
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS

Volume 50 (2020), No. 3, 1115–1124

DOI: 10.1216/rmj.2020.50.1115 c© Rocky Mountain Mathematics Consortium

CHARACTERIZATION AND ENUMERATION OF PALINDROMIC NUMBERS
WHOSE SQUARES ARE ALSO PALINDROMIC

AMITABHA TRIPATHI

Palindromic numbers are positive integers that remain unchanged when their decimal digits are reversed.
We characterize palindromic numbers whose squares are also palindromic. We use this to determine the
number of n-digit palindromic numbers whose squares are palindromic, and the number of palindromic
numbers whose squares are palindromic and which are not greater than a fixed positive integer.

1. Introduction

Palindromes are words that read the same when read from left to right or from right to left. Palindromic
numbers are positive integers which remain unchanged when their digits are reversed. Palindromic
numbers have received much attention in recreational mathematics; see [4, pp. 6–7, 28–29]. Whereas it
is easy to list all palindromic numbers, and even count their number up to a given positive integer, the
same is far from true for palindromic numbers that are integral powers. In fact G. J. Simmons [3, p. 96]
conjectured that there are no palindromic numbers of the form nk for k > 4 and n > 1.

It is easy to see that there are infinitely many squares, cubes and fourth powers that are palindromic
numbers. In fact, for each n ≥ 0, (10n

+ 1)k =
∑k

i=0
(k

i

)
10ni is palindromic for k ∈ {2, 3, 4} since each

of the binomial coefficients fails to exceed 9. Note that each of these numbers fails to be palindromic
for k ≥ 5 due to the fact that at least one binomial coefficient exceeds 9. On the other hand, palindromic
powers with a nonpalindromic root are extremely rare. It is conjectured that the only palindromic power
greater than 2 with a nonpalindromic root is 2201: 22013

= 10 662 526 601. Although there are many
more palindromic squares with a nonpalindromic root, it is not known if there are infinitely many. The
largest known palindromic square with a nonpalindromic root, discovered by Feng Yuan in January 2008
(see [1]), appears to be the 55-digit palindromic number

1 886 536 671 850 530 641 991 373 196 913 731 991 460 350 581 766 356 881,

which is the square of the 28-digit nonpalindromic number

1 373 512 530 649 258 635 292 477 609.

The purpose of this article is to explore palindromic squares whose roots are also palindromic. More
specifically, if n and n2 are both palindromic, we: (i) characterize all such n (Theorem 4); (ii) give a
formula for the number of all such n having a fixed number of digits (Theorem 5); and (iii) give a formula
for the number of all such n which are bounded by a fixed positive integer N (Theorem 8) in Section 2.
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A table of palindromic squares with up to 49 digits may be found in [5]. Whereas the list contains all
those palindromic squares with palindromic roots, it is not clear if the list is complete with respect to
nonpalindromic roots, particularly for “large” numbers of digits. Keith [2] provides several tables and
makes some conjectures in exploring the problem of palindromic squares and cubes, but does not provide
any proofs.

2. Palindromic squares with palindromic roots

Throughout the rest of this paper, we assume n and n2 are palindromic numbers. From the congruence
(50− n)2 ≡ n2 (mod 100) we deduce that the number of distinct last two digits among squares are
restricted to squares of the set of integers in {1, . . . , 25}. Further, these squares have distinct last two
digits except for {102, 202

} and {52, 152, 252
}, accounting for a total of 22 distinct possibilities for the

last two digits of a square. A more detailed analysis of the last two digits of squares leads us to conclude
that palindromic squares with palindromic roots must have an odd number of digits.

Lemma 1. If both n and n2 are palindromic numbers, then n2 must have an odd number of digits.

Proof. Suppose n and n2 are both palindromic numbers, and n2 has an even number of digits. Squares
end in one of the following 22 two-digit numbers:

(1) 00, e1, e4, 25, o6, e9,

where o ∈ {1, 3, 5, 7, 9} and e ∈ {0, 2, 4, 6, 8}. Since n2 is a palindrome, it cannot end in 00.

• If n2 ends in e1, n must end in 1 or 9. Since n2 also begins with 1e, n must begin with 3 or 4.

• If n2 ends in e4, n must end in 2 or 8. Since n2 also begins with 4e, n must begin with 6.

• If n2 ends in 25, n must end in 5. Since n2 also begins with 52, n must begin with 7.

• If n2 ends in o6, n must end in 4 or 6. Since n2 also begins with 6o, n must begin with 7 or 8.

• If n2 ends in e9, n must end in 3 or 7. Since n2 also begins with 9e, n must begin with 9.

Since n must begin and end with the same digit, each is impossible. Therefore n2 cannot have an even
number of digits. �

Let

(2) n = a0+ a1 · 10+ a2 · 102
+ · · ·+ ak · 10k

be a (k+ 1)-digit palindromic number whose square

(3) n2
= b0+ b1 · 10+ b2 · 102

+ · · ·+ b2k · 102k

is also palindromic. Here ai , bi ∈ {0, 1, . . . , 9} for each i , each of a0, ak , b0, b2k is nonzero (the fact that
1≤ b2k ≤ 9 is a consequence of Lemma 1), and

(4)
ak−i = ai for i ∈ {0, 1, . . . , bk/2c},

b2k−i = bi for i ∈ {0, 1, . . . , k}.
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From (2),

(5) n2
= s0+ s1 · 10+ s2 · 102

+ · · ·+ si · 10i
+ · · ·+ s2k · 102k,

where
si = a0ai + a1ai−1+ · · ·+ ai a0 for i ∈ {0, 1, . . . , 2k}.

We adopt the convention ai = 0 for i > k when defining si . Hence

(6) s2k−i = ak−i ak + ak−i+1ak−1+ · · ·+ akak−i = ai a0+ ai−1a1+ · · ·+ a0ai = si

for i ∈ {0, 1, . . . , k} by (4). In particular, using (4) we have

(7) sk = a2
0 + a2

1 + · · ·+ a2
k .

The only single-digit numbers whose squares are palindromic are 1, 2 and 3. Henceforth we consider
only those n in (2) with k > 0 and a0 6= 0. The following result is crucial in answering the first of our
objectives mentioned in this section:

Let x1, x2, . . . , xr and y1, y2, . . . , yr be sets of real numbers such that x1 ≤ x2 ≤ · · · ≤ xr and
y1 ≤ y2 ≤ · · · ≤ yr . The rearrangement inequality states that

(8) xr y1+ xr−1 y2+ · · ·+ x1 yr ≤ x1 yσ(1)+ x2 yσ(2)+ · · ·+ xr yσ(r) ≤ x1 y1+ x2 y2+ · · ·+ xr yr

for every permutation σ of {1, 2, . . . , r}.

In particular,
x1xσ(1)+ x2xσ(2)+ · · ·+ xr xσ(r) ≤ x2

1 + x2
2 + · · ·+ x2

r .

Hence

(9) si = a0ai + a1ai−1+ · · ·+ ai a0 ≤ a2
0 + a2

1 + · · ·+ a2
i ≤ sk

for i ∈ {0, 1, . . . , k} by (7).

Theorem 2. Let k > 0, and suppose n =
∑k

i=0 ai · 10i is a palindromic number. Then n2 is a palindromic
number if and only if

∑k
i=0 a2

i ≤ 9.

Proof. We use notation in (2), (3) and (5).
Suppose sk ≤ 9. Then si ≤ 9 for each i ∈ {0, 1, . . . , k} by (9). Thus bi = si and s2k−i = si for each

i ∈ {0, 1, . . . , k} by (6), so that b2k−i = s2k−i = si = bi . Hence n2 is a palindromic number.
Now suppose sk > 9. Let ` be the least nonnegative integer for which s` > 9. Thus bi = si for i < `

and b` ≡ s` (mod 10), b` < s`. Therefore s2k−` = s` ≥ 10, so that b2k−(`−1) > s2k−(`−1) = s`−1 = b`−1.
Hence n2 is not a palindromic number. �

Theorem 3. Let k > 0. If both n =
∑k

i=0 ai · 10i and n2 are palindromic numbers, then ai ∈ {0, 1, 2} for
each i ∈ {0, 1, . . . , k}.

Proof. Let k> 0, and suppose both n and n2 are palindromic numbers. Then sk = a2
0+a2

1+· · ·+a2
k ≤ 9 by

(7) and Theorem 2. Since n cannot begin with a 0, a0 = ak 6= 0. Now since k > 0, no ai can exceed 2. �
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Theorem 4. Suppose k > 0. Then n =
∑k

i=0 ai · 10i and n2 are both palindromic numbers if and only if
ak−i = ai , ai ∈ {0, 1, 2} for 0≤ i ≤ b 1

2 kc, a0 6= 0, and

(i) if k is odd, and

• if a0 = 1, then for 1≤ i ≤ 1
2(k− 1), ai ∈ {0, 1} and |{i : ai = 1}| ≤ 3; or

• if a0 = 2, then ai = 0 for 1≤ i ≤ 1
2(k− 1).

(ii) if k is even, and

• if a0 = 1 and ak/2 ∈ {0, 1}, then for 1≤ i ≤ 1
2(k− 2), ai ∈ {0, 1} and |{i : ai = 1}| ≤ 3; or

• if a0 = 1 and ak/2 = 2, then for 1≤ i ≤ 1
2(k− 2), ai ∈ {0, 1} and |{i : ai = 1}| ≤ 1; or

• if a0 = 2, then ai = 0 for 1≤ i ≤ 1
2(k− 2) and ak/2 ∈ {0, 1}.

Proof. Suppose k > 0, and both n and n2 are palindromic numbers. Then ak−i = ai and ai ∈ {0, 1, 2} for
0≤ i ≤ k/2, a0 6= 0, by (4) and Theorem 3. From (4) and (7) we have

(10) sk =

{
2(a2

0 + a2
1 + · · ·+ a2

(k−1)/2) if k is odd,
2(a2

0 + a2
1 + · · ·+ a2

(k−2)/2)+ a2
k/2 if k is even.

We use Theorem 2 to characterize n.

CASE (i): Suppose k is odd.

• If a0 = 1, Theorem 2 applied to (10) gives a2
1 + · · ·+ a2

(k−1)/2 ≤
7
2 . So for 1≤ i ≤ 1

2(k− 1), ai ∈ {0, 1}
and |{i : ai = 1}| ≤ 3.

• If a0=2, Theorem 2 applied to (10) gives a2
1+· · ·+a2

(k−1)/2≤
1
2 . Hence ai=0 for k∈{1, 2, . . . , 1

2(k− 1)}.

CASE (ii): Suppose k is even.

• If a0=1 and ak/2∈{0, 1}, Theorem 2 applied to (10) gives a2
1+· · ·+a2

(k−2)/2≤
7
2 . So for 1≤ i ≤ 1

2(k−2),
ai ∈ {0, 1} and |{i : ai = 1}| ≤ 3.

• If a0 = 1 and ak/2 = 2, Theorem 2 applied to (10) gives a2
1+· · ·+a2

(k−2)/2 ≤
3
2 . So for 1≤ i ≤ 1

2(k−2),
ai ∈ {0, 1} and |{i : ai = 1}| ≤ 1.

• If a0 = 2, Theorem 2 applied to (10) gives 2(a2
1 + · · · + a2

(k−2)/2) + a2
k/2 ≤ 1. Hence ai = 0 for

k ∈ {1, 2, . . . , 1
2(k− 2)} and ak/2 ∈ {0, 1}. �

Theorem 5. The number of d-digit palindromic numbers n such that n2 is also palindromic is given by

fd =


(d1−1

0

)
+

(d1−1
1

)
+

(d1−1
2

)
+

(d1−1
3

)
+ 1 if d = 2d1,

3
(d1−1

0

)
+ 3

(d1−1
1

)
+ 2

(d1−1
2

)
+ 2

(d1−1
3

)
+ 2 if d = 2d1+ 1.

Proof. The characterization of palindromic numbers n such that n2 is also palindromic is given by
Theorem 4. Since n is palindromic, we count the number of ordered tuples (a0, a1, . . . , a(k−1)/2) for
odd k and the number of ordered tuples (a0, a1, . . . , ak/2) for even k. In all cases, a0 ∈ {1, 2} and
ai ∈ {0, 1} for i ∈ {1, 2, . . . , bk/2c} except that ak/2 can also equal 2 for even k. Note that according to
the notation in (2), n has k+ 1 digits since a0 6= 0.
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Suppose n has d = 2d1 digits. Thus k = d − 1 is odd, and 1
2(k− 1)= d1− 1. If a0 = 1, there are at

most three nonzero ai for i ∈ {1, 2, . . . , d1− 1}. There are(d1−1
0

)
+

(d1−1
1

)
+

(d1−1
2

)
+

(d1−1
3

)
such choices. There is a unique number corresponding to a0 = 2.

Suppose n has d = 2d1+ 1 digits. Thus k = d − 1 is even, and 1
2(k− 2)= d1− 1. If a0 = 1 and ak/2

is either 0 or 1, there are at most three nonzero ai for i ∈ {1, 2, . . . , d1− 1}. There are(d1−1
0

)
+

(d1−1
1

)
+

(d1−1
2

)
+

(d1−1
3

)
such choices for each of the two choices of ak/2. If a0 = 1 and ak/2 = 2, there is at most one nonzero ai

for i ∈ {1, 2, . . . , d1− 1}. There are (d1−1
0

)
+

(d1−1
1

)
such choices for this choice of ak/2. There are two numbers corresponding to a0 = 2. �

We close this article by determining the number of palindromic numbers n that are not greater than
a given positive integer N , and for which n2 is also palindromic. Let S denote the set of palindromic
numbers whose square is also palindromic, and for each positive integer N , let f (N )= |{n ∈ S : n ≤ N }|.
If Sd is the set of d-digit numbers in S, then fd =|Sd | is given by Theorem 4. If fd(N )=|{n∈ Sd :n≤ N }|,
then

(11) f (N )= f1+ f2+ · · ·+ fd−1+ fd(N )

for any d-digit number N .

Definition 6. The palindromic completion of N =
∑d−1

i=0 Ai · 10i is the palindromic number N ?
=∑d−1

i=0 A?i · 10i , where A?i = Ai for i ≥ b d
2 c.

Definition 7. Let N =
∑d−1

i=0 Ai ·10i . Let ε(N ) equal 0 if N ?>N , and 1 if N ?
≤N . Set s=max{i : Ai >1}

if such an i exists, and 0 otherwise. Let T = {i : s < i < d − 1, i ≥ bd
2 c, Ai = 1}. Let r = |T |, and write

T = {t1, t2, t3, . . . , tr }, with t1 > t2 > t3 > · · ·> tr , when r > 0.

Theorem 8. For each d ≥ 1, let Sd denote the set of d-digit palindromic numbers whose square is also
palindromic, and let fd = |Sd |. For each positive integer N , let fd(N )= |{n ∈ Sd : n ≤ N }|.

Let

(12) N = A0+ A1 · 10+ A2 · 102
+ · · ·+ Ad−1 · 10d−1,

with Ai ∈ {0, 1, . . . , 9} for each i , Ad−1 6= 0.

(I) Suppose Ad−1 > 1. Then

fd(N )=


fd − 2 if d is odd and N < 2 0d−2 2;
fd − 1 if d is odd and 2 0d−2 2≤ N < 2 0(d−3)/2 1 0(d−3)/2 2, or

if d is even and N < 2 0d−2 2;
fd otherwise.
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(II) Suppose Ad−1 = 1.

SUBCASE (A). Suppose d = 2d1 is even.

• If r = 0, then

fd(N )=


3∑

i=0

(s−d1+1
i

)
if s ≥ d1;

1 if s < d1 and N > 102d1−1;

0 otherwise.

• If 1≤ r ≤ 3, then

fd(N )=
3∑

i=0

( t1−d1
i

)
+

2∑
i=0

( t2−d1
i

)
+

1∑
i=0

( t3−d1
i

)
+


3−r∑
i=0

(s−d1+1
i

)
if s ≥ d1;

ε(N ) if s < d1.

• If r > 3, then

fd(N )=
3∑

i=0

( t1−d1
i

)
+

2∑
i=0

( t2−d1
i

)
+

1∑
i=0

( t3−d1
i

)
+ 1.

SUBCASE (B). Suppose d = 2d1+ 1 is odd.

• If r = 0, then

fd(N )=


3

1∑
i=0

(s−d1
i

)
+ 2

3∑
i=2

(s−d1
i

)
if s ≥ d1;

1 if s < d1 and N > 102d1;

0 otherwise.

• If r = 1, then

fd(N )= 3
1∑

i=0

( t1−d1−1
i

)
+ 2

3∑
i=2

( t1−d1−1
i

)
+

2
2∑

i=0

(s−d1
i

)
+ 1 if s ≥ d1;

ε(N ) if s < d1.

• If r = 2, then

fd(N )= 3
1∑

i=0

( t1−d1−1
i

)
+ 2

3∑
i=2

( t1−d1−1
i

)
+ 2

2∑
i=0

( t2−d1−1
i

)
+ 1

+

2
1∑

i=0

(s−d1
i

)
if s ≥ d1;

ε(N ) if s < d1.
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• If r = 3, then

fd(N )= 3
1∑

i=0

( t1−d1−1
i

)
+ 2

3∑
i=2

( t1−d1−1
i

)
+ 2

2∑
i=0

( t2−d1−1
i

)
+ 2

1∑
i=0

( t3−d1−1
i

)
+ 1

+

{
2 if s ≥ d1;

ε(N ) if s < d1.

• If r > 3, then

fd(N )= 3
1∑

i=0

( t1−d1−1
i

)
+ 2

3∑
i=2

( t1−d1−1
i

)
+ 2

2∑
i=0

( t2−d1−1
i

)
+ 2

1∑
i=0

( t3−d1−1
i

)
+ 3.

Remark 9. All binomial coefficients
(n

k

)
are set equal to 0 when n < 0 or undefined, or when k > n. We

set
(0

0

)
equal to 1.

Proof. From Theorem 4 we know that there are at most two integers in Sd that do not begin with 1. One
of these is 2 0d−2 2; this is the only one when d is even, but when d is odd, 2 0(d−3)/2 1 0(d−3)/2 2 also
belongs to Sd . Suppose N is a d-digit number.

(I) If N does not begin with 1, then fd(N ) equals fd unless one or both the numbers that begin with 2
in Sd exceed N . In the exceptional cases fd(N ) equals either 1 or 2 less than fd , as is easily verified
case by case.

(II) Suppose N begins with 1. Throughout this proof, we let n =
∑d−1

i=0 ai · 10i with ad−1 = 1. We
consider the case where d is odd and the case d is even separately, and use Theorem 4.

SUBCASE (A). Suppose d = 2d1 is even.
If r = 0 and s ≥ d1, then Ai = 0 for i > s and As ≥ 2. Thus n ∈ Sd and n ≤ N if and only if ai = Ai

for i > s and ai ∈ {0, 1} for d1 ≤ i ≤ s, with at most three of these ai equal to 1. There are
∑3

i=0
(s−d1+1

i

)
such choices for the ai . If s < d1, then N begins with 10d1−1, so that n ∈ Sd and n ≤ N if and only if
n = N ?

= 10d−21. Thus there is a unique choice for n ∈ Sd with n ≤ N , unless N = 10d−1 in which case
there is no choice.

Suppose r ≥ 1. Consider the following cases: (i) ai = Ai for i > t1 and at1 = 0; (ii) ai = Ai for i > t2
and at2 = 0; (iii) ai = Ai for i > t3 and at3 = 0; (iv) ai = Ai for i ≥ t3.

If r > 3, then n ∈ Sd and n ≤ N if and only if one of (i)–(iv) holds. In (i), ai ∈ {0, 1} for d1 ≤ i < t1,
with at most three of these ai equal to 1; there are

∑3
i=0

(t1−d1
i

)
such choices for the ai . In (ii), ai ∈ {0, 1}

for d1 ≤ i < t2, with at most two of these ai equal to 1; there are
∑2

i=0
(t2−d1

i

)
such choices for the ai .

In (iii), ai ∈ {0, 1} for d1 ≤ i < t3, with at most one of these ai equal to 1; there are
∑1

i=0
(t3−d1

i

)
such

choices for the ai . In (iv), the only possibility for n is the one with ai = Ai for i ≥ t3 and ai = 0 for
d1 ≤ i < t3.

If r ≤ 3, then n ∈ Sd and n ≤ N if and only if one of the first r of (i)–(iii) holds, together with an
additional condition which depends on whether s ≥ d1 or s < d1. The first r of the conditions (i)–(iii) lead
to the number of choices in the corresponding conditions, as given in case r > 3. If s ≥ d1, additionally
n could satisfy the condition ai = Ai for i > s. Since ai ∈ {0, 1} for s < i < d with exactly r of these
ai equal to 1, we must have ai ∈ {0, 1} for d1 ≤ i ≤ s with at most 3− r of these ai equal to 1. This



1122 AMITABHA TRIPATHI

accounts for the term
∑3−r

i=0
(s−d1+1

i

)
corresponding to this additional condition that applies if s ≥ d1. If

s < d1, then Ai = {0, 1} for d1 ≤ i < d , with exactly r of the Ai equal to 1. Since Ai = 0 for d1 ≤ i < tr ,
we must have ai = Ai for d1 ≤ i < d . Now n ∈ Sd and n ≤ N if and only if n? = N ?

≤ N . This accounts
for the term ε(N ) corresponding to the additional condition when s < d1.

SUBCASE (B). Suppose d = 2d1+ 1 is odd.
If r = 0 and s > d1, then Ai = 0 for i > s and As ≥ 2. Thus n ∈ Sd and n ≤ N if and only if ai = Ai

for i > s, ai ∈ {0, 1} for d1 < i ≤ s, ad1 ∈ {0, 1, 2}, with at most three of the ai for i ∈ [d1+ 1, s] equal
to 1 when ad1 ∈ {0, 1} and with at most one of the ai for i ∈ [d1+ 1, s] equal to 1 when ad1 = 2. There
are 2

∑3
i=0

(s−d1
i

)
+
∑1

i=0
(s−d1

i

)
such choices for the ai .

If s = d1, then N begins with 10d1−1 and Ad1 ≥ 2. For i ∈ {0, 1, 2}, let Ni have the same digits
as N except that at the d1-th place Ni has i . So N2 = N if Ad1 = 2. Then n ∈ Sd and n ≤ N if
and only if n = N ?

i with i ∈ {0, 1, 2}. Thus there are 3 choices for n ∈ Sd with n ≤ N . Note that
2
∑3

i=0
(s−d1

i

)
+
∑1

i=0
(s−d1

i

)
= 3 when s = d1.

If s < d1, then N begins with 10d1 , so that n ∈ Sd and n ≤ N if and only if n = N ?
= 10d−21. Thus

there is a unique choice for n ∈ Sd with n ≤ N , unless N = 10d−1 in which case there is no such choice.
Suppose r ≥ 1. Consider the cases as in SUBCASE A: (i) ai = Ai for i > t1 and at1 = 0; (ii) ai = Ai

for i > t2 and at2 = 0; (iii) ai = Ai for i > t3 and at3 = 0; (iv) ai = Ai for i ≥ t3.
If r > 3, then n ∈ Sd and n ≤ N if and only if one of (i)–(iv) holds. In (i), ai ∈ {0, 1} for d1 < i < t1,

with at most three of these ai equal to 1 when ad1 ∈ {0, 1} and at most one of these ai equal to 1 when
ad1 = 2; there are 2

∑3
i=0

(t1−d1−1
i

)
+
∑1

i=0
(t1−d1−1

i

)
such choices for the ai . In (ii), ai ∈ {0, 1} for

d1 < i < t2, with at most two of these ai equal to 1 when ad1 ∈ {0, 1} and all ai = 0 when ad1 = 2; there
are 2

∑2
i=0

(t2−d1−1
i

)
+ 1 such choices for the ai . In (iii), ai ∈ {0, 1} for d1 < i < t3, with at most one

of these ai equal to 1 when ad1 ∈ {0, 1} and ad1 6= 2; there are 2
∑1

i=0
(t3−d1−1

i

)
such choices for the ai .

In (iv), the only two possibilities for n are the ones with ai = Ai for i ≥ t3, ai = 0 for d1 < i < t3 with
ad1 ∈ {0, 1}.

If r ≤ 3, then n ∈ Sd and n ≤ N if and only if one of the first r of (i)–(iii) holds, together with an
additional condition which depends on whether s > d1 or s = d1 or s < d1. The first r of the conditions
(i)–(iii) lead to the number of choices in the corresponding conditions, as given in case r > 3. We deal
with the cases r = 1, 2, 3 separately.

If r = 1, the term corresponding to (i) is 2
∑3

i=0
(t1−d1−1

i

)
+
∑1

i=0
(t1−d1−1

i

)
, as given in case r > 3.

If s > d1, then we may additionally satisfy ai = Ai for i > s and ai ∈ {0, 1} for i ∈ [d1+ 1, s], with at
most two of these ai equal to 1 when ad1 ∈ {0, 1} and with all ai equal to 0 when ad1 = 2. This accounts
for the additional term 2

∑2
i=0

(s−d1
i

)
+ 1. If s = d1, then there are the three additional possibilities for n

given by ai = Ai for i > d1 and ad1 ∈ {0, 1, 2}. Note that 2
∑2

i=0
(s−d1

i

)
+ 1= 3 when s = d1. If s < d1,

then the additional possibility for n must satisfy ai = Ai for d1 ≤ i < d. Now n ∈ Sd and n ≤ N if and
only if n? = N ?

≤ N . This accounts for the term ε(N ) corresponding to the additional condition when
s < d1.

If r = 2, the term corresponding to (i) is 2
∑3

i=0
(t1−d1−1

i

)
+
∑1

i=0
(t1−d1−1

i

)
and that corresponding to

(ii) is 2
∑2

i=0
(t2−d1−1

i

)
+ 1, as given in case r > 3. If s > d1, then we may additionally satisfy ai = Ai

for i > s, ai ∈ {0, 1} for i ∈ [d1 + 1, s] with at most one of these ai equal to 1, and ad1 ∈ {0, 1}. This
accounts for the additional term 2

∑1
i=0

(s−d1
i

)
. If s = d1, then there are the two additional possibilities
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for n given by ai = Ai for i > d1 and ad1 ∈ {0, 1}. Note that 2
∑1

i=0
(s−d1

i

)
= 2 when s = d1. If s < d1,

then the argument in the case r = 1 holds, accounting for the term ε(N ).
If r = 3, the term 2

∑3
i=0

(t1−d1−1
i

)
+
∑1

i=0
(t1−d1−1

i

)
corresponds to (i), the term 2

∑2
i=0

(t2−d1−1
i

)
+ 1

corresponds to (ii), and 2
∑1

i=0
(t3−d1−1

i

)
corresponds to (iii), as given in case r > 3. If s ≥ d1, there are

the two additional possibilities for n given by ai = Ai for i > d1 and ad1 ∈ {0, 1}. If s < d1, then the
argument in the case r = 1 holds, accounting for the term ε(N ). �

The tables provided in [5] appear to be the most complete listing of palindromic squares, both with
palindromic and nonpalindromic root. The listing is complete with regard to palindromic roots up to
23 digits, and we utilize this to numerically support our results of Theorems 5 and 8. We take d = 22
and d = 23; for both cases d1 = 11. We use the tables of palindromic squares of 43 and 45 digits.

For Theorem 5, we verify from the tables that

f22 =

(10
0

)
+

(10
1

)
+

(10
2

)
+

(10
3

)
+ 1= 177,

f23 = 3
(10

0

)
+ 3

(10
1

)
+ 2

(10
2

)
+ 2

(10
3

)
+ 2= 365.

For Theorem 8, we verify from the tables that:

d d1 s t1 t2 t3 t4 N begins fd(N )

22 11 13 — — — — 107 8
22 11 13 20 — — — 1106 137
22 11 13 20 18 — — 110104 163
22 11 13 20 18 15 — 11010010 165
22 11 13 20 18 15 14 11010011 165
22 11 10 — — — — 1010 1
22 11 10 20 — — — 1109 131
22 11 10 20 18 — — 110107 160
22 11 10 20 18 15 — 110100104 165
22 11 10 20 18 15 14 1101001103 165

d d1 s t1 t2 t3 t4 N begins fd(N )

23 11 13 — — — — 108 11
23 11 13 20 — — — 10106 204
23 11 13 20 18 — — 1010104 246
23 11 13 20 18 15 — 101010010 250
23 11 13 20 18 15 14 101010011 250
23 11 10 — — — — 1011 1
23 11 10 20 — — — 10109 196
23 11 10 20 18 — — 1010107 241
23 11 10 20 18 15 — 1010100104 249
23 11 10 20 18 15 14 10101001103 250
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