# CHARACTERIZATION AND ENUMERATION OF PALINDROMIC NUMBERS WHOSE SQUARES ARE ALSO PALINDROMIC 

Amitabha Tripathi


#### Abstract

Palindromic numbers are positive integers that remain unchanged when their decimal digits are reversed. We characterize palindromic numbers whose squares are also palindromic. We use this to determine the number of $n$-digit palindromic numbers whose squares are palindromic, and the number of palindromic numbers whose squares are palindromic and which are not greater than a fixed positive integer.


## 1. Introduction

Palindromes are words that read the same when read from left to right or from right to left. Palindromic numbers are positive integers which remain unchanged when their digits are reversed. Palindromic numbers have received much attention in recreational mathematics; see [4, pp. 6-7, 28-29]. Whereas it is easy to list all palindromic numbers, and even count their number up to a given positive integer, the same is far from true for palindromic numbers that are integral powers. In fact G. J. Simmons [3, p. 96] conjectured that there are no palindromic numbers of the form $n^{k}$ for $k>4$ and $n>1$.

It is easy to see that there are infinitely many squares, cubes and fourth powers that are palindromic numbers. In fact, for each $n \geq 0,\left(10^{n}+1\right)^{k}=\sum_{i=0}^{k}\binom{k}{i} 10^{n i}$ is palindromic for $k \in\{2,3,4\}$ since each of the binomial coefficients fails to exceed 9 . Note that each of these numbers fails to be palindromic for $k \geq 5$ due to the fact that at least one binomial coefficient exceeds 9 . On the other hand, palindromic powers with a nonpalindromic root are extremely rare. It is conjectured that the only palindromic power greater than 2 with a nonpalindromic root is $2201: 2201^{3}=10662526601$. Although there are many more palindromic squares with a nonpalindromic root, it is not known if there are infinitely many. The largest known palindromic square with a nonpalindromic root, discovered by Feng Yuan in January 2008 (see [1]), appears to be the 55 -digit palindromic number

$$
1886536671850530641991373196913731991460350581766356 \text { 881, }
$$

which is the square of the 28 -digit nonpalindromic number

$$
1373512530649258635292477609 .
$$

The purpose of this article is to explore palindromic squares whose roots are also palindromic. More specifically, if $n$ and $n^{2}$ are both palindromic, we: (i) characterize all such $n$ (Theorem 4); (ii) give a formula for the number of all such $n$ having a fixed number of digits (Theorem 5); and (iii) give a formula for the number of all such $n$ which are bounded by a fixed positive integer $N$ (Theorem 8) in Section 2.

[^0]A table of palindromic squares with up to 49 digits may be found in [5]. Whereas the list contains all those palindromic squares with palindromic roots, it is not clear if the list is complete with respect to nonpalindromic roots, particularly for "large" numbers of digits. Keith [2] provides several tables and makes some conjectures in exploring the problem of palindromic squares and cubes, but does not provide any proofs.

## 2. Palindromic squares with palindromic roots

Throughout the rest of this paper, we assume $n$ and $n^{2}$ are palindromic numbers. From the congruence $(50-n)^{2} \equiv n^{2}(\bmod 100)$ we deduce that the number of distinct last two digits among squares are restricted to squares of the set of integers in $\{1, \ldots, 25\}$. Further, these squares have distinct last two digits except for $\left\{10^{2}, 20^{2}\right\}$ and $\left\{5^{2}, 15^{2}, 25^{2}\right\}$, accounting for a total of 22 distinct possibilities for the last two digits of a square. A more detailed analysis of the last two digits of squares leads us to conclude that palindromic squares with palindromic roots must have an odd number of digits.

Lemma 1. If both $n$ and $n^{2}$ are palindromic numbers, then $n^{2}$ must have an odd number of digits.
Proof. Suppose $n$ and $n^{2}$ are both palindromic numbers, and $n^{2}$ has an even number of digits. Squares end in one of the following 22 two-digit numbers:

$$
\begin{equation*}
00, \quad e 1, \quad e 4, \quad 25, \quad o 6, \quad e 9 \tag{1}
\end{equation*}
$$

where $\boldsymbol{o} \in\{1,3,5,7,9\}$ and $\boldsymbol{e} \in\{0,2,4,6,8\}$. Since $n^{2}$ is a palindrome, it cannot end in 00 .

- If $n^{2}$ ends in $\boldsymbol{e} 1, n$ must end in 1 or 9 . Since $n^{2}$ also begins with $1 \boldsymbol{e}, n$ must begin with 3 or 4 .
- If $n^{2}$ ends in $\boldsymbol{e} 4, n$ must end in 2 or 8 . Since $n^{2}$ also begins with $4 \boldsymbol{e}, n$ must begin with 6 .
- If $n^{2}$ ends in $25, n$ must end in 5 . Since $n^{2}$ also begins with $52, n$ must begin with 7 .
- If $n^{2}$ ends in $\boldsymbol{o} 6, n$ must end in 4 or 6 . Since $n^{2}$ also begins with $6 \boldsymbol{o}, n$ must begin with 7 or 8 .
- If $n^{2}$ ends in $\boldsymbol{e} 9, n$ must end in 3 or 7 . Since $n^{2}$ also begins with $9 \boldsymbol{e}, n$ must begin with 9 .

Since $n$ must begin and end with the same digit, each is impossible. Therefore $n^{2}$ cannot have an even number of digits.

Let

$$
\begin{equation*}
n=a_{0}+a_{1} \cdot 10+a_{2} \cdot 10^{2}+\cdots+a_{k} \cdot 10^{k} \tag{2}
\end{equation*}
$$

be a $(k+1)$-digit palindromic number whose square

$$
\begin{equation*}
n^{2}=b_{0}+b_{1} \cdot 10+b_{2} \cdot 10^{2}+\cdots+b_{2 k} \cdot 10^{2 k} \tag{3}
\end{equation*}
$$

is also palindromic. Here $a_{i}, b_{i} \in\{0,1, \ldots, 9\}$ for each $i$, each of $a_{0}, a_{k}, b_{0}, b_{2 k}$ is nonzero (the fact that $1 \leq b_{2 k} \leq 9$ is a consequence of Lemma 1 ), and

$$
\begin{align*}
a_{k-i}=a_{i} & \text { for } i \in\{0,1, \ldots,\lfloor k / 2\rfloor\},  \tag{4}\\
b_{2 k-i}=b_{i} & \text { for } i \in\{0,1, \ldots, k\}
\end{align*}
$$

From (2),

$$
\begin{equation*}
n^{2}=s_{0}+s_{1} \cdot 10+s_{2} \cdot 10^{2}+\cdots+s_{i} \cdot 10^{i}+\cdots+s_{2 k} \cdot 10^{2 k} \tag{5}
\end{equation*}
$$

where

$$
s_{i}=a_{0} a_{i}+a_{1} a_{i-1}+\cdots+a_{i} a_{0} \text { for } i \in\{0,1, \ldots, 2 k\}
$$

We adopt the convention $a_{i}=0$ for $i>k$ when defining $s_{i}$. Hence

$$
\begin{equation*}
s_{2 k-i}=a_{k-i} a_{k}+a_{k-i+1} a_{k-1}+\cdots+a_{k} a_{k-i}=a_{i} a_{0}+a_{i-1} a_{1}+\cdots+a_{0} a_{i}=s_{i} \tag{6}
\end{equation*}
$$

for $i \in\{0,1, \ldots, k\}$ by (4). In particular, using (4) we have

$$
\begin{equation*}
s_{k}=a_{0}^{2}+a_{1}^{2}+\cdots+a_{k}^{2} \tag{7}
\end{equation*}
$$

The only single-digit numbers whose squares are palindromic are 1,2 and 3 . Henceforth we consider only those $n$ in (2) with $k>0$ and $a_{0} \neq 0$. The following result is crucial in answering the first of our objectives mentioned in this section:

Let $x_{1}, x_{2}, \ldots, x_{r}$ and $y_{1}, y_{2}, \ldots, y_{r}$ be sets of real numbers such that $x_{1} \leq x_{2} \leq \cdots \leq x_{r}$ and $y_{1} \leq y_{2} \leq \cdots \leq y_{r}$. The rearrangement inequality states that

$$
\begin{equation*}
x_{r} y_{1}+x_{r-1} y_{2}+\cdots+x_{1} y_{r} \leq x_{1} y_{\sigma(1)}+x_{2} y_{\sigma(2)}+\cdots+x_{r} y_{\sigma(r)} \leq x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{r} y_{r} \tag{8}
\end{equation*}
$$

for every permutation $\sigma$ of $\{1,2, \ldots, r\}$.
In particular,

$$
x_{1} x_{\sigma(1)}+x_{2} x_{\sigma(2)}+\cdots+x_{r} x_{\sigma(r)} \leq x_{1}^{2}+x_{2}^{2}+\cdots+x_{r}^{2}
$$

Hence

$$
\begin{equation*}
s_{i}=a_{0} a_{i}+a_{1} a_{i-1}+\cdots+a_{i} a_{0} \leq a_{0}^{2}+a_{1}^{2}+\cdots+a_{i}^{2} \leq s_{k} \tag{9}
\end{equation*}
$$

for $i \in\{0,1, \ldots, k\}$ by (7).
Theorem 2. Let $k>0$, and suppose $n=\sum_{i=0}^{k} a_{i} \cdot 10^{i}$ is a palindromic number. Then $n^{2}$ is a palindromic number if and only if $\sum_{i=0}^{k} a_{i}^{2} \leq 9$.

Proof. We use notation in (2), (3) and (5).
Suppose $s_{k} \leq 9$. Then $s_{i} \leq 9$ for each $i \in\{0,1, \ldots, k\}$ by (9). Thus $b_{i}=s_{i}$ and $s_{2 k-i}=s_{i}$ for each $i \in\{0,1, \ldots, k\}$ by (6), so that $b_{2 k-i}=s_{2 k-i}=s_{i}=b_{i}$. Hence $n^{2}$ is a palindromic number.

Now suppose $s_{k}>9$. Let $\ell$ be the least nonnegative integer for which $s_{\ell}>9$. Thus $b_{i}=s_{i}$ for $i<\ell$ and $b_{\ell} \equiv s_{\ell}(\bmod 10), b_{\ell}<s_{\ell}$. Therefore $s_{2 k-\ell}=s_{\ell} \geq 10$, so that $b_{2 k-(\ell-1)}>s_{2 k-(\ell-1)}=s_{\ell-1}=b_{\ell-1}$. Hence $n^{2}$ is not a palindromic number.

Theorem 3. Let $k>0$. If both $n=\sum_{i=0}^{k} a_{i} \cdot 10^{i}$ and $n^{2}$ are palindromic numbers, then $a_{i} \in\{0,1,2\}$ for each $i \in\{0,1, \ldots, k\}$.
Proof. Let $k>0$, and suppose both $n$ and $n^{2}$ are palindromic numbers. Then $s_{k}=a_{0}^{2}+a_{1}^{2}+\cdots+a_{k}^{2} \leq 9$ by (7) and Theorem 2. Since $n$ cannot begin with a $0, a_{0}=a_{k} \neq 0$. Now since $k>0$, no $a_{i}$ can exceed 2.

Theorem 4. Suppose $k>0$. Then $n=\sum_{i=0}^{k} a_{i} \cdot 10^{i}$ and $n^{2}$ are both palindromic numbers if and only if $a_{k-i}=a_{i}, a_{i} \in\{0,1,2\}$ for $0 \leq i \leq\left\lfloor\frac{1}{2} k\right\rfloor, a_{0} \neq 0$, and
(i) if $k$ is odd, and

- if $a_{0}=1$, then for $1 \leq i \leq \frac{1}{2}(k-1), a_{i} \in\{0,1\}$ and $\left|\left\{i: a_{i}=1\right\}\right| \leq 3$; or
- if $a_{0}=2$, then $a_{i}=0$ for $1 \leq i \leq \frac{1}{2}(k-1)$.
(ii) if $k$ is even, and
- if $a_{0}=1$ and $a_{k / 2} \in\{0,1\}$, then for $1 \leq i \leq \frac{1}{2}(k-2), a_{i} \in\{0,1\}$ and $\left|\left\{i: a_{i}=1\right\}\right| \leq 3$; or
- if $a_{0}=1$ and $a_{k / 2}=2$, then for $1 \leq i \leq \frac{1}{2}(k-2), a_{i} \in\{0,1\}$ and $\left|\left\{i: a_{i}=1\right\}\right| \leq 1$; or
- if $a_{0}=2$, then $a_{i}=0$ for $1 \leq i \leq \frac{1}{2}(k-2)$ and $a_{k / 2} \in\{0,1\}$.

Proof. Suppose $k>0$, and both $n$ and $n^{2}$ are palindromic numbers. Then $a_{k-i}=a_{i}$ and $a_{i} \in\{0,1,2\}$ for $0 \leq i \leq k / 2, a_{0} \neq 0$, by (4) and Theorem 3. From (4) and (7) we have

$$
s_{k}= \begin{cases}2\left(a_{0}^{2}+a_{1}^{2}+\cdots+a_{(k-1) / 2}^{2}\right) & \text { if } k \text { is odd }  \tag{10}\\ 2\left(a_{0}^{2}+a_{1}^{2}+\cdots+a_{(k-2) / 2}^{2}\right)+a_{k / 2}^{2} & \text { if } k \text { is even }\end{cases}
$$

We use Theorem 2 to characterize $n$.
CASE (i): Suppose $k$ is odd.

- If $a_{0}=1$, Theorem 2 applied to (10) gives $a_{1}^{2}+\cdots+a_{(k-1) / 2}^{2} \leq \frac{7}{2}$. So for $1 \leq i \leq \frac{1}{2}(k-1), a_{i} \in\{0,1\}$ and $\left|\left\{i: a_{i}=1\right\}\right| \leq 3$.
- If $a_{0}=2$, Theorem 2 applied to (10) gives $a_{1}^{2}+\cdots+a_{(k-1) / 2}^{2} \leq \frac{1}{2}$. Hence $a_{i}=0$ for $k \in\left\{1,2, \ldots, \frac{1}{2}(k-1)\right\}$. CASE (ii): Suppose $k$ is even.
- If $a_{0}=1$ and $a_{k / 2} \in\{0,1\}$, Theorem 2 applied to (10) gives $a_{1}^{2}+\cdots+a_{(k-2) / 2}^{2} \leq \frac{7}{2}$. So for $1 \leq i \leq \frac{1}{2}(k-2)$, $a_{i} \in\{0,1\}$ and $\left|\left\{i: a_{i}=1\right\}\right| \leq 3$.
- If $a_{0}=1$ and $a_{k / 2}=2$, Theorem 2 applied to (10) gives $a_{1}^{2}+\cdots+a_{(k-2) / 2}^{2} \leq \frac{3}{2}$. So for $1 \leq i \leq \frac{1}{2}(k-2)$, $a_{i} \in\{0,1\}$ and $\left|\left\{i: a_{i}=1\right\}\right| \leq 1$.
- If $a_{0}=2$, Theorem 2 applied to (10) gives $2\left(a_{1}^{2}+\cdots+a_{(k-2) / 2}^{2}\right)+a_{k / 2}^{2} \leq 1$. Hence $a_{i}=0$ for $k \in\left\{1,2, \ldots, \frac{1}{2}(k-2)\right\}$ and $a_{k / 2} \in\{0,1\}$.
Theorem 5. The number of d-digit palindromic numbers $n$ such that $n^{2}$ is also palindromic is given by

$$
f_{d}= \begin{cases}\binom{d_{1}-1}{0}+\binom{d_{1}-1}{1}+\binom{d_{1}-1}{2}+\binom{d_{1}-1}{3}+1 & \text { if } d=2 d_{1} \\ 3\binom{d_{1}-1}{0}+3\binom{d_{1}-1}{1}+2\binom{d_{1}-1}{2}+2\binom{d_{1}-1}{3}+2 & \text { if } d=2 d_{1}+1\end{cases}
$$

Proof. The characterization of palindromic numbers $n$ such that $n^{2}$ is also palindromic is given by Theorem 4. Since $n$ is palindromic, we count the number of ordered tuples ( $a_{0}, a_{1}, \ldots, a_{(k-1) / 2}$ ) for odd $k$ and the number of ordered tuples $\left(a_{0}, a_{1}, \ldots, a_{k / 2}\right)$ for even $k$. In all cases, $a_{0} \in\{1,2\}$ and $a_{i} \in\{0,1\}$ for $i \in\{1,2, \ldots,\lfloor k / 2\rfloor\}$ except that $a_{k / 2}$ can also equal 2 for even $k$. Note that according to the notation in (2), $n$ has $k+1$ digits since $a_{0} \neq 0$.

Suppose $n$ has $d=2 d_{1}$ digits. Thus $k=d-1$ is odd, and $\frac{1}{2}(k-1)=d_{1}-1$. If $a_{0}=1$, there are at most three nonzero $a_{i}$ for $i \in\left\{1,2, \ldots, d_{1}-1\right\}$. There are

$$
\binom{d_{1}-1}{0}+\binom{d_{1}-1}{1}+\binom{d_{1}-1}{2}+\binom{d_{1}-1}{3}
$$

such choices. There is a unique number corresponding to $a_{0}=2$.
Suppose $n$ has $d=2 d_{1}+1$ digits. Thus $k=d-1$ is even, and $\frac{1}{2}(k-2)=d_{1}-1$. If $a_{0}=1$ and $a_{k / 2}$ is either 0 or 1 , there are at most three nonzero $a_{i}$ for $i \in\left\{1,2, \ldots, d_{1}-1\right\}$. There are

$$
\binom{d_{1}-1}{0}+\binom{d_{1}-1}{1}+\binom{d_{1}-1}{2}+\binom{d_{1}-1}{3}
$$

such choices for each of the two choices of $a_{k / 2}$. If $a_{0}=1$ and $a_{k / 2}=2$, there is at most one nonzero $a_{i}$ for $i \in\left\{1,2, \ldots, d_{1}-1\right\}$. There are

$$
\binom{d_{1}-1}{0}+\binom{d_{1}-1}{1}
$$

such choices for this choice of $a_{k / 2}$. There are two numbers corresponding to $a_{0}=2$.
We close this article by determining the number of palindromic numbers $n$ that are not greater than a given positive integer $N$, and for which $n^{2}$ is also palindromic. Let $S$ denote the set of palindromic numbers whose square is also palindromic, and for each positive integer $N$, let $\boldsymbol{f}(N)=|\{n \in \boldsymbol{S}: n \leq N\}|$. If $\boldsymbol{S}_{d}$ is the set of $d$-digit numbers in $\boldsymbol{S}$, then $\boldsymbol{f}_{d}=\left|\boldsymbol{S}_{d}\right|$ is given by Theorem 4. If $\boldsymbol{f}_{d}(N)=\left|\left\{n \in \boldsymbol{S}_{d}: n \leq N\right\}\right|$, then

$$
\begin{equation*}
\boldsymbol{f}(N)=\boldsymbol{f}_{1}+\boldsymbol{f}_{2}+\cdots+\boldsymbol{f}_{d-1}+\boldsymbol{f}_{d}(N) \tag{11}
\end{equation*}
$$

for any $d$-digit number $N$.
Definition 6. The palindromic completion of $N=\sum_{i=0}^{d-1} A_{i} \cdot 10^{i}$ is the palindromic number $N^{\star}=$ $\sum_{i=0}^{d-1} A_{i}^{\star} \cdot 10^{i}$, where $A_{i}^{\star}=A_{i}$ for $i \geq\left\lfloor\frac{d}{2}\right\rfloor$.
Definition 7. Let $N=\sum_{i=0}^{d-1} A_{i} \cdot 10^{i}$. Let $\epsilon(N)$ equal 0 if $N^{\star}>N$, and 1 if $N^{\star} \leq N$. Set $s=\max \left\{i: A_{i}>1\right\}$ if such an $i$ exists, and 0 otherwise. Let $T=\left\{i: s<i<d-1, i \geq\left\lfloor\frac{d}{2}\right\rfloor, A_{i}=1\right\}$. Let $r=|T|$, and write $T=\left\{t_{1}, t_{2}, t_{3}, \ldots, t_{r}\right\}$, with $t_{1}>t_{2}>t_{3}>\cdots>t_{r}$, when $r>0$.

Theorem 8. For each $d \geq 1$, let $\boldsymbol{S}_{d}$ denote the set of d-digit palindromic numbers whose square is also palindromic, and let $\boldsymbol{f}_{d}=\left|\boldsymbol{S}_{d}\right|$. For each positive integer $N$, let $\boldsymbol{f}_{d}(N)=\left|\left\{n \in \boldsymbol{S}_{d}: n \leq N\right\}\right|$.

Let

$$
\begin{equation*}
N=A_{0}+A_{1} \cdot 10+A_{2} \cdot 10^{2}+\cdots+A_{d-1} \cdot 10^{d-1} \tag{12}
\end{equation*}
$$

with $A_{i} \in\{0,1, \ldots, 9\}$ for each $i, A_{d-1} \neq 0$.
(I) Suppose $A_{d-1}>1$. Then
$f_{d}(N)= \begin{cases}f_{d}-2 & \text { if } d \text { is odd and } N<20_{d-2} 2 ; \\ f_{d}-1 & \text { if } d \text { is odd and } 20_{d-2} 2 \leq N<20_{(d-3) / 2} 10_{(d-3) / 2} 2, \text { or } \\ & \text { if d is even and } N<20_{d-2} 2 ; \\ f_{d} & \text { otherwise } .\end{cases}$
(II) Suppose $A_{d-1}=1$.

Subcase (A). Suppose $d=2 d_{1}$ is even.

- If $r=0$, then

$$
f_{d}(N)= \begin{cases}\sum_{i=0}^{3}\binom{s-d_{1}+1}{i} & \text { if } s \geq d_{1} \\ 1 & \text { if } s<d_{1} \text { and } N>10_{2 d_{1}-1} \\ 0 & \text { otherwise }\end{cases}
$$

- If $1 \leq r \leq 3$, then

$$
f_{d}(N)=\sum_{i=0}^{3}\binom{t_{1}-d_{1}}{i}+\sum_{i=0}^{2}\binom{t_{2}-d_{1}}{i}+\sum_{i=0}^{1}\binom{t_{3}-d_{1}}{i}+ \begin{cases}\sum_{i=0}^{3-r}\binom{s-d_{1}+1}{i} & \text { if } s \geq d_{1} \\ \epsilon(N) & \text { if } s<d_{1}\end{cases}
$$

- If $r>3$, then

$$
f_{d}(N)=\sum_{i=0}^{3}\binom{t_{1}-d_{1}}{i}+\sum_{i=0}^{2}\binom{t_{2}-d_{1}}{i}+\sum_{i=0}^{1}\binom{t_{3}-d_{1}}{i}+1
$$

Subcase (B). Suppose $d=2 d_{1}+1$ is odd.

- If $r=0$, then

$$
f_{d}(N)= \begin{cases}3 \sum_{i=0}^{1}\binom{s-d_{1}}{i}+2 \sum_{i=2}^{3}\binom{s-d_{1}}{i} & \text { if } s \geq d_{1} \\ 1 & \text { if } s<d_{1} \text { and } N>10_{2 d_{1}} \\ 0 & \text { otherwise }\end{cases}
$$

- If $r=1$, then

$$
f_{d}(N)=3 \sum_{i=0}^{1}\binom{t_{1}-d_{1}-1}{i}+2 \sum_{i=2}^{3}\binom{t_{1}-d_{1}-1}{i}+ \begin{cases}2 \sum_{i=0}^{2}\binom{s-d_{1}}{i}+1 & \text { if } s \geq d_{1} \\ \epsilon(N) & \text { if } s<d_{1}\end{cases}
$$

- If $r=2$, then

$$
\begin{aligned}
f_{d}(N)=3 \sum_{i=0}^{1}\binom{t_{1}-d_{1}-1}{i}+2 \sum_{i=2}^{3}\binom{t_{1}-d_{1}-1}{i}+2 \sum_{i=0}^{2}\binom{t_{2}-d_{1}-1}{i}+1 \\
+ \begin{cases}2 \sum_{i=0}^{1}\binom{s-d_{1}}{i} & \text { if } s \geq d_{1} \\
\epsilon(N) & \text { if } s<d_{1}\end{cases}
\end{aligned}
$$

- If $r=3$, then

$$
\begin{array}{r}
f_{d}(N)=3 \sum_{i=0}^{1}\binom{t_{1}-d_{1}-1}{i}+2 \sum_{i=2}^{3}\binom{t_{1}-d_{1}-1}{i}+2 \sum_{i=0}^{2}\binom{t_{2}-d_{1}-1}{i}+2 \sum_{i=0}^{1}\binom{t_{3}-d_{1}-1}{i}+1 \\
+ \begin{cases}2 & \text { if } s \geq d_{1} \\
\epsilon(N) & \text { if } s<d_{1}\end{cases}
\end{array}
$$

- If $r>3$, then

$$
f_{d}(N)=3 \sum_{i=0}^{1}\binom{t_{1}-d_{1}-1}{i}+2 \sum_{i=2}^{3}\binom{t_{1}-d_{1}-1}{i}+2 \sum_{i=0}^{2}\binom{t_{2}-d_{1}-1}{i}+2 \sum_{i=0}^{1}\binom{t_{3}-d_{1}-1}{i}+3
$$

Remark 9. All binomial coefficients $\binom{n}{k}$ are set equal to 0 when $n<0$ or undefined, or when $k>n$. We set $\binom{0}{0}$ equal to 1 .

Proof. From Theorem 4 we know that there are at most two integers in $S_{d}$ that do not begin with 1. One of these is $20_{d-2} 2$; this is the only one when $d$ is even, but when $d$ is odd, $20_{(d-3) / 2} 10_{(d-3) / 2} 2$ also belongs to $\boldsymbol{S}_{d}$. Suppose $N$ is a $d$-digit number.
(I) If $N$ does not begin with 1 , then $\boldsymbol{f}_{d}(N)$ equals $\boldsymbol{f}_{d}$ unless one or both the numbers that begin with 2 in $\boldsymbol{S}_{d}$ exceed $N$. In the exceptional cases $\boldsymbol{f}_{d}(N)$ equals either 1 or 2 less than $\boldsymbol{f}_{d}$, as is easily verified case by case.
(II) Suppose $N$ begins with 1 . Throughout this proof, we let $n=\sum_{i=0}^{d-1} a_{i} \cdot 10^{i}$ with $a_{d-1}=1$. We consider the case where $d$ is odd and the case $d$ is even separately, and use Theorem 4.
Subcase (A). Suppose $d=2 d_{1}$ is even.
If $r=0$ and $s \geq d_{1}$, then $A_{i}=0$ for $i>s$ and $A_{s} \geq 2$. Thus $n \in S_{d}$ and $n \leq N$ if and only if $a_{i}=A_{i}$ for $i>s$ and $a_{i} \in\{0,1\}$ for $d_{1} \leq i \leq s$, with at most three of these $a_{i}$ equal to 1 . There are $\sum_{i=0}^{3}\binom{s-d_{1}+1}{i}$ such choices for the $a_{i}$. If $s<d_{1}$, then $N$ begins with $10_{d_{1}-1}$, so that $n \in \boldsymbol{S}_{d}$ and $n \leq N$ if and only if $n=N^{\star}=10_{d-2} 1$. Thus there is a unique choice for $n \in S_{d}$ with $n \leq N$, unless $N=10_{d-1}$ in which case there is no choice.

Suppose $r \geq 1$. Consider the following cases: (i) $a_{i}=A_{i}$ for $i>t_{1}$ and $a_{t_{1}}=0$; (ii) $a_{i}=A_{i}$ for $i>t_{2}$ and $a_{t_{2}}=0$; (iii) $a_{i}=A_{i}$ for $i>t_{3}$ and $a_{t_{3}}=0$; (iv) $a_{i}=A_{i}$ for $i \geq t_{3}$.

If $r>3$, then $n \in S_{d}$ and $n \leq N$ if and only if one of (i)-(iv) holds. In (i), $a_{i} \in\{0,1\}$ for $d_{1} \leq i<t_{1}$, with at most three of these $a_{i}$ equal to 1 ; there are $\sum_{i=0}^{3}\binom{t_{1}-d_{1}}{i}$ such choices for the $a_{i}$. In (ii), $a_{i} \in\{0,1\}$ for $d_{1} \leq i<t_{2}$, with at most two of these $a_{i}$ equal to 1 ; there are $\sum_{i=0}^{2}\binom{t_{2}-d_{1}}{i}$ such choices for the $a_{i}$. In (iii), $a_{i} \in\{0,1\}$ for $d_{1} \leq i<t_{3}$, with at most one of these $a_{i}$ equal to 1 ; there are $\sum_{i=0}^{1}\binom{t_{3}-d_{1}}{i}$ such choices for the $a_{i}$. In (iv), the only possibility for $n$ is the one with $a_{i}=A_{i}$ for $i \geq t_{3}$ and $a_{i}=0$ for $d_{1} \leq i<t_{3}$.

If $r \leq 3$, then $n \in \boldsymbol{S}_{d}$ and $n \leq N$ if and only if one of the first $r$ of (i)-(iii) holds, together with an additional condition which depends on whether $s \geq d_{1}$ or $s<d_{1}$. The first $r$ of the conditions (i)-(iii) lead to the number of choices in the corresponding conditions, as given in case $r>3$. If $s \geq d_{1}$, additionally $n$ could satisfy the condition $a_{i}=A_{i}$ for $i>s$. Since $a_{i} \in\{0,1\}$ for $s<i<d$ with exactly $r$ of these $a_{i}$ equal to 1 , we must have $a_{i} \in\{0,1\}$ for $d_{1} \leq i \leq s$ with at most $3-r$ of these $a_{i}$ equal to 1 . This
accounts for the term $\sum_{i=0}^{3-r}\binom{s-d_{1}+1}{i}$ corresponding to this additional condition that applies if $s \geq d_{1}$. If $s<d_{1}$, then $A_{i}=\{0,1\}$ for $d_{1} \leq i<d$, with exactly $r$ of the $A_{i}$ equal to 1 . Since $A_{i}=0$ for $d_{1} \leq i<t_{r}$, we must have $a_{i}=A_{i}$ for $d_{1} \leq i<d$. Now $n \in S_{d}$ and $n \leq N$ if and only if $n^{\star}=N^{\star} \leq N$. This accounts for the term $\epsilon(N)$ corresponding to the additional condition when $s<d_{1}$.

Subcase (B). Suppose $d=2 d_{1}+1$ is odd.
If $r=0$ and $s>d_{1}$, then $A_{i}=0$ for $i>s$ and $A_{s} \geq 2$. Thus $n \in S_{d}$ and $n \leq N$ if and only if $a_{i}=A_{i}$ for $i>s, a_{i} \in\{0,1\}$ for $d_{1}<i \leq s, a_{d_{1}} \in\{0,1,2\}$, with at most three of the $a_{i}$ for $i \in\left[d_{1}+1, s\right]$ equal to 1 when $a_{d_{1}} \in\{0,1\}$ and with at most one of the $a_{i}$ for $i \in\left[d_{1}+1, s\right]$ equal to 1 when $a_{d_{1}}=2$. There are $2 \sum_{i=0}^{3}\binom{s-d_{1}}{i}+\sum_{i=0}^{1}\binom{s-d_{1}}{i}$ such choices for the $a_{i}$.

If $s=d_{1}$, then $N$ begins with $10_{d_{1}-1}$ and $A_{d_{1}} \geq 2$. For $i \in\{0,1,2\}$, let $N_{i}$ have the same digits as $N$ except that at the $d_{1}$-th place $N_{i}$ has $i$. So $N_{2}=N$ if $A_{d_{1}}=2$. Then $n \in S_{d}$ and $n \leq N$ if and only if $n=N_{i}^{\star}$ with $i \in\{0,1,2\}$. Thus there are 3 choices for $n \in \boldsymbol{S}_{d}$ with $n \leq N$. Note that $2 \sum_{i=0}^{3}\binom{s-d_{1}}{i}+\sum_{i=0}^{1}\binom{s-d_{1}}{i}=3$ when $s=d_{1}$.

If $s<d_{1}$, then $N$ begins with $10_{d_{1}}$, so that $n \in \boldsymbol{S}_{d}$ and $n \leq N$ if and only if $n=N^{\star}=10_{d-2} 1$. Thus there is a unique choice for $n \in \boldsymbol{S}_{d}$ with $n \leq N$, unless $N=10_{d-1}$ in which case there is no such choice.

Suppose $r \geq 1$. Consider the cases as in SUBCASE A: (i) $a_{i}=A_{i}$ for $i>t_{1}$ and $a_{t_{1}}=0$; (ii) $a_{i}=A_{i}$ for $i>t_{2}$ and $a_{t_{2}}=0$; (iii) $a_{i}=A_{i}$ for $i>t_{3}$ and $a_{t_{3}}=0$; (iv) $a_{i}=A_{i}$ for $i \geq t_{3}$.

If $r>3$, then $n \in S_{d}$ and $n \leq N$ if and only if one of (i)-(iv) holds. In (i), $a_{i} \in\{0,1\}$ for $d_{1}<i<t_{1}$, with at most three of these $a_{i}$ equal to 1 when $a_{d_{1}} \in\{0,1\}$ and at most one of these $a_{i}$ equal to 1 when $a_{d_{1}}=2$; there are $2 \sum_{i=0}^{3}\binom{t_{1}-d_{1}-1}{i}+\sum_{i=0}^{1}\binom{t_{1}-d_{1}-1}{i}$ such choices for the $a_{i}$. In (ii), $a_{i} \in\{0,1\}$ for $d_{1}<i<t_{2}$, with at most two of these $a_{i}$ equal to 1 when $a_{d_{1}} \in\{0,1\}$ and all $a_{i}=0$ when $a_{d_{1}}=2$; there are $2 \sum_{i=0}^{2}\binom{t_{2}-d_{1}-1}{i}+1$ such choices for the $a_{i}$. In (iii), $a_{i} \in\{0,1\}$ for $d_{1}<i<t_{3}$, with at most one of these $a_{i}$ equal to 1 when $a_{d_{1}} \in\{0,1\}$ and $a_{d_{1}} \neq 2$; there are $2 \sum_{i=0}^{1}\binom{t_{3}-d_{1}-1}{i}$ such choices for the $a_{i}$. In (iv), the only two possibilities for $n$ are the ones with $a_{i}=A_{i}$ for $i \geq t_{3}, a_{i}=0$ for $d_{1}<i<t_{3}$ with $a_{d_{1}} \in\{0,1\}$.

If $r \leq 3$, then $n \in \boldsymbol{S}_{d}$ and $n \leq N$ if and only if one of the first $r$ of (i)-(iii) holds, together with an additional condition which depends on whether $s>d_{1}$ or $s=d_{1}$ or $s<d_{1}$. The first $r$ of the conditions (i)-(iii) lead to the number of choices in the corresponding conditions, as given in case $r>3$. We deal with the cases $r=1,2,3$ separately.

If $r=1$, the term corresponding to (i) is $2 \sum_{i=0}^{3}\binom{t_{1}-d_{1}-1}{i}+\sum_{i=0}^{1}\binom{t_{1}-d_{1}-1}{i}$, as given in case $r>3$. If $s>d_{1}$, then we may additionally satisfy $a_{i}=A_{i}$ for $i>s$ and $a_{i} \in\{0,1\}$ for $i \in\left[d_{1}+1, s\right]$, with at most two of these $a_{i}$ equal to 1 when $a_{d_{1}} \in\{0,1\}$ and with all $a_{i}$ equal to 0 when $a_{d_{1}}=2$. This accounts for the additional term $2 \sum_{i=0}^{2}\binom{s-d_{1}}{i}+1$. If $s=d_{1}$, then there are the three additional possibilities for $n$ given by $a_{i}=A_{i}$ for $i>d_{1}$ and $a_{d_{1}} \in\{0,1,2\}$. Note that $2 \sum_{i=0}^{2}\binom{s-d_{1}}{i}+1=3$ when $s=d_{1}$. If $s<d_{1}$, then the additional possibility for $n$ must satisfy $a_{i}=A_{i}$ for $d_{1} \leq i<d$. Now $n \in \boldsymbol{S}_{d}$ and $n \leq N$ if and only if $n^{\star}=N^{\star} \leq N$. This accounts for the term $\epsilon(N)$ corresponding to the additional condition when $s<d_{1}$.

If $r=2$, the term corresponding to (i) is $2 \sum_{i=0}^{3}\binom{t_{1}-d_{1}-1}{i}+\sum_{i=0}^{1}\binom{t_{1}-d_{1}-1}{i}$ and that corresponding to (ii) is $2 \sum_{i=0}^{2}\binom{t_{2}-d_{1}-1}{i}+1$, as given in case $r>3$. If $s>d_{1}$, then we may additionally satisfy $a_{i}=A_{i}$ for $i>s, a_{i} \in\{0,1\}$ for $i \in\left[d_{1}+1, s\right]$ with at most one of these $a_{i}$ equal to 1 , and $a_{d_{1}} \in\{0,1\}$. This accounts for the additional term $2 \sum_{i=0}^{1}\binom{s-d_{1}}{i}$. If $s=d_{1}$, then there are the two additional possibilities
for $n$ given by $a_{i}=A_{i}$ for $i>d_{1}$ and $a_{d_{1}} \in\{0,1\}$. Note that $2 \sum_{i=0}^{1}\binom{s-d_{1}}{i}=2$ when $s=d_{1}$. If $s<d_{1}$, then the argument in the case $r=1$ holds, accounting for the term $\epsilon(N)$.

If $r=3$, the term $2 \sum_{i=0}^{3}\binom{t_{1}-d_{1}-1}{i}+\sum_{i=0}^{1}\binom{t_{1}-d_{1}-1}{i}$ corresponds to (i), the term $2 \sum_{i=0}^{2}\binom{t_{2}-d_{1}-1}{i}+1$ corresponds to (ii), and $2 \sum_{i=0}^{1}\binom{t_{3}-d_{1}-1}{i}$ corresponds to (iii), as given in case $r>3$. If $s \geq d_{1}$, there are the two additional possibilities for $n$ given by $a_{i}=A_{i}$ for $i>d_{1}$ and $a_{d_{1}} \in\{0,1\}$. If $s<d_{1}$, then the argument in the case $r=1$ holds, accounting for the term $\epsilon(N)$.

The tables provided in [5] appear to be the most complete listing of palindromic squares, both with palindromic and nonpalindromic root. The listing is complete with regard to palindromic roots up to 23 digits, and we utilize this to numerically support our results of Theorems 5 and 8 . We take $d=22$ and $d=23$; for both cases $d_{1}=11$. We use the tables of palindromic squares of 43 and 45 digits.

For Theorem 5, we verify from the tables that

$$
\begin{aligned}
& f_{22}=\binom{10}{0}+\binom{10}{1}+\binom{10}{2}+\binom{10}{3}+1=177 \\
& f_{23}=3\binom{10}{0}+3\binom{10}{1}+2\binom{10}{2}+2\binom{10}{3}+2=365
\end{aligned}
$$

For Theorem 8 , we verify from the tables that:

| $d$ | $d_{1}$ | $s$ | $t_{1}$ | $t_{2}$ | $t_{3}$ | $t_{4}$ | $N$ begins | $f_{d}(N)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | 11 | 13 | - | - | - | - | $10_{7}$ | 8 |
| 22 | 11 | 13 | 20 | - | - | - | $110_{6}$ | 137 |
| 22 | 11 | 13 | 20 | 18 | - | - | $11010_{4}$ | 163 |
| 22 | 11 | 13 | 20 | 18 | 15 | - | 11010010 | 165 |
| 22 | 11 | 13 | 20 | 18 | 15 | 14 | 11010011 | 165 |
| 22 | 11 | 10 | - | - | - | - | $10_{10}$ | 1 |
| 22 | 11 | 10 | 20 | - | - | - | $110_{9}$ | 131 |
| 22 | 11 | 10 | 20 | 18 | - | - | $11010_{7}$ | 160 |
| 22 | 11 | 10 | 20 | 18 | 15 | - | $11010010_{4}$ | 165 |
| 22 | 11 | 10 | 20 | 18 | 15 | 14 | $110100110_{3}$ | 165 |


| $d$ | $d_{1}$ | $s$ | $t_{1}$ | $t_{2}$ | $t_{3}$ | $t_{4}$ | $N$ begins | $f_{d}(N)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23 | 11 | 13 | - | - | - | - | $10_{8}$ | 11 |
| 23 | 11 | 13 | 20 | - | - | - | $1010_{6}$ | 204 |
| 23 | 11 | 13 | 20 | 18 | - | - | $101010_{4}$ | 246 |
| 23 | 11 | 13 | 20 | 18 | 15 | - | 101010010 | 250 |
| 23 | 11 | 13 | 20 | 18 | 15 | 14 | 101010011 | 250 |
| 23 | 11 | 10 | - | - | - | - | $10_{11}$ | 1 |
| 23 | 11 | 10 | 20 | - | - | - | $1010_{9}$ | 196 |
| 23 | 11 | 10 | 20 | 18 | - | - | $101010_{7}$ | 241 |
| 23 | 11 | 10 | 20 | 18 | 15 | - | $101010010_{4}$ | 249 |
| 23 | 11 | 10 | 20 | 18 | 15 | 14 | $1010100110_{3}$ | 250 |

## References

[1] P. De Geest, "Palindromic squares", webpage, 2018, http://www.worldofnumbers.com/square.htm.
[2] M. Keith, "Classification and enumeration of palindromic squares", J. Recreational Math. 22:2 (1990), 124-132.
[3] G. J. Simmons, "Palindromic powers", J. Recreational Math. 3:2 (1970), 93-98.
[4] R. Sprague, Recreation in mathematics, Blackie, 1963.
[5] F. Yuan, "Palindromic square numbers", webpage, 2002, http://www.fengyuan.com/palindrome.html.
Amitabha Tripathi: atripath@maths.iitd.ac.in
Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi, India


[^0]:    2010 AMS Mathematics subject classification: 11A63.
    Keywords and phrases: palindromic numbers.
    Received by the editors on December 29, 2019.

