. (3) is when G1 = G2 = K1,n, due to Murty.

Theorem 3.1 Let G be a connected graph and n a positive integer. Then

G→ (K1,n,K1,n)

if and only if

(i) ∆(G) ≥ 2n− 1, or
(ii) n is even and G is a (2n− 2)-regular graph of odd order.

The result of Theorem 3.1 has been generalized by Gupta, Thulasi Rangan &
Tripathi [16] to G1 = K1,n1

, . . . , Gk = K1,nk
, where n1, . . . , nk are any k positive

integers, k ≥ 2. The characterization of G satisfying

G→ (K1,n1
, . . . ,K1,nk

) (4)

is described by one of four cases, and these cases involve conditions on the graph
or their regularization. A k–factor of a graph is a factor that is k–regular, and a
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∆(G)–regularization of G is a ∆(G)-regular graph G? of which G is an induced
subgraph.

Theorem 3.2 ([16])

Let G be a connected graph, let n1, . . . , nk be positive integers of which e are even,
and let N =

∑k
i=1(ni − 1). Let G? be the ∆-regularization of G. Then

G→ (K1,n1
, . . . ,K1,nk

)

if and only if

(i) ∆(G) ≥ N + 1, or
(ii) G is N–regular, of odd order and e is even and non-zero, or
(iii) G is N–regular, of even order, at least one ni is even, and G does not have

an ni − 1 factor for at least one even ni, or
(iv) G is not N–regular, ∆(G) = N , and G? → (K1,n1

, . . . ,K1,nk
).

The proof of Theorem 3.2 involves several basic results that deal with charac-
terizations of graphs that have a k-factor, such as the ones due to Tutte [30, 31]
and Petersen [22], and with edge colourings, such as the one due to Vizing [32],
and independently, to Gupta [17]. Even a sketch of a proof of this result is beyond
the scope of this article, but we briefly indicate how Theorem 2.4 and Theorem
3.1 may be deduced from Theorem 3.2.

Theorem 3.2 implies Theorem 2.4.

Observe that G = KN+2 satisfies eqn. (4) by condition (i). To complete the proof,
we need to show that KN+1 satisfies eqn. (4) if and only if e even and non-zero.

If e is even and non-zero, condition (ii) applies to KN+1. Conversely, suppose
KN+1 satisfies eqn. (4). If N is even, by condition (ii), e is even and non-zero. If N
is odd, by condition (iii), KN+1 does not have an (ni − 1)–factor for at least one
even ni, which contradicts the well known fact that K2n is 1–factorable for each
n ≥ 1. �

Theorem 3.2 implies Theorem 3.1.

When k = 2 and n1 = n2 = n, N + 1 = 2(n− 1) + 1 = 2n− 1, so that part (i) in
Theorem 3.1 is a direct translation of part (i) in Theorem 3.2. Part (ii) in Theorem
3.2 reduces to G being a (2n− 2)–regular and of odd order, with n even.

Part (iii) in Theorem 3.2 reduces to G being a (2n−2)–regular and of even order,
with n even, such that G does not have a (n− 1)-factor, and part (iv) in Theorem
3.2 reduces to G being not (2n−2)–regular, ∆(G) = 2n−2, and G? → (K1,n,K1,n).
It can be shown that neither of these cases can occur. �

References
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