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Abstract

Let a1, . . . , ak and b1, . . . , bk be two sequences of positive integers such that ai < bi
for each i and gcd(ai, bj) = 1 for each pair i, j, i ≥ j. The compound sequence
formed from these two sequences is

c0 = a1a2a3 · · · ak, c1 = b1a2a3 · · · ak, c2 = b1b2a3 · · · ak, . . . , ck = b1b2b3 · · · bk.

Two important special cases are the geometric sequence and the supersymmetric
sequence. We determine F(S), g(S), and PF(S), for semigroups generated by the
compound sequence of any two sequences.

1. Introduction

A numerical semigroup S is a submonoid of Z≥0 whose complement Z≥0\S is finite.

For the complement to be finite, it is necessary and sufficient that gcd(S) = 1. For

a given subset A of positive integers, we write

〈A〉 =
{
a1x1 + · · ·+ akxk : ai ∈ A, xi ∈ Z≥0, k ∈ N

}
.

Note that 〈A〉 is a submonoid of Z≥0, and that S = 〈A〉 is a numerical semigroup

if and only if gcd(A) = 1.

We say that A is a set of generators of the semigroup S, or that the semigroup S

is generated by the set A, when S = 〈A〉. Further, A is a minimal set of generators

for S if A is a set of generators of S and no proper subset of A generates S. Every

semigroup has a unique minimal set of generators. The embedding dimension e(S)

of S is the size of the minimal set of generators.

If S is a numerical semigroup, the finite set Z≥0 \ S is called the gap set of

S, and is denoted by G(S). The cardinality of the gap set is the genus of S and

denoted by g(S) = |G(S)|. The largest element in G(S) is the Frobenius number of

S, and is denoted by F(S). A positive integer n /∈ S is a pseudo-Frobenius number
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if n + s ∈ S for each s ∈ S, s > 0, and the set of pseudo-Frobenius numbers is

denoted by PF(S). The cardinality of the set PF(S) is called the type of S, and

denoted by t(S).

The Apéry set of S = 〈A〉 corresponding to any fixed a ∈ S, denoted by Ap(S, a),

consists of those n ∈ S for which n− a /∈ S. Thus, Ap(S, a) is the set of minimum

integers in S ∩C as C runs through the complete set of residue classes modulo a.

The integers F(S) and g(S), and the set PF(S), can be computed from the Apéry

set Ap(S, a) of S corresponding to any a ∈ S via the following proposition.

Proposition 1 (BS62, Sel77, Tri03). Let S be a numerical semigroup, let a ∈ S,

and let Ap(S, a) be the Apéry set of S corresponding to a. Then

(i)

F(S) = max
(

Ap(S, a)
)
− a;

(ii)

g(S) =
1

a

 ∑
n∈Ap(S,a)

n

− a− 1

2
;

(iii)

PF(S) =
{
n− a : n ∈ Ap(S, a), n+ mi >mi+n, i = 1, . . . , a− 1

}
,

where mi ∈ Ap(S, a) and mi ≡ i (mod a).

Symmetric numerical semigroups are probably the numerical semigroups that

have been most studied in the literature. The motivation and introduction of these

semigroups is due mainly to Kunz [3], who proved that a one-dimensional analyti-

cally irreducible Noetherian local ring is Gorenstein if and only if its value semigroup

is symmetric. Symmetric numerical semigroups always have odd Frobenius number.

A numerical semigroup is irreducible if it cannot be expressed as the intersection of

two numerical semigroups properly containing it, and symmetric if it is irreducible

and F(S) is odd. The following Proposition lists some equivalent conditions for

symmetric numerical semigroups.

Proposition 2 (Corollary 4.5, Proposition 4.10, Corollary 4.11, RG-S09). For a

numerical semigroup S, the following statements are equivalent:

(i) S is symmetric.

(ii) PF(S) = {F(S)}.

(iii) t(S) = 1.

(iv) If Ap(S, n) = {a0 < a1 < . . . < an−1}, then ai + an−1−i = an−1 for each

i ∈ {0, . . . , n− 1}.
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(v) n /∈ S if and only if F(S)− n ∈ S and F(S) is odd.

(vi) F(S) is odd and g(S) = 1+F(S)
2 .

Numerical semigroups generated by compound sequences were introduced and

studied by Kiers, O’Neill & Ponomarenko [2]. These are examples of symmetric

numerical semigroups. Let a1, . . . , ak and b1, . . . , bk be two sequences of positive

integers such that ai < bi for each i and gcd(ai, bj) = 1 for each pair i, j, i ≥ j. The

compound sequence formed from these two sequences is

c0 = a1a2a3 · · · ak, c1 = b1a2a3 · · · ak, c2 = b1b2a3 · · · ak, . . . , ck = b1b2b3 · · · bk. (1)

Note that gcd(c0, c1, c2, . . . , ck) = 1. Two important special cases are

• The compound sequence for a1 = . . . = ak = a and b1 = . . . = bk = b,

gcd(a, b) = 1 is the geometric sequence

ak, ak−1b, ak−2b2, . . . , bk.

• For pairwise coprime positive integers a1, . . . , ak, the compound sequence for

a2, a3, . . . , ak and a1, a2, . . . , ak−1 is the supersymmetric sequence

P

a1
,
P

a2
, . . . ,

P

ak
,

where P = a1a2 · · · ak.

Kiers et al. determine an Apéry set and the Frobenius number, among other func-

tions, for semigroups generated by compound sequences of any two given sequences.

In this short note, we give an alternate and direct proof of their result on Apéry

sets, and use this to compute F (S), g(S), and PF (S).

2. Main Results

Theorem 1 (Theorem 15, KNP16). Let a1, . . . , ak and b1, . . . , bk be two sequences

of positive integers such that ai < bi for each i and gcd(ai, bj) = 1 for each pair

i, j, i ≥ j. Then the Apéry set for the numerical semigroup S generated by the

compound sequence {c0, c1, c2, . . . , ck} of these two sequences is given by

Ap
(
S, c0

)
=

{
k∑

i=1

cixi : 0 ≤ xi ≤ ai − 1, i = 1, . . . , k

}
.

Proof. For convenience, let v(x1, . . . , xk) =
∑k

i=1 cixi, 0 ≤ xi ≤ a1−1, i = 1, . . . , k,

and note that each v(x1, . . . , xk) ∈ S. Let v(x1, . . . , xk) = v(y1, . . . , yk) with

xi, yi ∈ {0, . . . , ai − 1} for each i, so that

c1x1 + · · ·+ ck−1xk−1 + ckxk = c1y1 + · · ·+ ck−1yk−1 + ckyk. (2)
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Since ak | ci for i ∈ {1, . . . , k − 1} and gcd(ak, ck) = 1, reducing Equation (2)

modulo ak gives xk ≡ yk (mod ak). Therefore xk = yk, and Equation (2) reduces

to

c1x1 + · · ·+ ck−2xk−2 + ck−1xk−1 = c1y1 + · · ·+ ck−2yk−2 + ck−1yk−1. (3)

Reducing Equation (3) modulo ak−1 leads to xk−1 = yk−1, and continuing this

argument xi = yi, i ∈ {1, . . . , k}. Hence {v(x1, . . . , xk) : 0 ≤ xi ≤ ai − 1, i =

1, . . . , k} is a complete residue system modulo c0.

To show that N ∈ Ap
(
S, c0

)
if and only if N = v(x1, . . . , xk) with xi satisfying

0 ≤ xi ≤ ai − 1 for each i, we must show that each such v(x1, . . . , xk)− c0 /∈ S.

Suppose, by way of contradiction, that v(x1, . . . , xk)− c0 ∈ S, so that

v(x1, . . . , xk)− c0 = v(y1, . . . , yk) (4)

with each yi ≥ 0. The transformation (yk−1, yk) 7→ (yk−1 + bk, yk − ak) maintains

the value of v(y1, . . . , yk), and we repeatedly apply this until 0 ≤ yk ≤ ak − 1.

Note that the corresponding yk−1 is greater than 0. Next we repeatedly apply

the transformation (yk−2, yk−1) 7→ (yk−2 + bk−1, yk−1 − ak−1) until 0 ≤ yk−1 ≤
ak−1−1. The corresponding yk−2 > 0, and the value of v(y1, . . . , yk) is maintained.

Continuing with this process with successive transformations (yi, yi+1) 7→ (yi +

bi+1, yi+1 − ai+1), i > 1 leads to the same value of v(y1, . . . , yk), but with 0 ≤
yi ≤ ai − 1 for each i > 1 and yi−1 > 0. Therefore we may additionally assume

0 ≤ yi ≤ ai − 1 for each i > 1 and y1 > 0 in Equation (4).

Reducing both sides of Equation (4) modulo ak and arguing as we did following

Equation (2) leads to xk = yk. Cancelling equal terms ckxk and ckyk from Equa-

tion (4) and reducing modulo ak−1 leads to xk−1 = yk−1 following the argument

after Equation (3). Repeating this line of argument we are led to the equation

c1x1 − c0 = c1y1, (5)

with 0 ≤ x1 ≤ a1 − 1 and y1 > 0. Equation (5) reduces to b1(x1 − y1) = a1,

and hence to x1 ≡ y1 (mod a1) since gcd(a1, b1) = 1. Together with y1 < x1 from

Equation (5) and 0 ≤ x1 ≤ a1 − 1, we have y1 < 0. This contradiction proves

v(x1, . . . , xk)− c0 /∈ S.

Theorem 2. Using the notation of Theorem 1,

F(S) =

(
k∑

i=1

(ai − 1)ci

)
− c0.

In particular, if S1 is the semigroup generated by geometric sequence ak, ak−1b, . . . , bk

and S2 the semigroup generated by the supersymmetric sequence P
a1
, P
a2
, . . . , P

ak
,

where P = a1a2 · · · ak, then
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(i)

F(S1) = σk+1(a, b)− σk(a, b)− (ak+1 + bk+1),

where σk = ak + ak−1b+ · · ·+ bk and σk+1 = ak+1 + akb+ · · ·+ bk+1;

(ii)

F(S2) = (k − 1)σk − σk−1,

where σk = P and σk−1 = P
a1

+ · · ·+ P
ak

.

Proof. The general result for F(S) is a direct consequence of Proposition 1 and

Theorem 1.

To obtain the result for the semigroup S1 generated by the geometric sequence,

we set a1 = · · · = ak = a and b1 = · · · = bk = b in the general case. Then

ci = ak−ibi, i = 0, . . . , k, and so

F(S1) = (a− 1)

k∑
i=1

ak−ibi − ak

= (a− 1)
(
σk(a, b)− ak

)
− ak

= a · σk(a, b)− σk(a, b)− ak+1

=
(
σk+1(a, b)− bk+1

)
− σk(a, b)− ak+1

= σk+1(a, b)− σk(a, b)− (ak+1 + bk+1).

To obtain the result for the semigroup S2 generated by supersymmetric se-

quences, we replace ai by ai+1, bi by ai, and k by k − 1. Then ci = P/ai+1,

i = 0, . . . , k − 1, and so

F(S2) = P

k−1∑
i=1

ai+1 − 1

ai+1
− P

a1

= (k − 1)P −
k∑

i=1

P

ai

= (k − 1)σk − σk−1.

Remark 1. The results in parts (i) and (ii) appear in [7, Theorem 1] and [8,

Theorem 1], respectively.

Theorem 3. Using the notation of Theorem 1,

g(S) =
1

2

(
k∑

i=1

(ai − 1)ci − c0 + 1

)
.
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In particular, if S1 is the semigroup generated by geometric sequence ak, ak−1b, . . . , bk

and S2 the semigroup generated by the supersymmetric sequence P
a1
, P
a2
, . . . , P

ak
,

where P = a1a2 · · · ak, then

(i)

g(S1) =
1

2

(
σk+1(a, b)− σk(a, b)− (ak+1 + bk+1) + 1

)
,

where σk = ak + ak−1b+ · · ·+ bk and σk+1 = ak+1 + akb+ · · ·+ bk+1;

(ii)

g(S2) =
1

2
((k − 1)σk − σk−1 + 1) ,

where σk = P and σk−1 = P
a1

+ · · ·+ P
ak

.

Proof. The general result for g(S) is a direct consequence of Proposition 1 and

Theorem 1. More specifically,

g(S) =
1

c0

∑
0≤xi≤ai−1

1≤i≤k

(c1x1 + · · ·+ ckxk)− c0 − 1

2

=
1

c0

k∑
i=1

 ∏
1≤j≤k
j 6=i

aj

 ci

ai−1∑
xi=0

xi −
c0 − 1

2

=
1

c0

k∑
i=1

c0
ai
ci ·

1

2
ai(ai − 1)− c0 − 1

2

=
1

2

(
k∑

i=1

(ai − 1)ci − c0 + 1

)
.

To obtain the result for the semigroup S1 generated by the geometric sequence,

we set a1 = · · · = ak = a and b1 = · · · = bk = b in the general case. Then

ci = ak−ibi, i = 0, . . . , k, and so

g(S1) =
1

2

(
(a− 1)

k∑
i=1

ak−ibi − ak + 1

)

=
1

2

(
(a− 1)

(
σk(a, b)− ak

)
− ak + 1

)
=

1

2

(
a · σk(a, b)− σk(a, b)− ak+1 + 1

)
=

1

2

((
σk+1(a, b)− bk+1

)
− σk(a, b)− ak+1 + 1

)
=

1

2

(
σk+1(a, b)− σk(a, b)− (ak+1 + bk+1) + 1

)
.
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To obtain the result for the semigroup S2 generated by supersymmetric se-

quences, we replace ai by ai+1, bi by ai, and k by k − 1. Then ci = P/ai+1,

i = 0, . . . , k − 1, and so

g(S2) =
1

2

(
P

k−1∑
i=1

ai+1 − 1

ai+1
− P

a1
+ 1

)

=
1

2

(
(k − 1)P −

k−1∑
i=1

P

ai+1
− P

a1
+ 1

)

=
1

2

(
(k − 1)P −

k∑
i=1

P

ai
+ 1

)

=
1

2

(
(k − 1)σk − σk−1 + 1

)
.

Remark 2. The results in parts (i) and (ii) appear in [7, Theorem 1] and [8,

Theorem 1], respectively.

Theorem 4. Using the notation of Theorem 1,

PF(S) =

{
k∑

i=1

(ai − 1)ci − c0

}
.

In particular, if S1 is the semigroup generated by geometric sequence ak, ak−1b, . . . , bk

and S2 the semigroup generated by the supersymmetric sequence P
a1
, P
a2
, . . . , P

ak
,

where P = a1a2 · · · ak, then

(i)

PF(S1) =
{
σk+1(a, b)− σk(a, b)− (ak+1 + bk+1)

}
,

where σk = ak + ak−1b+ · · ·+ bk and σk+1 = ak+1 + akb+ · · ·+ bk+1;

(ii)

PF(S2) = {(k − 1)σk − σk−1} ,

where σk = P and σk−1 = P
a1

+ · · ·+ P
ak

.

Proof. We use Proposition 1 and Theorem 1 to prove the general result for PF(S).

As in the proof of Theorem 1, let v(x1, . . . , xk) =
∑k

i=1 cixi, 0 ≤ xi ≤ a1 − 1,

i = 1, . . . , k. Each n ∈ PF(S) is of the form v(x1, . . . , xk) − c0, 0 ≤ xi ≤ a1 − 1,

i = 1, . . . , k, and

v(x1, . . . , xk) + v(a1 − x1, . . . , ak − xk) = v(a1 − 1, . . . , ak − 1).
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implies v(x1, . . . , xk)− c0 /∈ PF(S) if xi < ai−1 for at least one i ∈ {1, . . . , k}. The

only remaining element is v(a1 − 1, . . . , ak − 1), and so this must belong to PF(S).

The special cases given in parts (i) and (ii) follow from their derivations in The-

orem 2.

Remark 3. The results in parts (i) and (ii) appear in [7, Theorem 2] and [8,

Theorem 3], respectively. The general result as well as the results in parts (i) and

(ii) are also direct consequences of Proposition 2 and Theorems 2 and 3.
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