A Note on the Density of M-sets in Geometric Sequence

Ram Krishna Pandey*
School of Mathematics
Harish-Chandra Research Institute
Jhusi, Allahabad - 211019
pandey@hri.res.in

Amitabha Tripathi ${ }^{\dagger}$
Department of Mathematics
Indian Institute of Technology
Hauz Khas, New Delhi - 110016
atripath@maths.iitd.ac.in

Abstract

For a given set M of positive integers, a well known problem of Motzkin asks for determining the maximal density $\mu(M)$ among sets of nonnegative integers in which no two elements differ by an element of M. The problem is completely settled when $|M| \leq 2$, and some partial results are known for several families of M for $|M| \geq 3$, including the case where the elements of M are in arithmetic progression. We resolve the problem in case of geometric progressions and geometric sequences.

Keywords. Density
2000 Mathematics Subject Classification. 11B05

1 Introduction

For $x \in \mathbb{R}$ and a set S of nonnegative integers, let $\#(S, x)$ denote the number of elements $n \in S$ such that $n \leq x$. The upper density of S,

[^0]denoted by $\bar{\delta}(S)$, is defined as
$$
\bar{\delta}(S):=\limsup _{x \rightarrow \infty} \frac{\#(S, x)}{x} .
$$

Given a set of positive integers M, S is said to be an M-set if $a \in S, b \in S$ imply $a-b \notin M$. Motzkin in [4] asked to determine $\mu(M)$ defined as

$$
\mu(M):=\sup _{S} \bar{\delta}(S)
$$

where S varies over all M-sets. Cantor \& Gordon in [1] determined $\mu(M)$ when $|M| \leq 2$, and gave the the following lower bound for $\mu(M)$:

$$
\begin{equation*}
\mu(M) \geq \sup _{\operatorname{gcd}(c, m)=1} \frac{1}{m} \min _{i}\left|c m_{i}\right|_{m} \tag{1}
\end{equation*}
$$

where m_{i} are the elements of M, m and c are any two relatively prime positive integers, and $|x|_{m}$ denotes the absolute value of the absolutely least remainder of $x \bmod m$. A useful upper bound for $\mu(M)$ is due to Haralambis in [3]:

$$
\begin{equation*}
\mu(M) \leq \alpha \tag{2}
\end{equation*}
$$

provided there exists a positive integer k such that $S(k) \leq(k+1) \alpha$ for every M-set S with $0 \in S$.

The problem of determining the density of M-sets is completely resolved in several special cases, including when M consists of numbers in arithmetic progression [2]. Due to the fact that $\mu(c M)=\mu(M)$ for any positive integer c, the problem in case of a geometric progression amounts to determining $\mu\left(\mathscr{G}_{r, k}\right)$ with $\mathscr{G}_{r, k}=\left\{1, r, r^{2}, \ldots, r^{k}\right\}$ for $r>1$ and $k \geq 1$. For positive and relatively prime integers a, b, the geometric progression with first term 1 and common ratio a / b yields the geometric sequence $\mathscr{G}_{a, b ; k}=\left\{a^{k}, a^{k-1} b, \ldots, a b^{k-1}, b^{k}\right\}$. For positive integers a, b, k, with $\operatorname{gcd}(a, b)=1$ and $k \geq 2$, we show that $\mu\left(\mathscr{G}_{a, b ; k}\right)=\mu\left(\mathscr{G}_{a, b ; 2}\right)$. A similar argument proves that $\mu\left(\mathscr{G}_{r, k}\right)=\mu\left(\mathscr{G}_{r, 1}\right)$ for $r>1$ and $k \geq 1$, and this extends to the case of the infinite geometric progression $\mathscr{G}_{r}=\left\{1, r, r^{2}, \ldots\right\}$ for $r>1$.

2 Results

Throughout this section, let a, b, k be positive integers with $\operatorname{gcd}(a, b)=1$ and $k \geq 2$.

Theorem 1. Let a, b, k be positive integers, with $\operatorname{gcd}(a, b)=1$ and $k \geq 2$, and let $\mathscr{G}_{a, b ; k}=\left\{a^{k}, a^{k-1} b, \ldots, a b^{k-1}, b^{k}\right\}$. Then

$$
\mu\left(\mathscr{G}_{a, b ; k}\right)=\mu(\{a, b\})=\frac{\left\lfloor\frac{1}{2}(a+b)\right\rfloor}{a+b} .
$$

Proof. Note that $\mu\left(\mathscr{G}_{a, b ; k}\right) \leq \mu\left(\left\{a^{k}, a^{k-1} b\right\}\right)=\mu(\{a, b\})$. If a, b are odd, all elements of $M=\mathscr{G}_{a, b ; k}$ are odd, and the assertion is obvious since $\{1,3,5, \ldots\}$ is an M-set with density $\frac{1}{2}$.

Suppose $a+b$ is odd. We use (1) to show that $\mu(\{a, b\})=\frac{a+b-1}{2(a+b)}$ is a lower bound for $\mu\left(\mathscr{G}_{a, b ; k}\right)$. Let $m=a+b$, and choose c such that $a^{k} c \equiv \frac{a+b-1}{2}(\bmod a+b)$. Since $b \equiv-a(\bmod a+b)$, it easily follows that $a^{i} b^{k-i} c \equiv a^{i}(-a)^{k-i} c=(-1)^{k-i} a^{k} c \equiv \pm \frac{a+b-1}{2}(\bmod a+b)$ for $0 \leq i \leq k-1$. This provides the desired lower bound, and the proof of the result.

The special case of the geometric progression may be obtained from Theorem 1 by choosing $a=1$ and $b=r$. For $r>1$ and $k \geq 1$, let $\mathscr{G}_{r, k}:=$ $\mathscr{G}_{1, r ; k}=\left\{1, r, r^{2}, \ldots, r^{k}\right\}$. By Theorem 1, we have

$$
\mu\left(\mathscr{G}_{r, k}\right)=\mu(\{1, r\})=\frac{\left\lfloor\frac{1}{2}(r+1)\right\rfloor}{r+1} .
$$

This result extends to the case of the infinite geometric progression.
Theorem 2. For $r>1$, let $\mathscr{G}_{r}=\left\{1, r, r^{2}, \ldots\right\}$. Then

$$
\mu\left(\mathscr{G}_{r}\right)=\mu(\{1, r\})=\frac{\left\lfloor\frac{1}{2}(r+1)\right\rfloor}{r+1} .
$$

Proof. Note that $\mu\left(\mathscr{G}_{r}\right) \leq \mu(\{1, r\})$. If r is odd, all elements of \mathscr{G}_{r} are odd and so \mathscr{G}_{r} has density $\frac{1}{2}$. For even r, it suffices to show that $\mu(\{1, r\})=\frac{r}{2(r+1)}$ is a lower bound for $\mu\left(\mathscr{G}_{r}\right)$. Let $c \equiv \frac{r}{2}(\bmod r+1)$. Then $r^{i} c \equiv(-1)^{i} \frac{r}{2}(\bmod r+1)$ for each $i \geq 0$. This provides the desired lower bound and the claim.

Acknowledgement. The authors gratefully acknowledge the comments of the referee.

References

[1] D. G. Cantor and B. Gordon, Sequences of integers with missing differences, J. Combin. Theory Ser. A 14 (1973), 281-287.
[2] S. Gupta and A. Tripathi, Density of M-sets in Arithmetic Progression, Acta Arith. 89.3 (1999), 255-257.
[3] N. M. Haralambis, Sets of Integers with Missing Differences, J. Combin. Theory Ser. A 23 (1977), 22-33.
[4] T. S. Motzkin, Unpublished problem collection.

[^0]: *This work was done when at Department of Mathematics, Indian Institute of Technology Delhi
 \dagger Corresponding author

