ORIGINAL PAPER

New Proofs for the Disjunctive Rado Number of the Equations $x_1 - x_2 = a$ and $x_1 - x_2 = b$

A. Dileep¹ · Jai Moondra² · Amitabha Tripathi³

Received: 21 September 2020 / Revised: 2 August 2021 / Accepted: 4 August 2021 /

Published online: 1 February 2022

© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021, corrected publication 2022

Abstract

Let m, a, b be positive integers, with $\gcd(a,b)=1$. The disjunctive Rado number for the pair of equations y-x=ma, y-x=mb, is the least positive integer $R=\mathscr{R}_d(ma,mb)$, if it exists, such that every 2-coloring χ of the integers in $\{1,\ldots,R\}$ admits a solution to at least one of $\chi(x)=\chi(x+ma)$, $\chi(x)=\chi(x+mb)$. We show that $\mathscr{R}_d(ma,mb)$ exists if and only if ab is even, and that it equals m(a+b-1)+1 in this case. We also show that there are exactly 2^m valid 2-colorings of [1,m(a+b-1)] for the equations y-x=ma and y-x=mb, and use this to obtain another proof of the formula for $\mathscr{R}_d(ma,mb)$.

 $\textbf{Keywords} \ \ 2\text{-coloring} \ \cdot \ Monochromatic \ solution \ \cdot \ Valid \ coloring \ \cdot \ Disjunctive \\ Rado \ number$

Mathematics Subject Classification 05C55 · 05D10

Amitabha Tripathi atripath@maths.iitd.ac.in

A. Dileep dileep@k-state.edu

Jai Moondra jmoondra3@gatech.edu

- Department of Mathematics, Kansas State University, Manhattan KS 66506, USA
- School of Computer Science, North Avenue, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Mathematics, Indian Institute of Technology, Hauz Khas 110016, New Delhi, India

[1-6, 8].

In 1916, Schur [12] showed that for every positive integer r, there exists a least positive integer s = s(r) such that for every r-coloring of the integers in the interval [1, s], there exists a monochromatic solution to x + y = z in [1, s]. Schur's Theorem was generalized in a series of results in the 1930's by Rado leading to a complete resolution to the following problem: characterize systems of linear homogeneous equations with integral coefficients $\mathscr S$ such that for a given positive integer r, there exists a least positive integer $n = \mathscr{R}(\mathscr S; r)$ such that every r-coloring of the integers in the interval [1, n] yields a monochromatic solution to the system $\mathscr S$. There has been a growing interest in the determination of the Rado numbers $\mathscr{R}(\mathscr S; r)$, particularly when $\mathscr S$ is a single equation and r = 2; for instance, see

The problem of disjunctive Rado numbers was introduced by Johnson and Schaal in [7]. The 2-color disjunctive Rado number for the set of equations $\mathscr{E}_1, \ldots, \mathscr{E}_k$ is the least positive integer N such that any 2-coloring of $\{1,...,N\}$ admits a monochromatic solution to at least one of the equations $\mathscr{E}_1, \ldots, \mathscr{E}_k$. Johnson and Schaal gave necessary and sufficient conditions for the existence of the 2-color disjunctive Rado number for the equations $x_1 - x_2 = a$ and $x_1 - x_2 = b$ for all pairs of distinct positive integers a, b, and also determined exact values when it exists. They also determined exact values for the pair of equations $ax_1 = x_2$ and $bx_1 = x_2$ whenever a, b are distinct positive integers. Lane-Harvard and Schaal [10] determined exact values of 2-color disjunctive Rado number for the pair of equations $ax_1 + x_2 = x_3$ and $bx_1 + x_2 = x_3$ for all distinct positive integers a, b. Sabo, Schaal and Tokaz [11] determined exact values of 2-color disjunctive Rado number for $x_1 + x_2 - x_3 = c_1$ and $x_1 + x_2 - x_3 = c_2$ whenever c_1, c_2 are distinct positive integers. Kosek and Schaal [9] determined the exact value of 2-color disjunctive Rado number for the equations $x_1 + \cdots + x_{m-1} = x_m$ and $x_1 + \cdots + x_m = x_m$ $x_{n-1} = x_n$ for all pairs of distinct positive integers m, n.

Let a, b be distinct positive integers. We denote by $\mathcal{R}_d(a,b)$ the 2-color disjunctive Rado number for the equations $x_1 - x_2 = a$ and $x_1 - x_2 = b$. Conditions for existence of $\mathcal{R}_d(a,b)$, as also the exact value of $\mathcal{R}_d(a,b)$, were determined in [7].

Throughout this paper, we work with the equations y - x = ma, y - x = mb instead of $x_1 - x_2 = a$, $x_1 - x_2 = b$, and assume that a, b, m are positive integers, with gcd(a, b) = 1.

We first record in Proposition 1 that the disjunctive Rado number $\mathcal{R}_d(ma, mb)$ does not exist when ab is odd. When ab is even, we characterize all valid 2-colorings of [1, m(a+b-1)-1] for the pair of equations y-x=ma and y-x=mb, and also show that there are exactly 2^m such 2-colorings; see Theorem 1. We use this characterization to show that all 2-colorings of [1, m(a+b-1)+1] admit a monochromatic solution to at least one of the equations y-x=ma, y-x=mb, resulting in a new proof of the formula for $\mathcal{R}_d(ma,mb)$; see Theorem 2. Thus, these two theorems together result in a characterization of all valid 2-colorings of $[1, \mathcal{R}_d(ma, mb) - 1]$. We believe this approach adds a new

dimension to proofs involving the exact determination of Rado numbers. Furthermore, in Theorem 3 we give another proof of the formula for $\mathcal{R}_d(ma, mb)$ by explicitly providing a valid 2-coloring of the interval $[1, \mathcal{R}_d(ma, mb) - 1]$ and showing that every 2-coloring of $[1, \mathcal{R}_d(ma, mb)]$ admits a monochromatic solution to at least one of the equations y - x = ma, y - x = mb. Our proof is significantly shorter than the proof in [7], and also more explicit in its description of a valid 2coloring of the interval $[1, \mathcal{R}_d(ma, mb) - 1]$ for an arbitrary m > 1, in terms of integer linear representations $t = \lambda_t a - \mu_t b$ for $t \in [1, a]$. We make this more precise at the end of the paper to support our claim.

2 Main Results

Proposition 1 Let m, a, b be positive integers, with $a \neq b$, ab odd and gcd(a,b) = 1. Then the disjunctive Rado number $\mathcal{R}_d(ma,mb)$ for the pair of equations y - x = ma, y - x = mb does not exist.

Proof Without loss of generality, we assume a < b throughout this proof. Suppose ab is odd. Define $\Delta: \mathbb{N} \to \{0,1\}$ by

$$\Delta(x) = \left\lceil \frac{x}{m} \right\rceil \pmod{2}.$$

Then, for each $x \in \mathbb{N}$, both $\left\lceil \frac{x+ma}{m} \right\rceil - \left\lceil \frac{x}{m} \right\rceil = a$ and $\left\lceil \frac{x+mb}{m} \right\rceil - \left\lceil \frac{x}{m} \right\rceil = b$ are odd. Hence, $\Delta(x+ma) \neq \Delta(x)$ and $\Delta(x+mb) \neq \Delta(x)$ for each $x \in \mathbb{N}$, so Δ provides a valid 2coloring on N for the pair of equations y - x = ma, y - x = mb. Thus, $\mathcal{R}_d(ma, mb)$ does not exist if ab is odd.

Note that ab is even if and only if exactly one of a, b is even, since gcd(a, b) = 1, and so if and only if a + b is odd. Henceforth, we assume ab is even, and therefore that a+b is odd. In Theorem 1, we characterize all valid colorings of [1, m(a+b)][b-1) for the pair of equations y-x=ma and y-x=mb.

Theorem 1 Let m, a, b be positive integers, with $a \neq b$, ab even and gcd(a,b) = 1. There are exactly 2^m valid 2-colorings of [1, m(a+b-1)] for the pair of equations y - x = ma and y - x = mb.

Proof Let $\gamma:[1,m(a+b-1)] \to \{0,1\}$ be a valid 2-coloring for the pair of equations y - x = ma and y - x = mb. We only need to define χ on [1, ma] since $\chi(x) \neq \chi(x + ma)$ for every valid 2-coloring.

We claim that χ is completely determined by the *m*-tuple of 0's and 1's

$$(\chi(1),...,\chi(m)) = \mathbf{B}_m.$$

When a = 1, this defines χ on [1, ma]. Therefore, we may assume a > 1 for the rest of this proof. Let $t \in [1, a]$, and let $t \leftrightarrow (\lambda_t, \mu_t)$, where $t = \lambda_t b - \mu_t a$, $1 \le \lambda_t \le a$. If $\overline{B_m}$ denotes the complement of B_m , obtained from B_m by interchanging 0s and 1s, and $k \in [1, a - 1]$, we claim that

$$\left(\chi(km+1), \dots, \chi((k+1)m)\right) = \begin{cases} \frac{B_m}{B_m} & \text{if } (\lambda_{k+1} - \lambda_1) + (\mu_{k+1} - \mu_1) \text{ is even;} \\ \frac{B_m}{B_m} & \text{if } (\lambda_{k+1} - \lambda_1) + (\mu_{k+1} - \mu_1) \text{ is odd.} \end{cases}$$
(1)

Let $x \in [1, m]$. For $k \in [1, a - 1]$, we show that

$$\chi(x + km) - \chi(x) \equiv (\lambda_{k+1} - \lambda_1) + (\mu_{k+1} - \mu_1) \pmod{2}.$$
 (2)

This is equivalent to the statement of (1).

Since χ is a valid 2-coloring of [1, m(a+b-1)], we have $\chi(s) \neq \chi(s+ma)$ whenever $s, s+ma \in [1, m(a+b-1)]$ and $\chi(s) \neq \chi(s+mb)$ whenever $s, s+mb \in [1, m(a+b-1)]$. So the pair of transformations $s \mapsto s \pm ma$ and the pair of transformations $s \mapsto s \pm mb$ each results in a change in color, as long as the elements stay within the domain of χ .

By an $\langle s_0, s_\ell \rangle$ sequence of length ℓ we mean a sequence $s_0, s_1, s_2, \ldots, s_\ell$ such that $|s_{i+1} - s_i| \in \{ma, mb\}$. An $\langle s_0, s_\ell \rangle$ sequence is a path provided each $s_i \in [1, m(a+b-1)]$.

Every integer in [m+1, ma] is of the form n=x+km, with $x \in [1, m]$ and $k \in [1, a-1]$. Two cases arise: (i) $\lambda_{k+1} \leq \lambda_1$, and (ii) $\lambda_{k+1} > \lambda_1$.

CASE (i). If $\lambda_{k+1} \leq \lambda_1$, then $\mu_{k+1} \leq \mu_1$ by Lemma 1. We claim that the mappings $s \mapsto s + mb$ (for $1 \leq s \leq m(a-1)$) and $s \mapsto s - ma$ (for $ma < s \leq m(a+b-1)$) provide an $\langle x + km, x \rangle$ path of length $(\lambda_1 - \lambda_{k+1}) + (\mu_1 - \mu_{k+1})$. Since $x = (x + km) - (\mu_1 - \mu_{k+1})ma + (\lambda_1 - \lambda_{k+1})mb$, it suffices to prove that the appropriate mapping can be applied throughout the sequence starting with x + km and ending with x. Neither of the mappings is possible only when $s \leq ma$ and s + mb > m(a+b-1), or when $m(a-1) < s \leq ma$. Since each mapping preserves elements modulo m, we must show that x + m(a-1) does not lie in the $\langle x + km, x \rangle$ sequence of length $(\lambda_1 - \lambda_{k+1}) + (\mu_1 - \mu_{k+1})$ obtained by applying the appropriate mapping defined above.

If $x + m(a - 1) = (x + km) + t_1mb - t_2ma$ for some $t_1, t_2 \in \mathbb{Z}_{\geq 0}$, then $a = k + 1 + t_1b - t_2a$. Therefore,

$$a = \lambda_{k+1}b - \mu_{k+1}a + t_1b - t_2a = (\lambda_{k+1} + t_1)b - (\mu_{k+1} + t_2)a,$$

so that

$$0 = \lambda_{k+1} + t_1 - ta, \quad -1 = \mu_{k+1} + t_2 - tb$$

for some $t \in \mathbb{N}$. But then, using Lemma 1,

$$t_1 + t_2 = (ta - \lambda_{k+1}) + (tb - 1 - \mu_{k+1})$$

$$\geq (a - \lambda_{k+1}) + ((b - 1) - \mu_{k+1})$$

$$\geq (\lambda_1 - \lambda_{k+1}) + (\mu_1 - \mu_{k+1}).$$

Since appropriate applications of the two mappings define an $\langle x+km,x\rangle$ sequence of length $(\lambda_1-\lambda_{k+1})+(\mu_1-\mu_{k+1}), x+m(a-1)$ is not a part of this sequence.

Case (ii). If $\lambda_{k+1} > \lambda_1$, then $\mu_{k+1} > \mu_1$ by Lemma 1. We claim that the mappings

 $s \mapsto s + ma$ (for $1 \le s \le m(b-1)$) and $s \mapsto s - mb$ (for $mb \le s \le m(a+b-1)$) pro- $\langle x + km, x \rangle$ path of length $(\lambda_{k+1} - \lambda_1) + (\mu_{k+1} - \mu_1)$. vide $x = (x + km) + (\mu_{k+1} - \mu_1)ma - (\lambda_{k+1} - \lambda_1)mb$, it suffices to prove that the appropriate mapping can be applied throughout the sequence starting with x + kmand ending with x. Neither of the mappings is possible only when s < mb and s + ma > m(a + b - 1), or when $m(b - 1) < s \le mb$. Since each mapping preserves elements modulo m, we must show that x + m(b-1) does not lie in the $\langle x + km, x \rangle$ sequence of length $(\lambda_{k+1} - \lambda_1) + (\mu_{k+1} - \mu_1)$ obtained by applying the appropriate mapping defined above.

If $x + m(b-1) = (x + km) + t_1 ma - t_2 mb$ for some $t_1, t_2 \in \mathbb{Z}_{>0}$, $b-1=k+t_1a-t_2b$, or $a-1=(k+1)-1+(t_1+1)a-(t_2+1)b$. Therefore,

$$\lambda_{a-1}b - \mu_{a-1}a = (\lambda_{k+1}b - \mu_{k+1}a) - (\lambda_1b - \mu_1a) + (t_1+1)a - (t_2+1)b$$

= $(\lambda_{k+1} - \lambda_1 - t_2 - 1)b - (\mu_{k+1} - \mu_1 - t_1 - 1)a$.

From Lemma 1, we have $\lambda_1 + \lambda_{a-1} = a$, so that

$$\lambda_{a-1} = \lambda_{k+1} - \lambda_1 - t_2 - 1 + ta, \quad \mu_{a-1} = \mu_{k+1} - \mu_1 - t_1 - 1 + tb$$

for some $t \in \mathbb{N}$. But then, once again from Lemma 1,

$$t_{1} + t_{2} = (\mu_{k+1} - \mu_{1} + (tb - 1 - \mu_{a-1})) + (\lambda_{k+1} - \lambda_{1} + (ta - 1 - \lambda_{a-1}))$$

$$\geq (\mu_{k+1} - \mu_{1}) + (\lambda_{k+1} - \lambda_{1}) + (b - 1 - \mu_{a-1}) + (a - 1 - \lambda_{a-1})$$

$$\geq (\mu_{k+1} - \mu_{1}) + (\lambda_{k+1} - \lambda_{1}).$$

Since appropriate applications of the two mappings define an $\langle x + km, x \rangle$ sequence of length $(\mu_{k+1} - \mu_1) + (\lambda_{k+1} - \lambda_1)$, x + m(b-1) is not a part of this sequence. This proves Eqn. (2).

Since each of $\chi(1), \ldots, \chi(m)$ can be either of 0, 1, B_m assumes any binary mtuple. So there are 2^m choices for B_m , and so there are at most 2^m valid colorings.

It is easy to see that each such choice of B_m leads to a valid 2-coloring for the pair of equations y - x = ma and y - x = mb using Eqn. (1). Therefore, there are exactly 2^m valid 2-colorings of [1, m(a+b-1)] for the pair of equations y-x=ma and y - x = mb.

Theorem 2 uses the characterization of valid colorings on [1, m(a+b-1)] in Theorem 1 to show that none of these colorings can be extended to [1, m(a+b-1)+1], thereby establishing the value of $\mathcal{R}_d(ma, mb)$. Thus, the two theorems together give a characterization of all valid colorings of $[1, \mathcal{R}_d(ma, mb) - 1].$

Theorem 2 Let m, a, b be positive integers, with $a \neq b$, ab even and gcd(a, b) = 1. Then the disjunctive Rado number for the pair of equations y - x = ma and y - x = mamb is given by

$$\mathcal{R}_d(ma, mb) = m(a+b-1)+1.$$

Proof Theorem 1 characterizes all valid 2-colorings of [1, m(a+b-1)] for the pair of equations y-x=ma and y-x=mb. To prove $\mathcal{R}_d(ma,mb)=m(a+b-1)+1$, it suffices to show that regardless of how the domain of χ is extended to include m(a+b-1)+1, there must be a monochromatic solution to at least one of y-x=ma, y-x=mb. Clearly, this can only be possible with y=m(a+b-1)+1, and so x=m(b-1)+1 or m(a-1)+1. Therefore, we must show that $\chi(m(a-1)+1)\neq \chi(m(b-1)+1)$ for each valid 2-coloring on [1,m(a+b-1)] given in Theorem 1.

We treat the cases a=1 and a>1 separately. For a=1 and any valid 2-coloring χ of [1, mb] for y-x=m, we have $\chi(x+m)-\chi(x)\equiv 1 \pmod 2$ for $x\in [1,m]$. Thus, $\chi(m(b-1)+1)-\chi(1)\equiv b-1\equiv 1 \pmod 2$, since b is even.

For the rest of this proof, assume a>1, so that r>0. Let χ be any valid 2-coloring of [1,m(a+b-1)] for the pair of equations y-x=ma and y-x=mb, characterized in Theorem 1. Since $\chi(x+ma)-\chi(x)\equiv 1 \pmod 2$ for $x\in [1,ma]$, we have $\chi(x+kma)-\chi(x)\equiv k \pmod 2$ for $1\leq k\leq q$. In particular, $\chi(m(b-1)+1)-\chi(m(r-1)+1)\equiv q \pmod 2$.

From $ab - (b-1)a = a = \lambda_a b - \mu_a a$ and $r = \lambda_r b - \mu_r a = b - qa$ we have $(\lambda_a, \mu_a) = (a, b-1)$ and $(\lambda_r, \mu_r) = (1, q)$. Therefore, by (2) we have

$$\begin{split} &\chi\big(m(b-1)+1\big)-\chi\big(m(a-1)+1\big)\\ &=\big(\chi\big(m(b-1)+1\big)-\chi\big(m(r-1)+1\big)\big)-\big(\chi\big(m(a-1)+1\big)-\chi(1)\big)\\ &+\big(\chi\big(m(r-1)+1\big)-\chi(1)\big)\\ &\equiv q-\big((\lambda_a-\lambda_1)+(\mu_a-\mu_1)\big)+\big((\lambda_r-\lambda_1)+(\mu_r-\mu_1)\big)(\text{mod }2)\\ &\equiv q-(a-1)-(b-q-1)(\text{mod }2)\\ &\equiv 1(\text{mod }2). \end{split}$$

We proceed to give a different proof for the value of $\mathcal{R}_d(ma,mb)$ which relies on the representation of any $t \in \mathbb{Z}$ as an integer linear combination $\lambda_t a - \mu_t b$. The structure of valid 2-colorings is closely connected to these representations: if χ is a valid 2-coloring, then $\chi(\lambda a - \mu b) = 1 - \chi((\lambda + 1)a - \mu b) = 1 - \chi(\lambda a - (\mu + 1)b)$ when these integers lie in the domain of χ . Lemma 1 helps us establish some structure on these representations.

Lemma 1 Let m, a, b be positive integers, with gcd(a,b) = 1 and a < b. For $t \in [1, a]$, define integers λ_t, μ_t by $t = \lambda_t b - \mu_t a$, $1 \le \lambda_t \le a$.

- (i) For $s, t \in [1, a]$, $\lambda_s > \lambda_t$ implies $\mu_s > \mu_t$.
- (ii) For $t \in [1, a 1]$, $\lambda_t \le a 1$ and $\mu_t \le b 1$.
- (iii) For $t \in [1, a]$, $\lambda_t + \lambda_{a-t} = a$.

Proof

(i) Note that $\lambda_s > \lambda_t$ and $\mu_s \le \mu_t$ leads to the contradiction $s - t = (\lambda_s - \lambda_t)b - (\mu_s - \mu_t)a \ge b > a > s - t$.

- (ii) Note that $\lambda_t = a$ implies t = a and $\mu_t = b - 1$. So for $t \neq a$, $\lambda_t \neq \lambda_a = a$ and $\mu_t = \frac{\lambda_t b - t}{a} \le \frac{ab - 1}{a} \le b - \frac{1}{a}$. Therefore, $\mu_t \le b - 1$.
- From $a = t + (a t) = (\lambda_t + \lambda_{a-t})b (\mu_t + \mu_{a-t})a$ we have $\lambda_t + \lambda_{a-t} = t$ (iii) *ka* for some $k \in \mathbb{Z}$. Moreover, $0 < \lambda_t + \lambda_{a-t} < 2a$ implies k = 1.

Theorem 3 Let m, a, b be positive integers, with $a \neq b$, ab even, and gcd(a, b) = 1. Then the disjunctive Rado number $\mathcal{R}_d(ma, mb)$ for the pair of equations y - x = ma, y - x = mb is given by

$$\mathcal{R}_d(ma, mb) = m(a+b-1)+1.$$

Proof Without loss of generality, we assume a < b throughout this proof.

I. (SUFFICIENCY FOR EXISTENCE AND UPPER BOUND)

Suppose ab is even. We claim that $\mathcal{R}_d(ma, mb)$ exists, and is bounded above by m(a+b-1)+1 in this case.

 $\chi: [1, m(a+b-1)+1] \to \{0, 1\}$ 2-coloring be any $\langle x_0, x_1, x_2, \dots, x_n \rangle$. [1, m(a+b-1)+1].Consider two sequences $\langle y_0, y_1, y_2, \dots, y_a \rangle$, given by

$$x_k = \left\lceil \frac{kb}{a} \right\rceil ma - kmb + 1, \quad y_k = \left\lceil \frac{(k+1)b}{a} \right\rceil ma - kmb + 1, \quad 0 \le k \le a.$$

Note that $1 \le x_k < y_k$, and

$$\frac{y_k-1}{m} = \left(\left\lceil \frac{(k+1)b}{a} \right\rceil - \frac{(k+1)b}{a} \right) a + b \le (a-1) + b.$$

Thus, each x_k and each y_k lies in the domain of χ .

Suppose, by way of contradiction, that $\chi(x) \neq \chi(x+ma)$ whenever x, x+ $ma \in [1, m(a+b-1)+1]$ and $\chi(x) \neq \chi(x+mb)$ whenever [1, m(a+b-1)+1]. Since $\chi(x+ma)-\chi(x)\equiv 1 \pmod{2}$, we have

$$\chi(y_k) - \chi(x_k) \equiv \left\lceil \frac{(k+1)b}{a} \right\rceil - \left\lceil \frac{kb}{a} \right\rceil \pmod{2}$$

for $k \in \{0, ..., a\}$. We also have

$$\chi(x_{k+1}) - \chi(y_k) \equiv 1 \pmod{2}$$

for $k \in \{0, ..., a - 1\}$. But now

$$\chi(x_a) - \chi(x_0) \equiv \sum_{k=0}^{a-1} (\chi(x_{k+1}) - \chi(x_k)) \pmod{2}$$

$$\equiv \sum_{k=0}^{a-1} ((\chi(x_{k+1}) - \chi(y_k)) + (\chi(y_k) - \chi(x_k))) \pmod{2}$$

$$\equiv \sum_{k=0}^{a-1} \left(1 + \left\lceil \frac{(k+1)b}{a} \right\rceil - \left\lceil \frac{kb}{a} \right\rceil \right) \pmod{2}$$

$$\equiv a + b \pmod{2}$$

$$\equiv 1 \pmod{2}$$

This contradicts $x_0 = x_a$, thereby proving that every 2-coloring of [1, m(a+b-1)+1] admits a monochromatic solution of either y-x=ma or y-x=mb. Thus, $\mathcal{R}_d(ma,mb)$ exists, and is bounded above by m(a+b-1)+1.

II. (LOWER BOUND)

To show $\mathcal{R}_d(ma, mb) > m(a+b-1)$, we exhibit a valid 2-coloring of [1, m(a+b-1)].

We treat the cases a = 1 and a > 1 separately. If a = 1, the 2-coloring of [1, mb] given by

$$\Delta(x) = \left\lceil \frac{x}{m} \right\rceil \pmod{2}$$

is valid, as in Case I.

Henceforth, let a>1 and write b=qa+r, where $0< r \le a-1$. Note that r=0 is only possible if a=1 since $\gcd(a,b)=1$. We partition the interval [1,m(a+b-1)] into intervals of length ma, except possibly for the last interval: $[1,ma],[ma+1,2ma], \quad [2ma+1,3ma],\ldots,[qma+1,(q+1)ma],[(q+1)ma+1,(q+1)ma+m(r-1)]$. Note that the last interval exists only when r>1. It suffices to define the color of the integers in the interval [1,ma] since we must have $\chi(x)\neq \chi(x+ma)$ for a valid coloring.

Since gcd(a,b) = 1, corresponding to each $t \in [1,a]$, there is a unique pair λ_t , μ_t such that $t = \lambda_t b - \mu_t a$, $1 \le \lambda_t \le a$. Define $\chi : [1,ma] \to \{0,1\}$ by

$$\chi(x) \equiv \lambda_t + \mu_t \pmod{2},\tag{3}$$

where $\left\lceil \frac{x}{m} \right\rceil = t = \lambda_t b - \mu_t a$, $1 \le \lambda_t \le a$.

We claim that χ is a valid 2-coloring on [1, m(a+b-1)] for the equations y-x=ma and y-x=mb.

The coloring χ is a valid 2-coloring on [1, m(a+b-1)] for the equation y-x=ma by construction of χ . To show this is also a valid 2-coloring for the equation y-x=mb, we must show $\chi(x) \neq \chi(x+mb)$ for $x \in [1, m(a-1)]$.

Let $m(t-1) < x \le mt$, $1 \le t \le a-1$ and $t = \lambda_t b - \mu_t a$, $1 \le \lambda_t \le a$. Then $m(t+r-1) < x + mr \le m(t+r)$, and $t+r = (\lambda_t b - \mu_t a) + (b-qa) = (\lambda_t + 1)b - (\mu_t + q)a$. Two cases arise: (i) $t + r \le a$, and (ii) t + r > a.

Case (i). If $t + r \le a$, then $x + mr \le ma$, and so

$$\lambda_{t+r}b - \mu_{t+r}a = t + r = (\lambda_t b - \mu_t a) + (b - qa) = (\lambda_t + 1)b - (\mu_t + q)a. \tag{4}$$

We may exclude the case $\lambda_t = a$ since that would imply $a \mid t$ and $1 \le t \le a - 1$. Therefore, $\lambda_{t+r} = \lambda_t + 1$ and $\mu_{t+r} = \mu_t + q$ by uniqueness of expression. From the construction of χ we have $\chi(x+ma)-\chi(x)\equiv 1 \pmod{2}$, and so $\chi(x+kma)$ $\chi(x) \equiv k \pmod{2}$ for $1 \le k \le q$. In particular, from (x + mb) - (x + mr) = qma we have $\chi(x+mb) - \chi(x+mr) \equiv q \pmod{2}$. Therefore, from Eqn. (3)

$$\chi(x+mb) - \chi(x) = \left(\chi(x+mb) - \chi(x+mr)\right) + \left(\chi(x+mr) - \chi(x)\right)$$

$$\equiv q + \left(\lambda_{t+r} - \lambda_t\right) + \left(\mu_{t+r} - \mu_t\right) \pmod{2}$$

$$\equiv q + 1 + q \pmod{2}$$

$$\equiv 1 \pmod{2}.$$

Case (ii). If t + r > a, then $0 < (x + mr) - ma \le 2m(a - 1) - ma < ma$. Now

$$\lambda_{t+r-a}b - \mu_{t+r-a}a = t + r - a = (\lambda_t b - \mu_t a) + (b - qa) - a = (\lambda_t + 1)b - (\mu_t + q + 1)a.$$
(5)

As in Case (i), we may exclude the case $\lambda_t = a$ since that would imply $a \mid t$ and $1 \le t \le a-1$. Thus $\lambda_t < a$, we have $\lambda_{t+r-a} = \lambda_t + 1$ and $\mu_{t+r-a} = \mu_t + q + 1$ by uniqueness of expression. Arguing as in Case (i), we have from Eqn. (3)

$$\chi(x + mb) - \chi(x) = \left(\chi(x + mb) - \chi(x + mr - ma)\right) + \left(\chi(x + mr - ma) - \chi(x)\right)$$

$$\equiv (q + 1) + \left(\lambda_{t+r-a} - \lambda_{t}\right) + \left(\mu_{t+r-a} - \mu_{t}\right) \pmod{2}$$

$$\equiv (q + 1) + 1 + (q + 1) \pmod{2}$$

$$\equiv 1 \pmod{2}.$$

This completes the proof.

We claim that our construction is more efficient than the one in [7] in the following way: given some $n \in [1, m(a+b-1)+1]$, we show that determination of $\chi(n)$ takes time polylog(ma + mb) (that is, time polynomial in $\log(ma + mb)$), while it can take time O(ma + mb) to determine the value of the valid coloring constructed in [7] at n. Our time complexity is polynomial in the input values ma, mb, n, since integer k takes $O(\log k)$ bits to represent.

To show this, let $t = \left\lceil \frac{n \mod ma}{m} \right\rceil = \lambda_t b - \mu_t a$, where $1 \le \lambda_t \le a$. Then, by definition of γ (and since γ is valid),

$$\chi(n) \equiv \left\lfloor \frac{n}{ma} \right\rfloor + \chi(n \mod ma) \equiv \left\lfloor \frac{n}{ma} \right\rfloor + \lambda_t + \mu_t \pmod{2}.$$

Thus, to determine $\chi(n)$ computationally, one needs to determine (i) $(n \mod ma)$ and $\left|\frac{n}{ma}\right|$ from n, (ii) t from $(n \mod ma)$, and (iii) λ_t, μ_t from t. The first two are standard operations and can be performed in polylog(ma + mb) time.

To determine λ_t, μ_t from t, use the extended Euclidean algorithm twice: first to determine m, a, b from ma, mb and then to get integers λ , μ such that $1 = \lambda b - \mu a$,

which implies $t = (t\lambda)b - (t\mu)a$. Finally, determine integers q, r such that $t\lambda =$ such that $r \in [1, a],$ which gives $t = (t\lambda - qa)b - (t\mu + qb)$ $a = rb - (t\mu + qb)a$, so that $\lambda_t = r, \mu_t = t\mu + qb$. All the involved operations can be performed in time polylog(ma + mb), proving our claim.

Acknowledgements The authors acknowledge the comments of the anonymous referee which has greatly improved the presentation of this manuscript.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

- 1. Beutelspacher, A., Brestovansky, W.: Generalized Schur Numbers. Lecture Notes in Mathematics, vol. 969, pp. 30-38. Springer, Berlin, Heidelberg (1982)
- 2. Guo, S., Sun, Z.-W.: Determination of the two-color Rado number for $a_1x_1 + \cdots + a_mx_m = x_0$. J. Combin. Theory Ser. A 115, 345–353 (2008)
- 3. Gupta, S., Thulasi Rangan, J., Tripathi, A.: The two-colour Rado number for the equation ax + by = (a + b)z. Ann. Comb. 19, 269–291 (2015)
- 4. Harborth, H., Maasberg, S.: Rado numbers for a(x + y) = bz. J. Combin. Theory Ser. A 80, 356–363
- 5. Harborth, H., Maasberg, S.: All two-color Rado numbers for a(x + y) = bz. Discrete Math. 197/198, 397-407 (1999)
- 6. Hopkins, B., Schaal, D.: On Rado numbers for $\sum_{i=1}^{m-1} a_i x_i = x_m$. Adv. Appl. Math. 35, 433–441
- 7. Johnson, B., Schaal, D.: Disjunctive Rado numbers. J. Combin. Theory Ser. A 15, 263-276 (2005)
- 8. Kosek, W., Schaal, D.: Rado numbers for the equation $\sum_{i=1}^{m-1} x_i + c = x_m$ for negative values of c. Adv. Appl. Math. 27, 805-815 (2001)
- 9. Kosek, W., Schaal, D.: A note on disjunctive Rado numbers. Adv. Appl. Math. 31, 433-439 (2003)
- 10. Lane-Harvard, L., Schaal, D.: Disjunctive Rado numbers for $ax_1 + x_2 = x_3$ and $bx_1 + x_2 = x_3$. Integers **13**, Article A62, 886–896 (2013)
- 11. Sabo, D., Schaal, D., Tokaz, J.: Disjunctive Rado numbers for $x_1 + x_2 + c = x_3$. Integers 7, Article A29, 5 pages (2007)
- 12. Schur, I.: Uber die Kongruenz $x^m + y^m = z^m \pmod{p}$. Jahresber. Deutsch. Math.-Verein. 25, 114–117

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

