ON NUMERICAL SEMIGROUPS GENERATED BY COMPOUND SEQUENCES

Amitabha Tripathi
Department of Mathematics, Indian Institute of Technology, New Delhi, India
atripath@maths.iitd.ac.in

Received: 5/31/20, Accepted: 1/8/21, Published: 2/1/21

Abstract

Let a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k} be two sequences of positive integers such that $a_{i}<b_{i}$ for each i and $\operatorname{gcd}\left(a_{i}, b_{j}\right)=1$ for each pair $i, j, i \geq j$. The compound sequence formed from these two sequences is $$
c_{0}=a_{1} a_{2} a_{3} \cdots a_{k}, c_{1}=b_{1} a_{2} a_{3} \cdots a_{k}, c_{2}=b_{1} b_{2} a_{3} \cdots a_{k}, \ldots, c_{k}=b_{1} b_{2} b_{3} \cdots b_{k}
$$

Two important special cases are the geometric sequence and the supersymmetric sequence. We determine $\mathrm{F}(S), g(S)$, and $\operatorname{PF}(S)$, for semigroups generated by the compound sequence of any two sequences.

1. Introduction

A numerical semigroup S is a submonoid of $\mathbb{Z}_{\geq 0}$ whose complement $\mathbb{Z}_{\geq 0} \backslash S$ is finite. For the complement to be finite, it is necessary and sufficient that $\operatorname{gcd}(S)=1$. For a given subset A of positive integers, we write

$$
\langle A\rangle=\left\{a_{1} x_{1}+\cdots+a_{k} x_{k}: a_{i} \in A, x_{i} \in \mathbb{Z}_{\geq 0}, k \in \mathbb{N}\right\}
$$

Note that $\langle A\rangle$ is a submonoid of $\mathbb{Z}_{\geq 0}$, and that $S=\langle A\rangle$ is a numerical semigroup if and only if $\operatorname{gcd}(A)=1$.

We say that A is a set of generators of the semigroup S, or that the semigroup S is generated by the set A, when $S=\langle A\rangle$. Further, A is a minimal set of generators for S if A is a set of generators of S and no proper subset of A generates S. Every semigroup has a unique minimal set of generators. The embedding dimension $e(S)$ of S is the size of the minimal set of generators.

If S is a numerical semigroup, the finite set $\mathbb{Z}_{\geq 0} \backslash S$ is called the gap set of S, and is denoted by $\mathrm{G}(S)$. The cardinality of the gap set is the genus of S and denoted by $g(S)=|\mathrm{G}(S)|$. The largest element in $\mathrm{G}(S)$ is the Frobenius number of S, and is denoted by $\mathrm{F}(S)$. A positive integer $n \notin S$ is a pseudo-Frobenius number
if $n+s \in S$ for each $s \in S, s>0$, and the set of pseudo-Frobenius numbers is denoted by $\operatorname{PF}(S)$. The cardinality of the set $\operatorname{PF}(S)$ is called the type of S, and denoted by $t(S)$.

The Apéry set of $S=\langle A\rangle$ corresponding to any fixed $a \in S$, denoted by $\operatorname{Ap}(S, a)$, consists of those $n \in S$ for which $n-a \notin S$. Thus, $\operatorname{Ap}(S, a)$ is the set of minimum integers in $S \cap \mathbf{C}$ as \mathbf{C} runs through the complete set of residue classes modulo a.

The integers $\mathrm{F}(S)$ and $g(S)$, and the set $\mathrm{PF}(S)$, can be computed from the Apéry set $\operatorname{Ap}(S, a)$ of S corresponding to any $a \in S$ via the following proposition.

Proposition 1 (BS62, Sel77, Tri03). Let S be a numerical semigroup, let $a \in S$, and let $A p(S, a)$ be the Apéry set of S corresponding to a. Then
(i)

$$
F(S)=\max (A p(S, a))-a
$$

(ii)

$$
g(S)=\frac{1}{a}\left(\sum_{n \in A p(S, a)} n\right)-\frac{a-1}{2}
$$

(iii)

$$
P F(S)=\left\{n-a: n \in A p(S, a), n+\boldsymbol{m}_{i}>\boldsymbol{m}_{i+n}, i=1, \ldots, a-1\right\}
$$

where $\boldsymbol{m}_{i} \in A p(S, a)$ and $\boldsymbol{m}_{i} \equiv i(\bmod a)$.
Symmetric numerical semigroups are probably the numerical semigroups that have been most studied in the literature. The motivation and introduction of these semigroups is due mainly to Kunz [3], who proved that a one-dimensional analytically irreducible Noetherian local ring is Gorenstein if and only if its value semigroup is symmetric. Symmetric numerical semigroups always have odd Frobenius number. A numerical semigroup is irreducible if it cannot be expressed as the intersection of two numerical semigroups properly containing it, and symmetric if it is irreducible and $\mathrm{F}(S)$ is odd. The following Proposition lists some equivalent conditions for symmetric numerical semigroups.

Proposition 2 (Corollary 4.5, Proposition 4.10, Corollary 4.11, RG-S09). For a numerical semigroup S, the following statements are equivalent:
(i) S is symmetric.
(ii) $P F(S)=\{F(S)\}$.
(iii) $t(S)=1$.
(iv) If $A p(S, n)=\left\{a_{0}<a_{1}<\ldots<a_{n-1}\right\}$, then $a_{i}+a_{n-1-i}=a_{n-1}$ for each $i \in\{0, \ldots, n-1\}$.
(v) $n \notin S$ if and only if $F(S)-n \in S$ and $F(S)$ is odd.
(vi) $F(S)$ is odd and $g(S)=\frac{1+F(S)}{2}$.

Numerical semigroups generated by compound sequences were introduced and studied by Kiers, O'Neill \& Ponomarenko [2]. These are examples of symmetric numerical semigroups. Let a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k} be two sequences of positive integers such that $a_{i}<b_{i}$ for each i and $\operatorname{gcd}\left(a_{i}, b_{j}\right)=1$ for each pair $i, j, i \geq j$. The compound sequence formed from these two sequences is

$$
\begin{equation*}
c_{0}=a_{1} a_{2} a_{3} \cdots a_{k}, c_{1}=b_{1} a_{2} a_{3} \cdots a_{k}, c_{2}=b_{1} b_{2} a_{3} \cdots a_{k}, \ldots, c_{k}=b_{1} b_{2} b_{3} \cdots b_{k} \tag{1}
\end{equation*}
$$

Note that $\operatorname{gcd}\left(c_{0}, c_{1}, c_{2}, \ldots, c_{k}\right)=1$. Two important special cases are

- The compound sequence for $a_{1}=\ldots=a_{k}=a$ and $b_{1}=\ldots=b_{k}=b$, $\operatorname{gcd}(a, b)=1$ is the geometric sequence

$$
a^{k}, a^{k-1} b, a^{k-2} b^{2}, \ldots, b^{k}
$$

- For pairwise coprime positive integers a_{1}, \ldots, a_{k}, the compound sequence for $a_{2}, a_{3}, \ldots, a_{k}$ and $a_{1}, a_{2}, \ldots, a_{k-1}$ is the supersymmetric sequence

$$
\frac{P}{a_{1}}, \frac{P}{a_{2}}, \ldots, \frac{P}{a_{k}}
$$

where $P=a_{1} a_{2} \cdots a_{k}$.
Kiers et al. determine an Apéry set and the Frobenius number, among other functions, for semigroups generated by compound sequences of any two given sequences. In this short note, we give an alternate and direct proof of their result on Apéry sets, and use this to compute $F(S), g(S)$, and $P F(S)$.

2. Main Results

Theorem 1 (Theorem 15, KNP16). Let a_{1}, \ldots, a_{k} and b_{1}, \ldots, b_{k} be two sequences of positive integers such that $a_{i}<b_{i}$ for each i and $\operatorname{gcd}\left(a_{i}, b_{j}\right)=1$ for each pair $i, j, i \geq j$. Then the Apéry set for the numerical semigroup S generated by the compound sequence $\left\{c_{0}, c_{1}, c_{2}, \ldots, c_{k}\right\}$ of these two sequences is given by

$$
A p\left(S, c_{0}\right)=\left\{\sum_{i=1}^{k} c_{i} x_{i}: 0 \leq x_{i} \leq a_{i}-1, i=1, \ldots, k\right\}
$$

Proof. For convenience, let $\mathbf{v}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} c_{i} x_{i}, 0 \leq x_{i} \leq a_{1}-1, i=1, \ldots, k$, and note that each $\mathbf{v}\left(x_{1}, \ldots, x_{k}\right) \in S$. Let $\mathbf{v}\left(x_{1}, \ldots, x_{k}\right)=\mathbf{v}\left(y_{1}, \ldots, y_{k}\right)$ with $x_{i}, y_{i} \in\left\{0, \ldots, a_{i}-1\right\}$ for each i, so that

$$
\begin{equation*}
c_{1} x_{1}+\cdots+c_{k-1} x_{k-1}+c_{k} x_{k}=c_{1} y_{1}+\cdots+c_{k-1} y_{k-1}+c_{k} y_{k} \tag{2}
\end{equation*}
$$

Since $a_{k} \mid c_{i}$ for $i \in\{1, \ldots, k-1\}$ and $\operatorname{gcd}\left(a_{k}, c_{k}\right)=1$, reducing Equation (2) modulo a_{k} gives $x_{k} \equiv y_{k}\left(\bmod a_{k}\right)$. Therefore $x_{k}=y_{k}$, and Equation (2) reduces to

$$
\begin{equation*}
c_{1} x_{1}+\cdots+c_{k-2} x_{k-2}+c_{k-1} x_{k-1}=c_{1} y_{1}+\cdots+c_{k-2} y_{k-2}+c_{k-1} y_{k-1} \tag{3}
\end{equation*}
$$

Reducing Equation (3) modulo a_{k-1} leads to $x_{k-1}=y_{k-1}$, and continuing this $\operatorname{argument} x_{i}=y_{i}, i \in\{1, \ldots, k\}$. Hence $\left\{\mathbf{v}\left(x_{1}, \ldots, x_{k}\right): 0 \leq x_{i} \leq a_{i}-1, i=\right.$ $1, \ldots, k\}$ is a complete residue system modulo c_{0}.

To show that $N \in \operatorname{Ap}\left(S, c_{0}\right)$ if and only if $N=\mathbf{v}\left(x_{1}, \ldots, x_{k}\right)$ with x_{i} satisfying $0 \leq x_{i} \leq a_{i}-1$ for each i, we must show that each such $\mathbf{v}\left(x_{1}, \ldots, x_{k}\right)-c_{0} \notin S$.

Suppose, by way of contradiction, that $\mathbf{v}\left(x_{1}, \ldots, x_{k}\right)-c_{0} \in S$, so that

$$
\begin{equation*}
\mathbf{v}\left(x_{1}, \ldots, x_{k}\right)-c_{0}=\mathbf{v}\left(y_{1}, \ldots, y_{k}\right) \tag{4}
\end{equation*}
$$

with each $y_{i} \geq 0$. The transformation $\left(y_{k-1}, y_{k}\right) \mapsto\left(y_{k-1}+b_{k}, y_{k}-a_{k}\right)$ maintains the value of $\mathbf{v}\left(y_{1}, \ldots, y_{k}\right)$, and we repeatedly apply this until $0 \leq y_{k} \leq a_{k}-1$. Note that the corresponding y_{k-1} is greater than 0 . Next we repeatedly apply the transformation $\left(y_{k-2}, y_{k-1}\right) \mapsto\left(y_{k-2}+b_{k-1}, y_{k-1}-a_{k-1}\right)$ until $0 \leq y_{k-1} \leq$ $a_{k-1}-1$. The corresponding $y_{k-2}>0$, and the value of $\mathbf{v}\left(y_{1}, \ldots, y_{k}\right)$ is maintained. Continuing with this process with successive transformations $\left(y_{i}, y_{i+1}\right) \mapsto\left(y_{i}+\right.$ $\left.b_{i+1}, y_{i+1}-a_{i+1}\right), i>1$ leads to the same value of $\mathbf{v}\left(y_{1}, \ldots, y_{k}\right)$, but with $0 \leq$ $y_{i} \leq a_{i}-1$ for each $i>1$ and $y_{i-1}>0$. Therefore we may additionally assume $0 \leq y_{i} \leq a_{i}-1$ for each $i>1$ and $y_{1}>0$ in Equation (4).

Reducing both sides of Equation (4) modulo a_{k} and arguing as we did following Equation (2) leads to $x_{k}=y_{k}$. Cancelling equal terms $c_{k} x_{k}$ and $c_{k} y_{k}$ from Equation (4) and reducing modulo a_{k-1} leads to $x_{k-1}=y_{k-1}$ following the argument after Equation (3). Repeating this line of argument we are led to the equation

$$
\begin{equation*}
c_{1} x_{1}-c_{0}=c_{1} y_{1}, \tag{5}
\end{equation*}
$$

with $0 \leq x_{1} \leq a_{1}-1$ and $y_{1}>0$. Equation (5) reduces to $b_{1}\left(x_{1}-y_{1}\right)=a_{1}$, and hence to $x_{1} \equiv y_{1}\left(\bmod a_{1}\right)$ since $\operatorname{gcd}\left(a_{1}, b_{1}\right)=1$. Together with $y_{1}<x_{1}$ from Equation (5) and $0 \leq x_{1} \leq a_{1}-1$, we have $y_{1}<0$. This contradiction proves $\mathbf{v}\left(x_{1}, \ldots, x_{k}\right)-c_{0} \notin S$.

Theorem 2. Using the notation of Theorem 1,

$$
F(S)=\left(\sum_{i=1}^{k}\left(a_{i}-1\right) c_{i}\right)-c_{0}
$$

In particular, if S_{1} is the semigroup generated by geometric sequence $a^{k}, a^{k-1} b, \ldots, b^{k}$ and S_{2} the semigroup generated by the supersymmetric sequence $\frac{P}{a_{1}}, \frac{P}{a_{2}}, \ldots, \frac{P}{a_{k}}$, where $P=a_{1} a_{2} \cdots a_{k}$, then
(i)

$$
\begin{gathered}
F\left(S_{1}\right)=\sigma_{k+1}(a, b)-\sigma_{k}(a, b)-\left(a^{k+1}+b^{k+1}\right) \\
\text { where } \sigma_{k}=a^{k}+a^{k-1} b+\cdots+b^{k} \text { and } \sigma_{k+1}=a^{k+1}+a^{k} b+\cdots+b^{k+1}
\end{gathered}
$$

(ii)

$$
F\left(S_{2}\right)=(k-1) \sigma_{k}-\sigma_{k-1}
$$

where $\sigma_{k}=P$ and $\sigma_{k-1}=\frac{P}{a_{1}}+\cdots+\frac{P}{a_{k}}$.
Proof. The general result for $\mathrm{F}(S)$ is a direct consequence of Proposition 1 and Theorem 1.

To obtain the result for the semigroup S_{1} generated by the geometric sequence, we set $a_{1}=\cdots=a_{k}=a$ and $b_{1}=\cdots=b_{k}=b$ in the general case. Then $c_{i}=a^{k-i} b^{i}, i=0, \ldots, k$, and so

$$
\begin{aligned}
\mathrm{F}\left(S_{1}\right) & =(a-1) \sum_{i=1}^{k} a^{k-i} b^{i}-a^{k} \\
& =(a-1)\left(\sigma_{k}(a, b)-a^{k}\right)-a^{k} \\
& =a \cdot \sigma_{k}(a, b)-\sigma_{k}(a, b)-a^{k+1} \\
& =\left(\sigma_{k+1}(a, b)-b^{k+1}\right)-\sigma_{k}(a, b)-a^{k+1} \\
& =\sigma_{k+1}(a, b)-\sigma_{k}(a, b)-\left(a^{k+1}+b^{k+1}\right)
\end{aligned}
$$

To obtain the result for the semigroup S_{2} generated by supersymmetric sequences, we replace a_{i} by a_{i+1}, b_{i} by a_{i}, and k by $k-1$. Then $c_{i}=P / a_{i+1}$, $i=0, \ldots, k-1$, and so

$$
\begin{aligned}
\mathrm{F}\left(S_{2}\right) & =P \sum_{i=1}^{k-1} \frac{a_{i+1}-1}{a_{i+1}}-\frac{P}{a_{1}} \\
& =(k-1) P-\sum_{i=1}^{k} \frac{P}{a_{i}} \\
& =(k-1) \sigma_{k}-\sigma_{k-1} .
\end{aligned}
$$

Remark 1. The results in parts (i) and (ii) appear in [7, Theorem 1] and [8, Theorem 1], respectively.

Theorem 3. Using the notation of Theorem 1,

$$
g(S)=\frac{1}{2}\left(\sum_{i=1}^{k}\left(a_{i}-1\right) c_{i}-c_{0}+1\right)
$$

In particular, if S_{1} is the semigroup generated by geometric sequence $a^{k}, a^{k-1} b, \ldots, b^{k}$ and S_{2} the semigroup generated by the supersymmetric sequence $\frac{P}{a_{1}}, \frac{P}{a_{2}}, \ldots, \frac{P}{a_{k}}$, where $P=a_{1} a_{2} \cdots a_{k}$, then
(i)

$$
g\left(S_{1}\right)=\frac{1}{2}\left(\sigma_{k+1}(a, b)-\sigma_{k}(a, b)-\left(a^{k+1}+b^{k+1}\right)+1\right)
$$

where $\sigma_{k}=a^{k}+a^{k-1} b+\cdots+b^{k}$ and $\sigma_{k+1}=a^{k+1}+a^{k} b+\cdots+b^{k+1}$;
(ii)

$$
g\left(S_{2}\right)=\frac{1}{2}\left((k-1) \sigma_{k}-\sigma_{k-1}+1\right),
$$

where $\sigma_{k}=P$ and $\sigma_{k-1}=\frac{P}{a_{1}}+\cdots+\frac{P}{a_{k}}$.
Proof. The general result for $g(S)$ is a direct consequence of Proposition 1 and Theorem 1. More specifically,

$$
\begin{aligned}
g(S) & =\frac{1}{c_{0}} \sum_{\substack{0 \leq x_{i} \leq a_{i}-1 \\
1 \leq i \leq k}}\left(c_{1} x_{1}+\cdots+c_{k} x_{k}\right)-\frac{c_{0}-1}{2} \\
& =\frac{1}{c_{0}} \sum_{i=1}^{k}\left(\prod_{\substack{1 \leq j \leq k \\
j \neq i}} a_{j}\right) c_{i} \sum_{x_{i}=0}^{a_{i}-1} x_{i}-\frac{c_{0}-1}{2} \\
& =\frac{1}{c_{0}} \sum_{i=1}^{k} \frac{c_{0}}{a_{i}} c_{i} \cdot \frac{1}{2} a_{i}\left(a_{i}-1\right)-\frac{c_{0}-1}{2} \\
& =\frac{1}{2}\left(\sum_{i=1}^{k}\left(a_{i}-1\right) c_{i}-c_{0}+1\right) .
\end{aligned}
$$

To obtain the result for the semigroup S_{1} generated by the geometric sequence, we set $a_{1}=\cdots=a_{k}=a$ and $b_{1}=\cdots=b_{k}=b$ in the general case. Then $c_{i}=a^{k-i} b^{i}, i=0, \ldots, k$, and so

$$
\begin{aligned}
g\left(S_{1}\right) & =\frac{1}{2}\left((a-1) \sum_{i=1}^{k} a^{k-i} b^{i}-a^{k}+1\right) \\
& =\frac{1}{2}\left((a-1)\left(\sigma_{k}(a, b)-a^{k}\right)-a^{k}+1\right) \\
& =\frac{1}{2}\left(a \cdot \sigma_{k}(a, b)-\sigma_{k}(a, b)-a^{k+1}+1\right) \\
& =\frac{1}{2}\left(\left(\sigma_{k+1}(a, b)-b^{k+1}\right)-\sigma_{k}(a, b)-a^{k+1}+1\right) \\
& =\frac{1}{2}\left(\sigma_{k+1}(a, b)-\sigma_{k}(a, b)-\left(a^{k+1}+b^{k+1}\right)+1\right) .
\end{aligned}
$$

To obtain the result for the semigroup S_{2} generated by supersymmetric sequences, we replace a_{i} by a_{i+1}, b_{i} by a_{i}, and k by $k-1$. Then $c_{i}=P / a_{i+1}$, $i=0, \ldots, k-1$, and so

$$
\begin{aligned}
g\left(S_{2}\right) & =\frac{1}{2}\left(P \sum_{i=1}^{k-1} \frac{a_{i+1}-1}{a_{i+1}}-\frac{P}{a_{1}}+1\right) \\
& =\frac{1}{2}\left((k-1) P-\sum_{i=1}^{k-1} \frac{P}{a_{i+1}}-\frac{P}{a_{1}}+1\right) \\
& =\frac{1}{2}\left((k-1) P-\sum_{i=1}^{k} \frac{P}{a_{i}}+1\right) \\
& =\frac{1}{2}\left((k-1) \sigma_{k}-\sigma_{k-1}+1\right)
\end{aligned}
$$

Remark 2. The results in parts (i) and (ii) appear in [7, Theorem 1] and [8, Theorem 1], respectively.

Theorem 4. Using the notation of Theorem 1,

$$
P F(S)=\left\{\sum_{i=1}^{k}\left(a_{i}-1\right) c_{i}-c_{0}\right\} .
$$

In particular, if S_{1} is the semigroup generated by geometric sequence $a^{k}, a^{k-1} b, \ldots, b^{k}$ and S_{2} the semigroup generated by the supersymmetric sequence $\frac{P}{a_{1}}, \frac{P}{a_{2}}, \ldots, \frac{P}{a_{k}}$, where $P=a_{1} a_{2} \cdots a_{k}$, then
(i)

$$
\operatorname{PF}\left(S_{1}\right)=\left\{\sigma_{k+1}(a, b)-\sigma_{k}(a, b)-\left(a^{k+1}+b^{k+1}\right)\right\}
$$

where $\sigma_{k}=a^{k}+a^{k-1} b+\cdots+b^{k}$ and $\sigma_{k+1}=a^{k+1}+a^{k} b+\cdots+b^{k+1} ;$
(ii)

$$
P F\left(S_{2}\right)=\left\{(k-1) \sigma_{k}-\sigma_{k-1}\right\},
$$

where $\sigma_{k}=P$ and $\sigma_{k-1}=\frac{P}{a_{1}}+\cdots+\frac{P}{a_{k}}$.
Proof. We use Proposition 1 and Theorem 1 to prove the general result for $\operatorname{PF}(S)$. As in the proof of Theorem 1, let $\mathbf{v}\left(x_{1}, \ldots, x_{k}\right)=\sum_{i=1}^{k} c_{i} x_{i}, 0 \leq x_{i} \leq a_{1}-1$, $i=1, \ldots, k$. Each $n \in \operatorname{PF}(S)$ is of the form $\mathbf{v}\left(x_{1}, \ldots, x_{k}\right)-c_{0}, 0 \leq x_{i} \leq a_{1}-1$, $i=1, \ldots, k$, and

$$
\mathbf{v}\left(x_{1}, \ldots, x_{k}\right)+\mathbf{v}\left(a_{1}-x_{1}, \ldots, a_{k}-x_{k}\right)=\mathbf{v}\left(a_{1}-1, \ldots, a_{k}-1\right)
$$

implies $\mathbf{v}\left(x_{1}, \ldots, x_{k}\right)-c_{0} \notin \operatorname{PF}(S)$ if $x_{i}<a_{i}-1$ for at least one $i \in\{1, \ldots, k\}$. The only remaining element is $\mathbf{v}\left(a_{1}-1, \ldots, a_{k}-1\right)$, and so this must belong to $\operatorname{PF}(S)$.

The special cases given in parts (i) and (ii) follow from their derivations in Theorem 2.

Remark 3. The results in parts (i) and (ii) appear in [7, Theorem 2] and [8, Theorem 3], respectively. The general result as well as the results in parts (i) and (ii) are also direct consequences of Proposition 2 and Theorems 2 and 3.

Acknowledgement. The author wishes to thank the anonymous referee for his suggestions.

References

[1] A. Brauer and J. E. Shockley, On a problem of Frobenius, J. Reine Angew. Math. 211 (1962), 215-220.
[2] C. Kiers, C. O'Neill and V. Ponomarenko, Numerical Semigroups on Compound Sequences, Comm. Algebra 44:9 (2016), 3842-3852.
[3] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751.
[4] J. C. Rosales and P. A. García-Sánchez, Numerical Semigroups, Springer-Verlag, 2009, 181 pp.
[5] E. S. Selmer, On the linear diophantine problem of Frobenius, J. Reine Angew. Math. 293/294 (1977), 1-17.
[6] A. Tripathi, On a variation of the Coin Exchange Problem for Arithmetic Progressions, Integers 3 (2003), Article A01, 5 pp.
[7] A. Tripathi, On a linear diophantine problem of Frobenius, Integers 6 (2006), Article A14, 6 pp.
[8] A. Tripathi, On the Frobenius Problem for Geometric Sequences, Integers 8 (2008), Article A43, 5 pp.

