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a b s t r a c t

The degree set of a finite simple graph G is the set of distinct degrees of vertices of G.
A theorem of Kapoor, Polimeni & Wall asserts that the least order of a graph with a given
degree set D is 1+maxD . Tripathi & Vijay considered the analogous problem concerning
the least size of graphs with degree set D . We expand on their results, and determine
the least size of graphs with degree set D when (i) minD divides d for each d ∈ D; (ii)
minD = 2; (iii) D = {m,m + 1, . . . , n}. In addition, given any D , we produce a graph
G whose size is within minD of the optimal size, giving a (1 +

2
d1+1 )-approximation,

where d1 = maxD .
© 2023 Published by Elsevier B.V.

1. Introduction

A nonincreasing sequence a1, . . . , ap of nonnegative integers is said to be graphic if there exists a simple graph G with
vertices v1, . . . , vp such that vk has degree ak for each k. Any graphic sequence clearly satisfies the conditions ak ≤ p−1 for
each k and

∑p
k=1 ak is even. However, these conditions together do not ensure that a sequence will be graphic. Necessary

and sufficient conditions for a sequence of nonnegative integers to be graphic are well known; refer [1–3]. Given a graphic
sequence s of length p, there are polynomial-time algorithms in p to construct a graph with the degree sequence s;
refer [2,3,11].

The degree set of a simple graph G is the set D(G) consisting of the distinct degrees of vertices in G. For more discussion
on degree sets of graphs refer [8,9,14]. Conversely, given any set D of positive integers, a natural question is to investigate
the set of all graphs with degree set D , and in particular the least order and size of such graphs. We denote by ℓp(D) and
ℓq(D) respectively the least order and the least size of a graph with degree set D . The following result answers the question
for the least order of a graph with the degree set D:

Theorem 1 (Kapoor, Polimeni & Wall [5]). For each nonempty finite set D of positive integers, there exists a simple graph G
for which D(G) = D . Moreover, there is always such a graph of order ∆ + 1, where ∆ = maxD , and there is no such graph
of smaller order.

Some other works extend this result to special classes of graphs, including k-connected, k-edge-connected, and unicyclic
graphs [7]; unicyclic bipartite graphs [6].
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Tripathi and Vijay [13] study the analogous question for graph size, and determine ℓq(D) in the following special cases:

(a) |D| ≤ 3 (Theorems 2, 7)
(b) D = {1, . . . , n} for a positive integer n (Theorem 3)
(c) minD ≥ |D| (Theorem 4).

In this paper, we determine ℓq(D) when

(a) minD | d for each d ∈ D

(b) minD = 2
(c) D = {m,m + 1, . . . , n}.

Given any set D , we also give a graph whose size is within (minD − 1) of ℓq(D), which is a
(
1 +

2
d1+1

)
-approximation,

where d1 = maxD .
Throughout this paper, we let D = {d1, . . . , dn} be a set of positive integers arranged in decreasing order. We shall

employ the notation (d)m to denote m occurrences of the integer d. We denote a typical sequence as

s = a1, . . . , ap = (d1)m1 , . . . , (dn)mn , (1)

where aj = dk if
∑k−1

i=1 mi < j ≤
∑k

i=1 mi, and each mk ≥ 1 with
∑n

i=1 mi = p.
We shall write

bt =

t∑
i=1

mi for 1 ≤ t ≤ n.

We call bt the tth breakpoint of the sequence s, and the set {bt : 1 ≤ t ≤ n} as the set of breakpoints of s.
The characterization of graphic sequence due to Erdős & Gallai [1] requires verification of as many inequalities as is

he order of the graph.

heorem 2 (Erdős & Gallai [1]). A sequence s = a1, . . . , ap is graphic if and only if
∑p

i=1 ai is even and if the inequalities

k∑
i=1

ai ≤ k(k − 1) +

p∑
i=k+1

min{ai, k}

old for 1 ≤ k ≤ p.

We also use a refined form of Theorem 2, due to Tripathi & Vijay [12] that requires verification of only as many
nequalities as the number of distinct terms in the sequence.

heorem 3 (Tripathi & Vijay [12]). A sequence s = a1, . . . , ap with the set of breakpoints {b1, . . . , bn} is graphic if and only
f
∑p

i=1 ai is even and if the inequalities

k∑
i=1

ai ≤ k(k − 1) +

p∑
i=k+1

min{k, ai}

old for k ∈ {b1, . . . , bn}. Moreover, the inequality need only be checked for 1 ≤ k ≤ t, where t is the largest positive integer
or which at ≥ t − 1.

Let sequence s be as given by Eq. (1). We set

∆s(k) = k(k − 1) +

p∑
i=k+1

min{k, ai} −

k∑
i=1

ai, 1 ≤ k ≤ p. (2)

ote that s is graphic if and only if
∑p

i=1 ai is even and ∆s(k) ≥ 0 for k ∈ {b1, . . . , bn} by Theorem 3.
We denote the sum of the terms of the sequence s by σ (s), and the sum of the elements of the set S by σ (S).

. Basic results

In this section, we give two results which form the basis of the main work in this paper. For a set D of positive integers,
roposition 1 shows the existence of a graphic sequence with exactly one occurrence of each element in D , except that
he smallest odd element in D may occur twice, depending on parity considerations. Additionally, the smallest element
n D will occur multiple times. We also determine the least number of possible occurrences of the smallest element in D

n any such graphic sequence. That is, Proposition 1 determines the minimum graph size with degree set D subject to an
dditional constraint: the degree sequence of the graph must be of the form just described.
33
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To utilize this, Lemma 1 (called Splitting lemma) gives a method to reduce the number of large degree vertices in a
raph without changing the graph size. This is done by replacing large degree vertices with multiple vertices of smaller
egree. Suppose we are given D and a minimum-size graph G with degree set D . Ideally, given any d ∈ D \ {minD}, if we
ould use Splitting lemma to remove all but one vertices of G with degree d and replace it by several vertices of degree
inD , we could then use Proposition 1 to determine ℓq(D).

roposition 1. Let D = {d1, . . . , dn} be a set of positive integers arranged in decreasing order.

(a) Let σ (D) be even or dn be odd. Let s = d1, . . . , dn, and let

k⋆
= argmax

1≤k≤n−1

{⌈
−∆s(k)

min{k, dn}

⌉}
, c = max

1≤k≤n−1

{⌈
−∆s(k)

min{k, dn}

⌉}
=

⌈
−∆s(k⋆)

min{k⋆, dn}

⌉
.

Then, there exists a non-negative integer C such that the sequence s = d1, . . . , dn−1, (dn)C+1 is graphic, and the least
such C is given by

C⋆
=

⎧⎨⎩
c if dn and σ (D) are even;
c if dn is odd and σ (D) + cdn is even;
c + 1 if dn and σ (D) + cdn are odd.

Moreover ∆s(k⋆) < 2dn holds for C = C⋆.
(b) Let σ (D) be odd and dn be even. Let r = max{i : di is odd}, and let s = d1, . . . , dr−1, (dr )2, dr+1, . . . , dn.

Then, there exists a non-negative integer C such that the sequence obtained by appending C copies of dn to s, s =

d1, . . . , (dr )2, dr+1, . . . , (dn)C+1 is graphic, and the least such C is given by

k⋆
= argmax

1≤k≤n

{⌈
−∆s(k)

min{k, dn}

⌉}
, C⋆

= max
1≤k≤n

{⌈
−∆s(k)

min{k, dn}

⌉}
=

⌈
−∆s(k⋆)

min{k⋆, dn}

⌉
.

Moreover ∆s(k⋆) < dn holds for C = C⋆.

Proof.

(a) Let σ (D) be even or dn be odd. Let k⋆
∈ {1, . . . , n − 1} be such that c =

⌈
−∆s(k⋆)

min{k⋆, dn}

⌉
.

Suppose for an arbitrary nonnegative integer C , s = d1, . . . , dn−1, (dn)C+1, so that bt = t for 1 ≤ t ≤ n − 1 and
bn = n + C , where bt is the tth breakpoint of the sequence s. If C < c , then

∆s(k⋆) = k⋆(k⋆
− 1) +

(
n∑

i=k⋆+1

min{k⋆, di} + C min{k⋆, dn}

)
−

k⋆∑
i=1

di

=

(
k⋆(k⋆

− 1) +

n∑
i=k⋆+1

min{k⋆, di} −

k⋆∑
i=1

di

)
+ C min{k⋆, dn}

= ∆s(k⋆) + C min{k⋆, dn}

≤ ∆s(k⋆) +

(⌈
−∆s(k⋆)

min{k⋆, dn}

⌉
− 1

)
min{k⋆, dn}

< ∆s(k⋆) +

(
−∆s(k⋆)

min{k⋆, dn}

)
min{k⋆, dn}

= 0.

Hence s is not graphic when C < c by Eq. (2).
If C ≥ c and k < n, then

∆s(k) = k(k − 1) +

(
n∑

i=k+1

min{k, di} + C min{k, dn}

)
−

k∑
i=1

di

=

(
k(k − 1) +

n∑
i=k+1

min{k, di} −

k∑
i=1

di

)
+ C min{k, dn}

= ∆s(k) + C min{k, dn}
≥ ∆s(k) + c min{k, dn}

≥ ∆s(k) +

⌈
−∆s(k)

⌉
min{k, dn}
min{k, dn}
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≥ ∆s(k) +

(
−∆s(k)

min{k, dn}

)
min{k, dn}

= 0.

From the definition of c and Eq. (2), we have

c ≥ −∆s(1) = d1 − (n − 1).

If C ≥ c , then n + C ≥ d1 + 1. Thus

∆s(n + C) = (n + C)(n + C − 1) −

(
n−1∑
i=1

di + (C + 1)dn

)
≥ (n + C)d1 −

(
n−1∑
i=1

di + (C + 1)dn

)
≥ 0.

Therefore, s is graphic provided σ (s) =
(∑n−1

i=1 di
)
+ (C + 1)dn is even whenever C ≥ c. If C = c and either (i) σ (s)

and dn are both even, or (ii) dn is odd and σ (s) + cdn is even, then we observe that σ (s) is even. Therefore, in these
cases, C⋆

= c . In case dn and σ (s) + cdn are both odd, then σ (s) is odd or even according as C = c or C = c + 1.
Hence C⋆

= c + 1 in this remaining case.
Finally, for C = C⋆ we have

∆s(k⋆) = k⋆(k⋆
− 1) +

(
n∑

i=k⋆+1

min{k⋆, di} + C⋆ min{k⋆, dn}

)
−

k⋆∑
i=1

di

≤

(
k⋆(k⋆

− 1) +

n∑
i=k⋆+1

min{k⋆, di} −

k⋆∑
i=1

di

)
+ (c + 1)min{k⋆, dn}

< ∆s(k⋆) +

(
−

∆s(k⋆)
min{k⋆, dn}

+ 2
)
min{k⋆, dn}

= 2min{k⋆, dn}
≤ 2dn.

(b) Notice that σ (D) is odd implies that D contains at least one odd integer. Hence r is well defined. Notice also that
σ (s) is even for all C > 0 in this case. Therefore, by Theorem 2 it is enough to show that s satisfies ∆s(k) ≥ 0,
k ∈ {1, . . . , n − 1, n + C} for C = C⋆. The rest of the argument follows along the lines of part (a), and is
omitted. ■

Given a graph G, and a vertex v in G, the Splitting lemma allows the construction of a graph G′ in which the vertex v
s replaced by several vertices the sum of degrees of which equals the degree of v. This is illustrated in Fig. 1.

emma 1 (Splitting lemma). Let G be a graph, and let v ∈ V (G) with deg v = d. Let (n1, . . . , nr ) be a partition of d into
ositive summands. Then there exists a graph G′ with V (G′) =

(
V (G) \ {v}

)
∪ {v1, . . . , vr} such that deg vi = ni, 1 ≤ i ≤ r

nd |E(G′)| = |E(G)|.

roof. Partition the d neighbours of v into sets S1, . . . , Sr with |Si| = ni, 1 ≤ i ≤ r . Form a graph G′ from G by replacing
he vertex v by vertices v1, . . . , vr such that each vi is adjacent to the vertices of Si. Note that |E(G′)| = |E(G)|. ■

. The case where minD divides each element of D

In this section, we obtain ℓq(D) when minD divides each element of D , and in particular, when minD = 1.

heorem 4. Let D = {d1, . . . , dn} be a set of positive integers arranged in decreasing order such that dn divides d for each
∈ D . Then

ℓq(D) =
1
2

(
σ (D) + C⋆

(
minD

))
,

where σ (D) is the sum of the elements in D and C⋆ is as defined in Proposition 1(a).

Proof. We show using Splitting lemma that there is an optimal degree sequence of the form given in Proposition 1(a).
The proposition then implies the result.

Let s = (d1)m1 , (d2)m2 , . . . , (dn)mn be a minimum-size graphic sequence with degree set D , with each mi ≥ 1. All
but one copies of di, 1 ≤ i < n can be replaced by an appropriate number of dn’s (since dn | di for each i) by
Splitting lemma. Hence we arrive at a graphic sequence s = d1, . . . , dn−1, (dn)Mn for some positive integer Mn such that
(s) = σ (s). Therefore, there exists at least one graphic sequence of the type s = d , d , . . . , d , (d ) for which
1 2 n−1 n Mn

35



J. Moondra, A. Sahdev and A. Tripathi Discrete Applied Mathematics 333 (2023) 32–42

σ

T

P

4

t

T

b

t

z

Fig. 1. A visual representation of Splitting lemma. Vertex v is ‘split’ into vertices v1, . . . , vr without affecting the graph size.

(s) = 2 ℓq(D). The minimum value of Mn such that s is graphic is equal to C⋆
+ 1, as determined in Proposition 1(a).

herefore, ℓq(D) =
1
2

(
(C⋆

+ 1)dn +
∑n−1

i=1 di
)

=
1
2 (σ (D) + C⋆(minD)). ■

Corollary 1. Let D = {d1, . . . , dn} be a set of positive integers arranged in decreasing order such that dn = 1. Then

ℓq(D) =
1
2

(
σ (D) + C⋆

)
,

where σ (D) is the sum of the elements in D , and C⋆
= max1≤k≤n {−∆s(k)}, where s is as defined in Proposition 1(a).

roof. This follows directly from Theorem 4. ■

. The case minD = 2

In this section, we determine ℓq(D) when minD = 2. A similar argument determines ℓq(D) when minD = 3; we omit
he details.

heorem 5. Let D be a set of positive integers such that minD = 2. Then

ℓq(D) =
1
2

(
σ (D) + 2C⋆

)
+

{
0 if σ (D) is even;
1
2dr if σ (D) is odd,

where σ (D) is the sum of the elements in D , r = max{i : di is odd}, and C⋆ is as defined in Proposition 1.

Proof. This follows from Theorem 4 when each di is even. Henceforth, we assume that at least one di is odd. As in
Theorem 4, we show that there is an optimal degree sequence of the form given in Proposition 1. The result then follows.

Consider the sequence s corresponding to C = C⋆, as defined in Proposition 1. It is easily verified that the sum of
the elements of s is given by the expressions for ℓq(D) in the appropriate cases. Since s is graphic, this proves the upper
ound on ℓq(D).
We prove that any graphic sequence with least element 2 and degree set D has size which is at least σ (s), proving

he lower bound on ℓq(D). Let s = (d1)m1 , . . . , (dn−1)mn−1 , (2)mn be any graphic sequence with degree set D . Repeatedly
apply the Splitting lemma to replace all but one copies of even di by 2’s and all but one copies of odd di by one dr and
2’s. This gives us a graphic sequence u with least element 2, degree set D , with single copies of each di except dr and 2.

Let G be a graph with degree sequence u. Assume that G has more than two vertices of degree dr , and let x and y be two
of those vertices. Let v1, . . . , vdr and w1, . . . , wdr denote the neighbours of x and y respectively. Without loss of generality,
assume v1 ̸= w1 since dr > 1. Construct the graph G′ with vertex set

(
V (G) \ {x, y}

)
∪ {a1, . . . , aα} ∪ {b1, . . . , bα} ∪ {z},

where α =
1
2 (dr −1), and edge set created by removing from the edges of G those with endpoints x or y, adding the edges

v and zw , the edges a v and a v , the edges b w and b w for i ∈ {1, . . . , 1 (d − 1)}. Thus,
1 1 i 2i i 2i+1 i 2i i 2i+1 2 r

36
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Fig. 2. Original graph G (left) and modified graph G′ (right) from the proof of Theorem 5.

E
(
G′
)

=

(
E(G) \

(
{xvi : 1 ≤ i ≤ dr}

⋃
{ywi : 1 ≤ i ≤ dr}

)) ⋃
{zv1, zw1}⋃

{aiv2i, aiv2i+1 : 1 ≤ i ≤
1
2 (dr − 1)}

⋃
{biw2i, biw2i+1 : 1 ≤ i ≤

1
2 (dr − 1)}.

Note that G′ has degree set D , with single copies of each di except of dn = 2 and dr , with the number of copies of dr
ecreasing by two, and that G and G′ have the same size. Repeated applications of this process results in a graph G̃ with

degree set D , with single copies of each di except of dn = 2 and dr , with the number of copies of dr equal to 1 or 2, and
that G and G̃ have the same size. The number of copies of dr is determined by the parity of σ (D). From Proposition 1,
it follows that G̃, and consequently G, has size at least given by the expressions for ℓq(D) in the appropriate cases (see
Fig. 2). ■

5. The case where D is an interval

By an interval we mean a set of the type {m,m + 1, . . . , n}, where m, n are positive integers with m ≤ n. We denote
this by [m, n]. In this section, we first determine ℓq([1, n]) using Corollary 1, and then use this to determine ℓq([m, n])
hen m(m + 1) < 2⌈ n

2⌉. The case where m(m + 1) ≥ 2⌈ n
2⌉ is handled separately.

heorem 6. For n ≥ 1,

ℓq
(
[1, n]

)
=

1
2

(
1
2
n(n + 1) +

⌈n
2

⌉)
.

Proof. We first determine ∆s(k) for the sequence s = n, n− 1, . . . , 1 and k ∈ {1, . . . , n}. If k ≥ ⌈
n
2⌉, then min{k, n− i} =

− i for all i ≥ k + 1. Therefore,

∆s(k) = k(k − 1) +

n∑
i=k+1

min{k, n − i + 1} −

k∑
i=1

(n − i + 1)

= k(k − 1) +
(n − k)(n − k + 1)

2
−

k(2n − k + 1)
2

= 2
(
k −

n + 1
2

)2

−
n + 1
2

.

If k < ⌈
n
2⌉, then

∑n
i=k+1 min{k, n − i + 1} =

∑n−k
i=k+1 k +

∑n
i=n−k+1(n − i + 1) = k(n − 2k) +

k(k+1)
2 . Therefore, in this

ase, ∆s(k) = k(k − 1) + k(n − 2k) +
k(k+1)

2 −
k(2n−k+1)

2 = −k. That is,

∆s(k) =

{
−k if k < ⌈

n
2⌉;( n+1 )2 n+1 n
2 k − 2 − 2 if k ≥ ⌈ 2⌉.
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Consequently,

max
1≤k≤n

{−∆s(k)} = max

{
max

1≤k<⌈n/2⌉
{k}, max

⌈n/2⌉≤k≤n

{
n + 1
2

− 2
(
k −

n + 1
2

)2
}}

= max

{⌈n
2

⌉
− 1,

n + 1
2

− 2
(⌈n

2

⌉
−

n + 1
2

)2
}

≤

⌈n
2

⌉
.

The result now follows from Corollary 1. ■

Proposition 2. For any m ≥ 1, ℓq
(
[m, n]

)
≥ ℓq

(
[1, n]

)
.

roof. Let G be any graph of size ℓq
(
[m, n]

)
with degree set [m, n]. We use the Splitting lemma to construct a graph G′

ith degree set [1, n], and having the same size as G, thereby proving the result.
Choose vertices vm, . . . , vn in G such that deg vi = i for each i ∈ {m, . . . , n}, and let S = {vm, . . . , vn}. Note

hat |V (G)| ≥ n + 1, so that |V (G) \ S| ≥ m. Choose any m − 1 vertices w1, . . . , wm−1 in V (G) \ S, and use the
plitting lemma to bifurcate each wi into ui and vi such that deg vi = i and deg ui = degwi − i. Then the graph G′

ith V (G′) =
(
V (G) \ {w1, . . . , wm−1}

)
∪ {u1, . . . , um−1} ∪ {v1, . . . , vm−1} has the same size as G, and has degree set

[1, n]. ■

Theorem 7. Let m, n be positive integers such that m(m + 1) < 2⌈ n
2⌉. Then

ℓq
(
[m, n]

)
= ℓq

(
[1, n]

)
=

1
2

(
1
2
n(n + 1) +

⌈n
2

⌉)
.

Proof. We first construct a graph G with D(G) = [1, n] such that the size of G equals ℓq
(
[1, n]

)
.2 Define V (G) = X∪Y ∪W ,

where

X =
{
x1, . . . , x⌈

n
2 ⌉−1

}
, Y =

{
y1, . . . , y⌊

n
2 ⌋

}
, W =

{
w, w⋆

}
.

Define E(G) by{
xiyj : 1 ≤ i ≤

⌈n
2

⌉
− 1, 1 ≤ j ≤ i

}⋃{
yiyj : 1 ≤ i < j ≤

⌊n
2

⌋}⋃{
yz : y ∈ Y , z ∈ W

}⋃
E0(G),

here E0(G) is empty when n is even, and E0(G) = {ww⋆
} when n is odd.

It is easy to verify that deg xi = i, 1 ≤ i ≤ ⌈
n
2⌉ − 1, deg yi = n − i + 1, 1 ≤ i ≤ ⌊

n
2⌋, and degw = degw⋆

= ⌈
n
2⌉. Thus,

is a graph with degree set [1, n] and size ℓq
(
[1, n]

)
=

1
2

( 1
2n(n + 1) +

⌈ n
2

⌉)
.

We now construct a graph G′ with degree set [m, n] and with size equal to the size of G. The only vertices in G that
ave degree less than m are x1, . . . , xm−1; in fact, deg xi = i for 1 ≤ i ≤ m − 1. We add m − i edges to the vertex xi for

i ∈ {1, . . . ,m − 1} and remove 1 + 2 + 3 + · · · + (m − 1) =
1
2m(m − 1) edges from the vertex w⋆ without affecting the

egrees of vertices in Y . This results in deg xi = m for i ∈ {1, . . . ,m − 1}, degw⋆
= ⌈

n
2⌉ −

1
2m(m − 1) + 1, with degrees

f all other vertices in G′ unchanged. Since ⌈
n
2⌉ >

m(m+1)
2 , we have that degw⋆ > m + 1 ≥ m and degw⋆

≤ n.

Let X ′
= {x1, . . . , xm−1} and Y ′

=

{
y
⌊
n
2 ⌋−

m(m−1)
2 +1, . . . , y⌊

n
2 ⌋

}
. Note that |X ′

| = m− 1, |Y ′
| =

1
2m(m− 1), and xi ↮ yj for

i ∈ X ′ and yj ∈ Y ′. The nonadjacency in G between vertices of X ′ and Y ′ is a consequence of min j = ⌊
n
2⌋−

1
2m(m−1)+1 >

−1 = max i. Note that the degrees of the vertices in Y ′ occupy the 1
2m(m−1) consecutive integers starting with ⌈

n
2⌉+1.

Partition Y ′ into sets Y ′

1, . . . , Y
′

m−1 such that |Y ′

i | = m− i, 1 ≤ i ≤ m−1. To construct G′ from G, remove the 1
2m(m−1)

dges w⋆yj, yj ∈ Y ′, and join xi to each vertex in Y ′

i , for i ∈ {1, . . . ,m − 1}. This construction is illustrated in Fig. 3.
It is clear that G′ has the same size as G, the degree of vertices in X ′ are all equal to m, and the degrees of vertices in

Y ′ are unchanged, and degw⋆
= ⌈

n
2⌉ −

1
2m(m − 1) + 1 ∈ [m, n]. Thus G′ is a graph with desired properties.

We note that G and G′ have size ℓq
(
[1, n]

)
and D(G′) = [m, n]. We further note that ℓq

(
[1, n]

)
provides a lower bound

or ℓq
(
[m, n]

)
by Proposition 2. This completes the proof. ■

The sequence among

s1 = n, n − 1, . . . ,m + 1, (m)m+1, s2 = n, n − 1, . . . , (m + 1)2, (m)m (3)

ith even sum must have optimum size ℓq([m, n]) provided it is graphic. We prove this is the case when m(m+1) ≥ 2⌈ n
2⌉.

2 We remark that this graph is defined inductively in [Lemma 2, [13]].
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f

f
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t
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Fig. 3. Edge differences between graphs G and G′ in the proof of Theorem 7. Edges added to graph G′ are in solid, edges removed from G are dotted,
and unchanged edges are omitted for clarity.

Theorem 8. Let m, n be positive integers such that m ≤ n ≤ 2⌈ n
2⌉ ≤ m(m + 1). Then exactly one of the sequences s1, s2 in

qn. (3) is graphic. In particular,

ℓq
(
[m, n]

)
− ℓq

(
[1, n]

)
=

{m(m−1)
4 if m ≡ 0, 1 (mod 4);

m(m−1)+2
4 if m ≡ 2, 3 (mod 4).

roof. When m > ⌈
n
2⌉, then minD = m ≥ n − m + 1 = |D|, and therefore the result is a consequence of [13, Theorem

4]. Henceforth, we assume m ≤ ⌈
n
2⌉.

Observe that the sum of the integers in s1 and s2 differ by one. Hence, at most one of the two sequence can be graphic.
e use Theorem 3 to prove that the sequence with even sum is a graphic sequence. In particular, we show that both

equences satisfy the inequalities in Theorem 3.
Note that

di =

{
n − i + 1 if 1 ≤ i ≤ n − m;

m if n − m + 1 ≤ i ≤ n + 1.

or sequence s1, and

di =

⎧⎨⎩
n − i + 1 if 1 ≤ i ≤ n − m − 1;
m + 1 if n − m ≤ i ≤ n − m + 1;
m if n − m + 2 ≤ i ≤ n + 1.

or sequence s2.
Since m + 1 = dn−m ≥ n − m − 1 for the sequence s1 and m + 1 = dn−m+1 ≥ n − m for the sequence s2, while
= dn+1 ≤ n + 1 for both sequences, the inequality in Theorem 3 needs to be checked only for 1 ≤ k ≤ t , where

= n − m for the sequence s1 and t = n − m + 1 for the sequence s2.
Thus, we must show that

∆s(k) = k(k − 1) +

n+1∑
i=k+1

min{k, di} −

k∑
i=1

di ≥ 0 for 1 ≤ k ≤ t

or each of the sequences.
For the sequence s1 and 1 ≤ k ≤ m,

∆s1 (k) = k(k − 1) +

n−m∑
i=k+1

min{k, n − i + 1} +

n+1∑
i=n−m+1

min{k,m} −

k∑
i=1

(n − i + 1)

= k(k − 1) + (n − m − k)k + (m + 1)k −
k(2n − k + 1)

2

=
1
2
k(k − 1)

≥ 0.
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a

When m < k ≤ ⌈
n
2⌉,

∆s1 (k) = k(k − 1) +

n−k∑
i=k+1

min{k, n − i + 1} +

n−m∑
i=n−k+1

min{k, n − i + 1} +

n+1∑
i=n−m+1

min{k,m}

−

k∑
i=1

(n − i + 1)

= k(k − 1) + (n − 2k)k + (k + · · · + (m + 1)) + (m + 1)m −
1
2
k(2n − k + 1)

= −k +
1
2
m(m + 1)

≥ −

⌈n
2

⌉
+

1
2
m(m + 1)

≥ 0,

where the inequalities hold since k ≤ ⌈
n
2⌉ and ⌈

n
2⌉ ≤

1
2m(m + 1).

The case ⌈
n
2⌉ < k ≤ m is vacuous since in this case t = n − m + 1 ≤ ⌈

n
2⌉ < k. Finally, when ⌈

n
2⌉ < k ≤ t ,

∆s1 (k) = k(k − 1) +

n−m∑
i=k+1

min{k, n − i + 1} +

n+1∑
i=n−m

min{k,m} −

k∑
i=1

(n − i + 1)

= k(k − 1) +

n−m∑
i=k+1

(n − i + 1) + (m + 1)m −
1
2
k(2n − k + 1)

= 2k(k − 1) +
1
2
n(n + 1) − 2nk +

1
2
m(m + 1)

= 2
(
k −

n + 1
2

)2

−
n + 1
2

+
1
2
m(m + 1)

≥ −

⌈n
2

⌉
+

1
2
m(m + 1)

≥ 0.

The calculations for the sequence s2 are similar, and omitted here. ■

. An approximation solution for the general case

Now, given any set D of positive integers, we construct a graph with degree set D whose size differs from ℓq(D) by at
most (minD − 1). In particular, we achieve an optimal graph in the case where minD = 1. We show that the sequence
constructed in Proposition 1 achieves this.

Lemma 2. Let D = {d1, . . . , dn} be a set of positive integers arranged in decreasing order. Let a1, . . . , ap denote the graphic
sequence s with degree set D , corresponding to C = C⋆, as given in Proposition 1. If a′

1, . . . , a
′

p′ denotes any graphic sequence
with degree set D , then ai ≤ a′

i for 1 ≤ i ≤ min{p, p′
}.

roof. The lemma is clear for the sequence s in Proposition 1(a), that is, when σ (D) is even or dn is odd.
Now assume that σ (D) is odd and dn is even, so that the sequence s is as defined in Proposition 1(b). We have

ai = di ≤ a′

i for 1 ≤ i ≤ r . Since σ (D) is odd, at least one odd di, say dj, must be repeated. Since dj ≥ dr , we have
′

i ≥ di−1 = ai for n + 1 ≥ i ≥ r . The inequality is clear for i > n + 1. ■

Theorem 9. Let D = {d1, . . . , dn} be a set of positive integers arranged in decreasing order. Then for the graphic sequence s
constructed in Proposition 1 we have

1
2
σ
(
s
)
− ℓq(D) < minD.

Proof. Let the sequence s = a1, . . . , ap, as constructed in Proposition 1. Let s′
= a′

1, a
′

2, . . . , a
′

p′ be any degree sequence

for a graph G with degree set D and ℓq(D) edges. Let σ
(
s′
)

= 2ℓq(D) =
∑p′

i=1 a
′

i .
Thus, we only need to show the following for the result to hold:

σ
(
s
)

< σ
(
s′
)
+ 2d . (4)
n
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R

T

From Lemma 2, we see that

ai ≤ a′

i ∀ 1 ≤ i ≤ min{p, p′
} (5)

Recall that k⋆ is defined in Proposition 1(a), and can be modified suitably for Proposition 1(b). We use this notation in
either case. Let ℓ′ be the largest index such that a′

ℓ′ ≥ k⋆ and a′

ℓ′+1 < k⋆ and ℓ be the largest index such that aℓ ≥ k⋆ and
ℓ+1 < k⋆.
From inequations (5), it follows that

ℓ ≤ ℓ′. (6)

Therefore

σ
(
s
)

=

p∑
i=1

ai =

k⋆∑
i=1

ai +
p∑

i=k⋆+1

ai =

k⋆∑
i=1

ai +
ℓ∑

i=k⋆+1

(
ai − k⋆

)
+

p∑
i=k⋆+1

min(k⋆, ai).

Let σ1 =
∑k⋆

i=1 ai, σ2 =
∑ℓ

i=k⋆+1

(
ai − k⋆

)
, and σ3 =

∑p
i=k⋆+1 min(k⋆, ai).

Similarly,

σ
(
s′
)

=

k⋆∑
i=1

a′

i +

ℓ′∑
i=k⋆+1

(
a′

i − k⋆
)
+

p′∑
i=k⋆+1

min(k⋆, a′

i).

et σ ′

1 =
∑k⋆

i=1 a
′

i , σ
′

2 =
∑ℓ′

i=k⋆+1

(
a′

i − k⋆
)
, and σ ′

3 =
∑p′

i=k⋆+1 min(k⋆, a′

i).

We will show the following three inequalities hold:

σ1 ≤ σ ′

1, σ2 ≤ σ ′

2, σ3 < σ ′

3 + 2dn (7)

These imply inequations (4).
From inequations (5) and inequations (6), we get σ1 ≤ σ ′

1 and σ2 ≤ σ ′

2.
To show that σ3 ≤ σ ′

3 + 2dn, we apply the Erdős–Gallai condition to the graphic sequences s and s′ at k⋆, and use
Proposition 1 to bound ∆s(k⋆):

0 ≤ ∆s(k⋆) = σ3 − σ1 + k⋆(k⋆
− 1) < 2dn, 0 ≤ ∆s′ (k

⋆) ≤ σ ′

3 − σ ′

1 + k⋆(k⋆
− 1).

From inequations (7) and the above inequations, we now have

σ3 < σ1 − k⋆(k⋆
− 1) + 2dn ≤ σ ′

1 − k⋆(k⋆
− 1) + 2dn ≤ σ ′

3 + 2dn. □

emark 1. The sequence s in Theorem 9 is a (1 + M)-approximation solution to the problem, where M = min
{

2
d1+1 ,

2(
√
2−1)

n−1

}
.

Proof. Combining the result of Theorem 9 with the basic inequality 2ℓq(D) > (d1 + 1)dn yields

σ
(
s
)

2ℓq(D)
< 1 +

dn
ℓq(D)

< 1 +
2

d1 + 1
.

his results in the first bound.
To obtain the second bound, we use a sharper lower bound 2ℓq(D) ≥

(∑n
i=1 di

)
+ (d1 + 1 − n)dn to get

2ℓq(D) ≥

(
n∑

i=1

di

)
+ (d1 + 1 − n)dn

≥

(
n∑

i=1

dn + (n − i)

)
+
(
d1 − (n − 1)

)
dn

≥ ndn +
1
2
n(n − 1) + d2n

≥ dn

(
n +

n(n − 1)
2dn

+ dn

)
≥ dn

(
n + 2

√
n(n − 1)

2

)
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> dn

(
(n − 1) + 2

√
(n − 1)2

2

)
= (1 +

√
2)(n − 1)dn. (8)

From Theorem 9, we have σ (s)
2ℓq(D) ≤ 1 +

dn
2ℓq(D) . Combining this with inequation (8) yields

σ
(
s
)

2ℓq(D)
< 1 +

dn
ℓq(D)

< 1 +
2(

√
2 − 1)

n − 1
.

This proves the second bound and hence our claim. ■

Since our result shows that 2ℓq(D) ∈
(
σ (s) − 2minD, σ (s)

]
, a natural algorithm to determine ℓq(D) would be to

perform a search over this interval. Thus, for each even σ in the interval, we wish to determine if there is a graph G with
σ/2 edges such that D(G) = D . One way to do this is to determine all solutions to σ =

∑
i midi in positive integers mi,

and then check whether any of the corresponding sequences is graphic. This latter problem can be solved in polynomial
time in

∑
i mi > d1 for fixed m1, . . . ,mn, which is exponential in the input; refer [2,3,11]. The former problem is the

well-known Frobenius Coin problem, which has a rich and long history, with several applications and extensions, and
connections to several areas of research. The Frobenius Coin problem can be solved in polynomial-time in d1

∑
i mi, and

is known to be NP-hard [4,10].
Therefore, given a σ , we must (i) determine the existence of positive integers m1, . . . ,mn such that σ =

∑
i midi,

and (ii) determine whether (d1)m1 , . . . , (dn)mn is graphic for each solution m1, . . . ,mn in (i). Both these problems have no
known polynomial-time algorithms in our input size

∑
i log di. While our problem imposes more structure than each of

the those problems, we speculate that it is also NP-hard, in which case our result in Theorem 9 assumes larger significance.
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