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Abstract

Let m, a, b be positive integers, with gcd(a,b) = 1. The disjunctive Rado number
for the pair of equations y —x = ma, y —x = mb, is the least positive integer
R = R4(ma,mb), if it exists, such that every 2-coloring y of the integers in
{1,...,R} admits a solution to at least one of y(x) = y(x + ma), y(x) = x(x + mb).
We show that #,(ma,mb) exists if and only if ab is even, and that it equals
m(a+b—1)+1 in this case. We also show that there are exactly 2" valid 2-
colorings of [1,m(a + b — 1)] for the equations y — x = ma and y — x = mb, and
use this to obtain another proof of the formula for %,(ma,mb).
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1 Introduction

In 1916, Schur [12] showed that for every positive integer r, there exists a least
positive integer s = s(r) such that for every r-coloring of the integers in the interval
[1, s], there exists a monochromatic solution to x+y =2z in [l, s]. Schur’s
Theorem was generalized in a series of results in the 1930’s by Rado leading to a
complete resolution to the following problem: characterize systems of linear
homogeneous equations with integral coefficients . such that for a given positive
integer r, there exists a least positive integer n = #(%; r) such that every r-coloring
of the integers in the interval [1, n] yields a monochromatic solution to the system
& . There has been a growing interest in the determination of the Rado numbers
R(S;r), particularly when & is a single equation and r = 2; for instance, see
[1-6, 8].

The problem of disjunctive Rado numbers was introduced by Johnson and Schaal

in [7]. The 2-color disjunctive Rado number for the set of equations &'y, . . ., & is the
least positive integer N such that any 2-coloring of {l,...,N} admits a
monochromatic solution to at least one of the equations &, ..., &,. Johnson and

Schaal gave necessary and sufficient conditions for the existence of the 2-color
disjunctive Rado number for the equations x; — x, = a and x; — x, = b for all pairs
of distinct positive integers a, b, and also determined exact values when it exists.
They also determined exact values for the pair of equations ax; = x, and bx; = x;
whenever a, b are distinct positive integers. Lane-Harvard and Schaal [10]
determined exact values of 2-color disjunctive Rado number for the pair of
equations ax; + x, = x3 and bx; + x, = x3 for all distinct positive integers a, b.
Sabo, Schaal and Tokaz [11] determined exact values of 2-color disjunctive Rado
number for x; +x, —x3 = ¢; and x; + x, — x3 = ¢, whenever ¢y, c, are distinct
positive integers. Kosek and Schaal [9] determined the exact value of 2-color
disjunctive Rado number for the equations x; + --- +x,,-1 = x,,, and x; +--- +
Xp—1 = x, for all pairs of distinct positive integers m, n.

Let a, b be distinct positive integers. We denote by %,(a,b) the 2-color
disjunctive Rado number for the equations x; — x, = a and x; — x, = b. Conditions
for existence of %Z,(a,b), as also the exact value of %,(a,b), were determined in
[7].

Throughout this paper, we work with the equations y —x =ma, y —x = mb
instead of x; — x, = a, x; —x, = b, and assume that a, b, m are positive integers,
with ged(a,b) = 1.

We first record in Proposition 1 that the disjunctive Rado number %,(ma, mb)
does not exist when ab is odd. When ab is even, we characterize all valid 2-
colorings of [l,m(a+b—1)—1] for the pair of equations y —x =ma and
y—x=mb, and also show that there are exactly 2™ such 2-colorings; see
Theorem 1. We use this characterization to show that all 2-colorings of [1,m(a +
b—1)+ 1] admit a monochromatic solution to at least one of the equations
y —x =ma, y — x = mb, resulting in a new proof of the formula for 2,(ma, mb);
see Theorem 2. Thus, these two theorems together result in a characterization of all
valid 2-colorings of [1,#4(ma,mb) — 1]. We believe this approach adds a new
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dimension to proofs involving the exact determination of Rado numbers.
Furthermore, in Theorem 3 we give another proof of the formula for %#,(ma, mb)
by explicitly providing a valid 2-coloring of the interval [1, #,(ma, mb) — 1] and
showing that every 2-coloring of [1, Z,(ma, mb)] admits a monochromatic solution
to at least one of the equations y — x = ma, y — x = mb. Our proof is significantly
shorter than the proof in [7], and also more explicit in its description of a valid 2-
coloring of the interval [1,#,(ma,mb) — 1] for an arbitrary m>1, in terms of
integer linear representations t = A,a — p,b for t € [1,a]. We make this more precise
at the end of the paper to support our claim.

2 Main Results

Proposition 1 Let m, a, b be positive integers, with a #b, ab odd and
gcd(a,b) = 1. Then the disjunctive Rado number R,(ma,mb) for the pair of
equations y — x = ma, y — x = mb does not exist.

Proof Without loss of generality, we assume a <b throughout this proof. Suppose
ab is odd. Define 4 : N — {0, 1} by

X

Alx) = H (mod 2).

m

Then, for each x € N, both [%1 - {ﬂ =gand P%’"ﬂ - {ﬂ = b are odd. Hence,
A(x + ma) # A(x) and A(x + mb) # A(x) for each x € N, so 4 provides a valid 2-
coloring on N for the pair of equations y — x = ma, y — x = mb. Thus, Z,(ma, mb)

does not exist if ab is odd. O

Note that ab is even if and only if exactly one of a, b is even, since ged(a, b) = 1,
and so if and only if a + b is odd. Henceforth, we assume ab is even, and therefore
that a + b is odd. In Theorem 1, we characterize all valid colorings of [1,m(a +
b — 1)] for the pair of equations y — x = ma and y — x = mb.

Theorem 1 Let m, a, b be positive integers, with a # b, ab even and gcd(a,b) = 1.
There are exactly 2™ valid 2-colorings of [1,m(a + b — 1)] for the pair of equations
y—x=ma and y — x = mb.

Proof Let y:[l,m(a+b—1)] — {0,1} be a valid 2-coloring for the pair of
equations y —x = ma and y — x = mb. We only need to define y on [1, ma] since
7(x) # y(x + ma) for every valid 2-coloring.

We claim that y is completely determined by the m-tuple of 0’s and 1’s

(X(l)’ .- «,X(m)) = B,..

When a = 1, this defines y on [1, ma]. Therefore, we may assume a > 1 for the rest
of this proof. Let 7 € [1,q], and let t < (4, ), where t = ;b — p,a, 1 <4, <a. If
B,, denotes the complement of B,,, obtained from B,, by interchanging Os and 1s,
and k € [1,a — 1], we claim that
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{Bm if (Arr — 21) + (s — ) is even;
B, if (1 — A1) + (syey — ) is odd.
(1)

(X(km+ 1),...,z2((k+ 1)m)) _

Let x € [1,m]. For k € [1,a — 1], we show that

20+ km) = 7() = U1 = 71) + (s — ) (mod 2). 2)

This is equivalent to the statement of (1).

Since x is a valid 2-coloring of [1,m(a + b — 1)], we have y(s) # (s + ma)
whenever 5,5+ ma € [l,m(a+b—1)] and x(s) # y(s+mb) whenever
s,8 +mb € [1,m(a+ b — 1)]. So the pair of transformations s—s & ma and the pair
of transformations s—s &+ mb each results in a change in color, as long as the
elements stay within the domain of y.

By an (sg, s¢) sequence of length £ we mean a sequence S, 51, 52, - - ., S¢ such that
|siv1 — si| € {ma,mb}. An (so,s;) sequence is a path provided each
si € [l,m(a+b—1)].

Every integer in [m+ 1,ma] is of the form n = x + km, with x € [1,m] and
k € [1,a — 1]. Two cases arise: (i) g1 < Ay, and (i) Aepq > 4.

Case (i). If Zp41 < 24, then gy ; <py by Lemma 1. We claim that the mappings
s—s +mb (for 1 <s<m(a— 1)) and s—s —ma (for ma<s<m(a + b — 1)) pro-
vide an (x+km,x) path of length (A4 — A1)+ (g — igyr). Since
x=(x+km) — (p; — tyq1)ma + (A — Jgy1)mb, it suffices to prove that the
appropriate mapping can be applied throughout the sequence starting with x + km
and ending with x. Neither of the mappings is possible only when s <ma and
s+ mb > m(a+b— 1), or when m(a — 1) <s <ma. Since each mapping preserves
elements modulo m, we must show that x + m(a — 1) does not lie in the (x + km, x)
sequence of length (4; — Ag+1) + (4 — f4,) obtained by applying the appropriate
mapping defined above.

If x+m(a—1)=(x+km)+t;mb—tyma for some ¢t,t, €Z>,, then
a=k+ 1+ t;b — tha. Therefore,

a= b — mepa+nb—na= (A +0)b— (g + 0)a,
so that
O=Ap1+ti—ta, —l=p  +t—1tb
for some ¢t € N. But then, using Lemma 1,

h+t =(ta— A1)+ (b —1— )
> (a—Jgp1) + (b= 1) = 1)
= (A = Airr) + (1 — M)
Since appropriate applications of the two mappings define an (x + km, x) sequence

of length (A1 — A1) + (4 — tyq1), X +m(a — 1) is not a part of this sequence.
Cask (ii). If Ag1 > Ay, then py,; > u; by Lemma 1. We claim that the mappings
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s—s +ma (for 1 <s<m(b— 1)) and s—s —mb (for mb<s<m(a+ b — 1)) pro-
vide an (x+km,x) path of length (41— A1)+ (e —14y). Since
x = (x+km) + (e — fy)ma — (A1 — A1)mb, it suffices to prove that the
appropriate mapping can be applied throughout the sequence starting with x + km
and ending with x. Neither of the mappings is possible only when s <mb and
s+ ma > m(a+b— 1), or when m(b — 1) <s <mb. Since each mapping preserves
elements modulo m, we must show that x + m(b — 1) does not lie in the (x + km, x)
sequence of length (A1 — A1) + (t; — p;) obtained by applying the appropriate
mapping defined above.

If x+mb—1)=(x+km)+tyma—tymb for some t,t, €Z>(, then
b—1l=k+ta—tb,ora—1=(k+1) =14 (t; + 1)a — (t, + 1)b. Therefore,

Ja1b = pg_1a =(A1b — yeya) — (b — wa) + (1 + )a — (2 + 1)b
=(Art — At =12 = Db — (e — py — 11 — 1)a.
From Lemma 1, we have A; + A,_; = a, so that
ha1 =depr =M —t—1+ta, p, = —w—tH —1+1b

for some ¢ € N. But then, once again from Lemma 1,

rh+ 1t :(,Uk+1 — + (tb— 1-— #a—l)) + (/lk_H — /1] + (ta —1- /la—l))
> (eer — ) + (st = 4) + (0= 1= pyy) +(@— 1= Za1)
> (M1 — ) + (Aegr — A1)

Since appropriate applications of the two mappings define an (x + km, x) sequence
of length (ty1 — i) + (Ak+1 — A1), x+m(b — 1) is not a part of this sequence.
This proves Eqn. (2).

Since each of y(1),...,y(m) can be either of 0, 1, B,, assumes any binary m-
tuple. So there are 2™ choices for B,,, and so there are at most 2™ valid colorings.

It is easy to see that each such choice of B,, leads to a valid 2-coloring for the pair
of equations y —x =ma and y —x = mb using Eqn. (1). Therefore, there are
exactly 2™ valid 2-colorings of [1,m(a + b — 1)] for the pair of equations y — x =
ma and y — x = mb. Ul

Theorem 2 uses the characterization of valid colorings on [1,m(a + b — 1)] in
Theorem 1 to show that none of these colorings can be extended to
[I,m(a+ b — 1)+ 1], thereby establishing the value of %#,(ma,mb). Thus, the
two theorems together give a characterization of all valid colorings of
(1, #,(ma,mb) — 1].

Theorem 2 Let m, a, b be positive integers, with a # b, ab even and gcd(a,b) = 1.
Then the disjunctive Rado number for the pair of equationsy —x = ma andy — x =
mb is given by

Rq(ma,mb) =m(a+b—1)+ 1.
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Proof Theorem 1 characterizes all valid 2-colorings of [1,m(a + b — 1)] for the
pair of equations y—Xx=ma and y —x = mb. To prove
Rq(ma,mb) = m(a+Db— 1)+ 1, it suffices to show that regardless of how the
domain of y is extended to include m(a + b — 1) + 1, there must be a monochro-
matic solution to at least one of y —x = ma, y — x = mb. Clearly, this can only be
possible with y=m(a+b—1)+1, and so x=m(b—1)+1 or m(a— 1)+ 1.
Therefore, we must show that y(m(a — 1) + 1) # y(m(b — 1) 4 1) for each valid
2-coloring on [1,m(a + b — 1)] given in Theorem 1.

We treat the cases a =1 and a > 1 separately. For a =1 and any valid 2-
coloring y of [1, mb] for y —x =m, we have y(x+m) — y(x) = 1(mod 2) for
x € [1,m]. Thus, y(m(b—1)+1) — z(1) = b — 1 = 1(mod 2), since b is even.

For the rest of this proof, assume a > 1, so that r > 0. Let y be any valid 2-
coloring of [1,m(a + b — 1)] for the pair of equations y — x = ma and y — x = mb,
characterized in Theorem 1. Since y(x + ma) — x(x) = 1(mod 2) for x € [1,mad],
we have y(x+kma) — y(x) = k(mod 2) for 1<k<g. In particular,
2(m(b—1)+1) = y(m(r— 1) + 1) = g(mod 2).

From ab— (b—1)a=a= A,b—p,a and r=/,b — y,a=>b—qga we have
(Aas tty) = (a,b — 1) and (4,, 1) = (1, q). Therefore, by (2) we have

2(mb—1)+1) — y(m(a—1)+1)
=(x(mb—=1)+1) = y(m(r—1)+1)) = (x(m(a—1)+ 1) — (1))
+ (x(m(r = 1) +1) = (1))

q— ((ha = 21) + (g = 1)) + ((r = 20) + (1, — 1)) (mod 2)
=qg—(a—1)—(b—qg—1)(mod 2)
1

O

We proceed to give a different proof for the value of %,(ma, mb) which relies on
the representation of any 7 € Z as an integer linear combination A.a — p,b. The
structure of valid 2-colorings is closely connected to these representations: if y is a
valid 2-coloring, then y(da — ub) =1 — y((A+ 1)a — ub) =1 — y(da — (u+ 1)b)
when these integers lie in the domain of y. Lemma 1 helps us establish some
structure on these representations.

Lemma 1 Let m, a, b be positive integers, with gcd(a,b) =1 and a<b. For
t € [1,a], define integers A, 11, by t = J4b — pa, 1< 2, <a.

(i) Fors,t€[l,a], s > A, implies u; > p,.
(i) Forre[l,a—1], 4 <a—1and g, <b-—1.
(iii) Forze[l,a], 4 + Ayr = a.
Proof

(i) Note that J;>4 and u,<p leads to the contradiction
s—t=A—A)b— (g, —)a>b>a>s—t.
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(i) Note that 4, = a implies t=a and y, =b—1. Sofort#a, i, # /. =a
and p, = % < 4=l <p — 1 Therefore, u, <b— 1.

(i) From a=t+ (a—1t) = (4 + da—t)b — (4, + p,_,)a we have A + A4y =
ka for some k € Z. Moreover, 0 </, + 4,_;<2a implies k = 1.

O

Theorem 3 Let m, a, b be positive integers, with a # b, ab even, and gcd(a,b) = 1.
Then the disjunctive Rado number R, (ma,mb) for the pair of equations
y—Xx=ma,y—x =mb is given by

Rq(ma,mb) =m(a+b—1)+ 1.

Proof Without loss of generality, we assume a <b throughout this proof.

I. (SurFicIENCY FOR EXISTENCE AND UPPER BOUND)

Suppose ab is even. We claim that #,;(ma, mb) exists, and is bounded above by
m(a+b— 1)+ 1 in this case.

Let v [l,mla+b-1)+1] — {0,1} be any 2-coloring of
[Lm(a+b—1)+1]. Consider two sequences (X0, X1, X2, « « +y Xa)s
(Y0, Y1,Y25 - - -+ Ya)» given by

(k4 1)b

kb
X = {-‘ma—kmb—f—l7 Vi = {

-‘ma—kmb—f—l, 0<k<a.
a

Note that 1 <x; <y, and

)’kn:1: q(ktll)ﬂ (ktll)b>a+b§(al)+b.

Thus, each x; and each y; lies in the domain of .

Suppose, by way of contradiction, that y(x) # y(x + ma) whenever x,x +
ma € [l,m(a+b—1)+1] and y(x) # y(x+mb) whenever x,x-+mb¢c
(1,m(a+b—1) + 1]. Since x(x + ma) — x(x) = 1(mod 2), we have

2 (i) = 1 (xe) = [@] - {%} (mod 2)

for k € {0, ...,a}. We also have

2 (i) — 2 (vie) = 1(mod 2)
for k € {0,...,a — 1}. But now

@ Springer



38 Page 8 of 10 Graphs and Combinatorics (2022) 38:38

a—

(]

2(xa) = x(x0) = ¥ (x(x1) — x(xx)) (mod 2)

~
I

0

Q
|
—_

(Oasr) = 2e)) + (2(k) — 2(xx))) (mod 2)

T
=

(4522 2] e

a+ b (mod 2)
1 (mod 2)

This contradicts xg = x,, thereby proving that every 2-coloring of [1,m(a + b —
1) + 1] admits a monochromatic solution of either y — x = ma or y — x = mb. Thus,
Rq4(ma, mb) exists, and is bounded above by m(a +b—1) + 1.

II. (Lower Bounp)

To show Z,;(ma,mb) > m(a+b—1), we exhibit a valid 2-coloring of
[1,m(a+b—1)].

We treat the cases a = 1 and a > 1 separately. If a = 1, the 2-coloring of [1, mb]
given by

A(x) = [ﬁ—‘ (mod 2)

is valid, as in Case 1.

Henceforth, let a > 1 and write b = ga + r, where 0<r <a — 1. Note that »r = 0
is only possible if a = 1 since gcd(a,b) = 1. We partition the interval [1,m(a +
b—1)] into intervals of length ma, except possibly for the last interval:
[1,mal, [ma + 1,2ma), [2ma+ 1,3mal,...,[gma+ 1,(q+ 1)mal,[(q + 1)ma + 1,
(g + 1)ma + m(r — 1)]. Note that the last interval exists only when r > 1. It suffices
to define the color of the integers in the interval [1, ma] since we must have
7(x) # x(x + ma) for a valid coloring.

Since ged(a, b) = 1, corresponding to each ¢ € [1,d], there is a unique pair 4, 4,
such that r = 1,b — pa, 1 <, <a. Define y : [1,ma] — {0,1} by

7(x) = Z + p(mod 2), 3)

where [£] =t =Ab— pa, 1< <a.

We claim that y is a valid 2-coloring on [1,m(a + b — 1)] for the equations
y—x=maand y — x = mb.

The coloring ¥ is a valid 2-coloring on [1,m(a + b — 1)] for the equation y — x =
ma by construction of y. To show this is also a valid 2-coloring for the equation
y — x = mb, we must show y(x) # y(x + mb) for x € [1,m(a — 1)].

Let m(t—1)<x<mt, 1<t<a—1 and t=Akb—pa, 1<i<a
Then m(t+r—1)<x+mr<m(t+r), and t+r=(Lb— pa)+ (b—qa)=
(A + 1)b— (1, + g)a. Two cases arise: (i) 1 + r <a, and (ii) 1 + r > a.

Cast (1). If t + r <a, then x + mr <ma, and so

@ Springer



Graphs and Combinatorics (2022) 38:38 Page 9 of 10 38

heic = 0 = 141 = (b — a) + (b— qa) = (b + Db — (1, + g)a.  (4)

We may exclude the case A, = a since that would imply a | and 1 <t<a — 1.
Therefore, 2,4, = 4, + 1 and p,,, = u, + g by uniqueness of expression. From the
construction of y we have y(x+ma) — x(x) = 1(mod 2), and so y(x + kma) —
7(x) = k(mod 2) for 1 <k <gq. In particular, from (x + mb) — (x + mr) = gma we
have y(x +mb) — y(x + mr) = g(mod 2). Therefore, from Eqn. (3)

7(x 4 mb) = 7(x) = (e mb) = 7+ mr) ) + (x4 mr) = 7))

=q+ ()~t+r - ir) + (:uH—r - :ut) (mod 2)
=qg+1+¢q (mod 2)
=1(mod 2).

Cask (ii). If t + r > a, then 0< (x + mr) — ma <2m(a — 1) — ma <ma. Now

Jitr—ab — lyyr_qa =t+1r—a= (4b—wa)+ (b—-qga)—a= A4+ 1)b— (4, +q+ 1)a.
(5)

As in Case (i), we may exclude the case 4, = a since that would imply a | 7 and
1<t<a-—1. Thus A <a, we have A, =4 +1and p ., =, +qg+1 by
uniqueness of expression. Arguing as in Case (i), we have from Eqn. (3)

7(x +mb) — y(x) :(x(x + mb) — y(x + mr — ma)) + ()((x + mr —ma) — ;((x))

E(q + 1) + (;LtJrrfa - j-t) + (:utJrrfa - Nt) (mOd 2)
=(g+1)+1+4(g+1)(mod 2)
=1 (mod 2).

This completes the proof. O

We claim that our construction is more efficient than the one in [7] in the
following way: given some n € [1,m(a+ b — 1) + 1], we show that determination
of y(n) takes time polylog(ma + mb) (that is, time polynomial in log(ma + mb)),
while it can take time O(ma + mb) to determine the value of the valid coloring
constructed in [7] at n. Our time complexity is polynomial in the input values
ma, mb, n, since integer k takes O(log k) bits to represent.

To show this, let r= [2mdma] — 3 p— g, where 1<2,<a. Then, by
definition of y (and since y is valid),

x(n) = L%J + yx(n mod ma) = L%J + A 4 p,(mod 2).

Thus, to determine y(n) computationally, one needs to determine (i) (n mod ma)
and |- | from n, (ii) 7 from (nmod ma), and (iii) 4, u, from . The first two are
standard operations and can be performed in polylog(ma + mb) time.

To determine 4, u, from f, use the extended Euclidean algorithm twice: first to

determine m, a, b from ma, mb and then to get integers A, u such that 1 = b — ua,
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which implies t = (#A)b — (tpt)a. Finally, determine integers ¢, r such that tA =
ga+r such that re|[l,al, which gives = (tA—qa)b— (tu+ gb)
a=rb— (tu+ gb)a, so that A, = r,u, = tu + gb. All the involved operations can
be performed in time polylog(ma + mb), proving our claim.
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