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Abstract

For any set of positive integers A with gcdA = 1, let S = 〈A〉 denote the numerical
semigroup generated by A. Let F(S), g(S), and PF(S) denote the Frobenius num-
ber, genus, and the set of pseudo-Frobenius numbers of S, respectively. For a set A
of primitive Pythagorean triplets, we determine F(S), g(S), and PF(S).

1. Introduction

By Z≥0 and N we mean the set of non-negative integers and the set of positive

integers, respectively. A numerical semigroup is a subset S of Z≥0 that is closed

under addition, 0 ∈ S and N \ S is a finite set. The semigroup generated by a list

of positive integers a1, . . . , ak is

〈a1, . . . , ak〉 =
{
a1x1 + · · ·+ akxk : xi ∈ Z≥0

}
.

It is not difficult to show that 〈a1, . . . , ak〉 is a numerical semigroup if and only if

gcd(a1, . . . , ak) = 1.

The set A = {a1, . . . , ak} is called a system of generators of the semigroup

S = 〈a1, . . . , ak〉. For a semigroup S, A is a minimal system of generators if A

generates S and no proper subset of A generates S. Every numerical semigroup

has a unique minimal system of generators. This system of generators is finite,

and the cardinality of this minimal system of generators is called the embedding
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dimension of S, and is denoted by e(S). The smallest positive integer in S is

called the multiplicity of S, and denoted by m(S). It is not difficult to show that

e(S) ≤ m(S). We say that S has maximal embedding dimension if e(S) = m(S).

The set Z≥0 \S is called the gap set of S, and is denoted by G(S). The Frobenius

number of S, denoted by F(S), is the largest element in G(S). The genus of S,

denoted by g(S), is the cardinality of G(S).

Although the origins of the problem of determining F(S) is attributed to Sylvester

[15], an apparent reason for associating the name of Frobenius with this problem

is possibly due to the fact that he was largely instrumental in popularizing this

problem in his lectures. The Frobenius problem has a rich and long history, with

several applications and extensions, and connections to several areas of research;

refer [10] for a comprehensive survey of the Frobenius problem. Exact determination

of the Frobenius number is a difficult problem in general. In the absence of exact

results, research on the Frobenius problem has often focused on sharpening bounds

on the Frobenius number and on algorithmic aspects. Although running time of

these algorithms is superpolynomial, it is known that the Frobenius problem can

be solved in polynomial time for fixed number of variables, and that the problem is

NP-hard under Turing reduction; see [7]. For more results on algorithmic aspects

and on complexity, refer [3, 9, 10, 11]. Corresponding results for g(S) have been

much rarer, even in special cases.

A very useful tool in the study of numerical semigroups is the determination of

an Apéry set of the semigroup. Given a numerical semigroup S, and a ∈ S, the

Apéry set of S corresponding to a is given by

Ap(S, a) =
{
mx : 0 ≤ x ≤ a− 1

}
,

where mx denotes the least positive integer in S congruent to x modulo a; see [1].

A well known result of Brauer & Shockley [2] shows how F(S) can be determined

from the Apéry set of S corresponding to any a ∈ S; see Proposition 1.

The set S = 〈A〉 is closed under addition, and so n+ S ⊆ S whenever n ∈ S. It

is conceivable that n ∈ G(S) satisfy a slightly modified condition, replacing S by

S? = S \{0}. In fact, F(S) is clearly the largest number satisfying such a condition.

Thus we study the set given by

PF(S) =
{
n ∈ G(S) : n+ S? ⊂ S?

}
.

Members of PF(S) are called pseudo-Frobenius numbers. The size of PF(S) is called

the type of S and denoted by t(S).

A numerical semigroup S = 〈A〉 is irreducible if S cannot be expressed as the

intersection of two numerical semigroups properly containing it, symmetric if S is

irreducible and F(S) is odd, and pseudo-symmetric if S is irreducible and F(S) is

even. The following result characterizes symmetric and pseudo-symmetric semi-

groups.
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Lemma 1. ([13, Corollary 4.11, 4.16]) Let S be the numerical semigroup. Then

(i) S is symmetric if and only if PF(S) = {F(S)}.
(ii) S is pseudo-symmetric if and only if PF(S) =

{
F(S), 12F(S)

}
.

We say that a numerical semigroup S has the Arf property if, for any x, y, z ∈ S
with x ≥ y ≥ z, we have x + y − z ∈ S. We say that S is saturated if whenever

s, s1, . . . , sk ∈ S, si ≤ s for each i, and n1, . . . , nk ∈ Z with n1s1 + · · ·+ nksk ≥ 0,

then s+n1s1+· · ·+nksk ∈ S. It is evident that every saturated numerical semigroup

has the Arf property. Moreover, every numerical semigroup with Arf property has

maximal embedding dimension; see [13, p. 23].

In this paper, we determine the Frobenius number F(S), the genus g(S), and

the set PF(S) of pseudo-Frobenius numbers when A = {a, b, c}, with a2 + b2 = c2,

gcd(a, b, c) = 1. The basis of our results is the determination of the Apéry set

Ap(S, c) in Theorem 1. We use this to determine F(S), g(S), and the set PF(S) in

Theorem 2. These formulae also follow from a result of Kraft [8], cited by Fel [4],

using the algorithm given by Johnson [6]. Our proof uses basic results of Brauer

& Shockley [2], Selmer [14], and Tripathi [16]. We also discuss whether or not S

is symmetric, pseudo-symmetric, saturated, has the Arf property, and has maximal

embedding dimension in Remarks 1, 2, and 3. For the case e(S) = 3, F(S), g(S)

and PF(S) can also be determined by computing the entries of a 3× 3 matrix with

integer entries; see Proposition 3. We close this paper by determining these entries

in Theorem 5, thereby finding another set of proofs for our main results.

2. Preliminary Results

Suppose A is any set of positive integers with gcdA = 1, and let S = 〈A〉. Fix

a ∈ A. For each residue class C modulo a, let mC denote the least integer in S∩C.

It is well known that F(S) and g(S) are easily determined from the values of mC.

The following result, part (i) of which is due to Brauer & Shockley [2] and part (ii)

to Selmer [14], is often a key step in this determination.

Proposition 1. ([2], [14]) Let A be any set of positive integers with gcd(A) = 1,

and let S = 〈A〉. Let a ∈ A, and let mx denote the least integer in S congruent to

x modulo a, 0 ≤ x ≤ a− 1. Then

(i)

F(S) =

(
max

1≤x≤a−1
mx

)
− a.

(ii)

g(S) =
1

a

a−1∑
x=1

mx −
1

2
(a− 1).
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The set PF(S) consists of positive integers n in G(S) such that translating the

set of positive integers in S by n results in a subset of S. Since F(S) = max PF(S),

determining PF(S) ensures that F(S) is also determined. The following result is

due to Tripathi [16].

Proposition 2. ([16]) Let A be any set of positive integers with gcd(A) = 1, and

let S = 〈A〉. Let a ∈ A, and let mx denote the least integer in S congruent to x

modulo a, 0 ≤ x ≤ a− 1. Then

PF(S) =
{
mx − a : mx + my ≥mx+y + a for 1 ≤ y ≤ a− 1

}
.

For the case where |A| = 3, Johnson [6] determined F(S) in terms of the entries

of a 3× 3 matrix with integer entries. The entries from this matrix were later used

by Rosales and Garćıa-Sánchez [12] to determine g(S) and PF(S).

Proposition 3. ([6, 12]) Let A = {a, b, c} be a set of positive integers, with

gcd(a, b, c) = 1. Define c1, c2, c3 by

c1 = min
{
m ∈ N : ma ∈ 〈b, c〉

}
,

c2 = min
{
m ∈ N : mb ∈ 〈a, c〉

}
,

c3 = min
{
m ∈ N : mc ∈ 〈a, b〉

}
.

Then there exist nonnegative integers r12, r13, r21, r23, r31, r32 such that

c1a = r12b+ r13c, c2b = r21a+ r23c, c3c = r31a+ r32b.

Moreover, if the elements in A are pairwise coprime, then each rij ≥ 1 and each

ci = rji + rki. Further,

(i)

F(S) = max
{

(c3 − 1)c+ (r12 − 1)b− a, (c2 − 1)b+ (r13 − 1)c− a
}
.

(ii)

g(S) =
1

2

(
(c1 − 1)a+ (c2 − 1)b+ (c3 − 1)c− c1c2c3 + 1

)
.

(iii)

PF(S) =
{

(c3 − 1)c+ (r12 − 1)b− a, (c2 − 1)b+ (r13 − 1)c− a
}
.

3. Main Results

Let A = {a, b, c} be a set of primitive Pythagorean triplets. Then there exist positive

integers r, s with r > s, gcd(r, s) = 1, and with r, s of opposite parity, such that

a = r2 − s2, b = 2rs, c = r2 + s2.
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In this section, we give explicit formula for F(S) and g(S), and determine PF(S),

where S = 〈A〉. To do this, we first determine the set of the minimum representa-

tive integers mx in 〈a, b〉 as x runs through all non-zero residue classes modulo c

(Theorem 1). We then use Propositions 1 and 2 to determine F(S) and g(S), and

PF(S), respectively (Theorem 2).

Johnson [6] showed that the positive integers c1, c2, c3 and r12, r13, r21, r23, r31, r32
which form the entries in the 3×3 matrix (refer Proposition 3) may be characterized

by properties that do not require the computation of the minimum elements of the

three sets in Proposition 3. Kraft [8] determined these nine entries in the case where

A is a Pythagorean triple, and verified his result via the characterization given in

[6]. We close this section by determining the nine entries given by Proposition 5

directly, without using the characterization in [6].

Gil et al. [5] have also determined the Frobenius number F(S). They have shown

that (r−1)(a+b)−c is the largest integer not representable by the form ax+by+cz

with x, y, z ∈ Z≥0, but how they arrive at their formula remains a mystery.

We begin by describing a complete residue system modulo c.

Proposition 4. Let r, s be coprime positive integers of opposite parity, r > s. Let

a = r2 − s2, b = 2rs, and c = r2 + s2. Then{
λa+ µb : 0 ≤ λ < r + s, 0 ≤ µ < s

}⋃{
λa+ µb : 0 ≤ λ < r, s ≤ µ < r

}
is a complete residue system modulo c.

Proof. Let X =
{
λa+ µb : 0 ≤ λ < r + s, 0 ≤ µ < s

}
and Y =

{
λa+ µb : 0 ≤ λ <

r, s ≤ µ < r
}

. Since a ≡ 2r2 (mod c) and gcd(2r, c) = 1, λ1a + µ1b ≡ λ2a + µ2b

(mod c) is equivalent to λ1r+ µ1s ≡ λ2r+ µ2s (mod c), or to λr+ µs ≡ 0 (mod c)

with λ = λ1 − λ2 and µ = µ1 − µ2. Now

max
{
λr + µs

}
=


r(r + s− 1) + s(s− 1) if λ1a+ µ1b, λ2a+ µ2b ∈ X;

r(r − 1) + s(r − s− 1) if λ1a+ µ1b, λ2a+ µ2b ∈ Y ;

(r − 1)(r + s) if λ1a+ µ1b, λ2a+ µ2b

are in different sets.

By interchanging λ1a+µ1b and λ2a+µ2b if necessary, we may assume λr+µs ≥ 0.

In each case λr + µs < 2(r2 + s2) = 2c, and so λr + µs ∈ {0, c}.
Case (i). If λr+ µs = 0, then r | µ since gcd(r, s) = 1. Since |µ| < r, this is only

possible when µ = 0. But then λ = 0 as well, so that λ1a+ µ1b = λ2a+ µ2b.

Case (ii). If λr+µs = c = r2 + s2, then λ = r− st and µ = s+ rt for some t ∈ Z.

From |λ| < r + s we have t ≥ 0 and from |µ| < r we have t ≤ 0. Therefore, t = 0,

so that λ = λ1 − λ2 = r and µ = µ1 − µ2 = s. But then λ1 ≥ r and µ1 ≥ s, which

is impossible.

To complete the proof, note that |X ∪ Y | = |X|+ |Y | = s(r + s) + r(r − s) = c

since X ∩ Y = ∅.
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The following result describes the set of minimum representatives in 〈a, b〉 modulo c.

Theorem 1. Let a = r2−s2, b = 2rs, c = r2 +s2 be a set of primitive Pythagorean

triplets. Let mx denote the least positive integer in 〈a, b〉 congruent to x modulo c.

Then{
mx : 0 ≤ x < r2 + s2

}
=
{
λa+ µb : 0 ≤ λ < r + s, 0 ≤ µ < s

}⋃{
λa+ µb : 0 ≤ λ < r, s ≤ µ < r

}
.

Proof. The set {2rx : 0 ≤ x ≤ c − 1} is a complete residue system modulo c since

gcd(2r, c) = 1. Fix x ∈ {0, . . . , c − 1}, and consider the residue class 2rx modulo

c. Thus, for x > 0, m2rx is the least positive integer of the form ax1 + bx2, with

x1 ≥ 0 and x2 ≥ 0, that is congruent to 2rx modulo c. Since a ≡ 2r2 (mod c),

m2rx = min
x1≥0,x2≥0

(
ax1 + bx2) such that rx1 + sx2 ≡ x (mod c). (1)

Set rx1 + sx2 = x + ct, t ∈ Z. If ry1 + sy2 = x + ct, then x1 − y1 = ks and

x2 − y2 = −kr, with k ∈ Z since gcd(r, s) = 1. Set F (x1, x2) = ax1 + bx2, x1 ≥ 0,

x2 ≥ 0. Then F (x1 − s, x2 + r) − F (x1, x2) = cs > 0. Hence the minimum in

Equation (1) is obtained at x2 = (x+ ct)s−1 (mod r), 0 ≤ x2 < r.

We must now determine

x1 = min
t∈Z

x+ ct− sx2
r

(2)

subject to x+ ct− sx2 ≥ 0. This restriction implies t ≥ 0 since x < c and x2 ≥ 0.

Let f(t) = x+ ct− s
(
(x+ ct)s−1 (mod r)

)
, t ≥ 0. Since

f(t+1)−f(t) = c−s
(
(x+c(t+1))s−1 (mod r)−(x+ct)s−1 (mod r)

)
≥ c−(r−1)s > 0,

the minimum in Equation (2) is attained at the least nonnegative integer t0 for

which f(t0) = x+ ct0 − sx2 = x+ ct0 − s
(
(x+ ct0)s−1 (mod r)

)
≥ 0.

Since gcd(r, s) = 1, there exist integers u, v such that x = ru + sv, with v ∈
{0, . . . , r − 1}. From x > 0 we conclude that −ru < sv < rs, and so −u < s < r.

If u ≥ 0, then f(0) = x− s
(
xs−1 (mod r)

)
= (ru+ sv)− sv = ru ≥ 0. If u < 0,

then f(0) = ru < 0 and f(1) = x+c−s
(
(x+c)s−1 (mod r)

)
= (ru+sv)+c−s

(
(v+s)

(mod r)
)
≥ (ru+ sv) + c− s(v + s) = r(u+ r) > 0. Therefore,

min
t≥0

f(t) =

{
f(0) if x ∈ 〈r, s〉;
f(1) if x /∈ 〈r, s〉.
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From Equation (2) and the argument immediately preceding, we thus have

(x1, x2) =


( f(0)

r , xs−1 (mod r)
)

if u ≥ 0;( f(1)
r , (x+ c)s−1 (mod r)

)
if u < 0

=


(u, v) if u ≥ 0;

(u+ r, v + s) if u < 0, v + s < r;

(u+ r + s, v + s− r) if u < 0, v + s ≥ r.

Since 0 ≤ x = ru + sv < r2 + s2 is equivalent to u < r2+s(s−v)
r , the first case

yields the set {
au+ bv : 0 ≤ u < r2+s(s−v)

r , 0 ≤ v < r
}

=
{
λa+ µb : 0 ≤ λ < r2+s(s−µ)

r , 0 ≤ µ < r
}
.

Since 0 ≤ ru+ sv < r2 + s2 is equivalent to u ≥ − svr , the second case yields the

set {
a(u+ r) + b(v + s) : r

2−sv
r ≤ u+ r < r, s ≤ v + s < r

}
=
{
λa+ µb : r

2+s(s−µ)
r ≤ λ < r, s ≤ µ < r

}
.

Since 0 ≤ ru + sv < r2 + s2 is equivalent to u ≥ − svr , the third case yields the

set{
a(u+ r + s) + b(v + s− r) : r

2+rs−sv
r ≤ u+ r + s < r + s, 0 ≤ v + s− r < s

}
=
{
λa+ µb : r

2+s(s−µ)
r ≤ λ < r + s, 0 ≤ µ < s

}
.

Putting the three sets together describes the set of all minimum representatives.

Theorem 2. Let a = r2−s2, b = 2rs, c = r2 +s2 be a set of primitive Pythagorean

triplets. If S = 〈a, b, c〉, then

(i)

F(S) = (r − 1)(a+ b)− c;

(ii)

g(S) =
1

2

(
(r2 − s2 + rs− 2r)(r + s) + 1

)
;

(iii)

PF(S) =
{

(r + s− 1)a+ (s− 1)b− c, (r − 1)(a+ b)− c
}
.

Proof. We use Proposition 1 and Theorem 1 for parts (i) and (ii), and Proposition

2 and Theorem 1 for part (iii). Note that {2rx : 0 ≤ x < c} represents a complete

residue system modulo c since gcd(2r, c) = 1.
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(i)

F(S) + c = max
0≤x≤c−1

m2rx

= max

 max
0≤λ<r+s
0≤µ<s

(
λa+ µb

)
, max
0≤λ<r
s≤µ<r

(
λa+ µb

)
= max

{
(r + s− 1)a+ (s− 1)b, (r − 1)(a+ b)

}
= (r − 1)(a+ b),

since (r− 1)(a+ b)−
(
(r+ s− 1)a+ (s− 1)b

)
= (r− s)b− sa = s(r− s)2 > 0.

(ii)

g(S) =
1

c

c−1∑
x=1

m2rx −
c− 1

2

=
1

c

 ∑
0≤λ<r+s
0≤µ<s

(λa+ µb) +
∑

0≤λ<r
s≤µ<r

(λa+ µb)

− c− 1

2

=
1

c

 ∑
0≤λ<r
0≤µ<r

(λa+ µb) +
∑

r≤λ<r+s
0≤µ<s

(λa+ µb)

− c− 1

2

=
1

2

(
(r + s)(r2 − s2 + rs− 2r) + 1

)
.

(iii) Write T1 = [0, r + s) × [0, s), T2 = [0, r) × [s, r), and T = T1 ∪ T2. Let

m(λ,µ) denote the least positive integer in the congruence class λa+µb modulo

c. Then {λa + µb : (λ, µ) ∈ T} is a complete residue system modulo c,

m(λ,µ) ≤ λa+ µb, with equality if and only if (λ, µ) ∈ T , and

PF(S) =
{
m(λ0,µ0) − c

}
,

where

(λ0, µ0) ∈ T,m(λ0,µ0) >m(λ+λ0,µ+µ0) −m(λ,µ) ∀ (λ, µ) ∈ T \ {(0, 0)}.

For (λ0, µ0) ∈ T1 \ {(0, 0), (r + s− 1, s− 1)}, we have(
λ0a+ µ0b

)
+
(
(r + s− 1− λ0)a+ (s− 1− µ0)b

)
= (r + s− 1)a+ (s− 1)b.

Since (r+s−1−λ0, s−1−µ0) ∈ T1 and (r+s−1, s−1) ∈ T1, λ0a+µ0b−c /∈
PF(S).
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For (λ0, µ0) ∈ T2 \ {(r − 1, r − 1)}, we have(
λ0a+ µ0b

)
+
(
(r − 1− λ0)a+ (r − 1− µ0)b

)
= (r − 1)a+ (r − 1)b.

Since (r−1−λ0, r−1−µ0) ∈ T2 and (r−1, r−1) ∈ T2, λ0a+µ0b−c /∈ PF(S).

Thus, PF(S) ⊆
{

(r+ s− 1)a+ (s− 1)b− c, (r− 1)a+ (r− 1)b− c
}

. We show

that both (r + s − 1)a + (s − 1)b − c and (r − 1)a + (r − 1)b − c belong to

PF(S).

We note that rc = ra+ sb and sc = −sa+ rb.

Let (λ0, µ0) = (r + s− 1, s− 1) and let (λ, µ) ∈ T \ {(0, 0)}.
If λ = 0, then µ > 0 and

(λa+ µb) +
(
(r + s− 1)a+ (s− 1)b

)
− c = (s− 1)a+ (µ− 1)b+ (r − 1)c

= m(s−1,µ−1) + (r − 1)c.

If λ > 0, then

(λa+ µb) +
(
(r + s− 1)a+ (s− 1)b

)
− c = (λ− 1)a+ (µ+ r − 1)b+ (r − s− 1)c

≥ m(λ−1,µ+r−1) + (r − s− 1)c.

Hence (r + s− 1)a+ (s− 1)b− c ∈ PF(S).

We know that F(S) = (r − 1)(a + b) − c ∈ PF(S). However, we also give a
direct proof. Let (λ0, µ0) = (r − 1, r − 1) and let (λ, µ) ∈ T \ {(0, 0)}.
If λ = 0, then µ > 0 and

(λa+ µb) +
(
(r − 1)a+ (r − 1)b

)
− c = (r + s− 1)a+ (µ− 1)b+ (s− 1)c

≥ m(r+s−1,µ−1) + (s− 1)c.

If λ > 0, then

(λa+ µb) +
(
(r − 1)a+ (r − 1)b

)
− c = (λ− 1)a+ (µ+ r − s− 1)b+ (r − 1)c

≥ m(λ−1,µ+r−s−1) + (r − 1)c.

Hence (r − 1)a+ (r − 1)b− c ∈ PF(S).

Various properties of the numerical semigroup S generated by primitive Pythagorean

triplets, e.g., symmetricity, pseudo-symmetricity, Arf property, and saturation, fol-

low easily from Theorem 2. In the remarks that follow, we take S = 〈a, b, c〉, where

a = r2 − s2, b = 2rs, c = r2 + s2, with r > s, gcd(r, s) = 1, with r, s of opposite

parity.
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Remark 1. We have that (r−1)(a+ b)−
(
(r+s−1)a+ (s−1)b

)
= (r−s)b−sa =

s(r− s)2 > 0, as in the proof of Theorem 2, part (i). From Lemma 1 and Theorem

2, part (iii), we conclude that S is not symmetric.

Remark 2. From Theorem 2, part (iii), F(S) = (r − 1)(a + b) − c is even if and

only if r is even. So by Lemma 1 and Theorem 2, part (iii), S is pseudo-symmetric

if and only if r is even and

2
(
(r + s− 1)a+ (s− 1)b− c

)
= (r − 1)(a+ b)− c.

This is equivalent to r3 − 2s3 + 3rs2 − 2r2 − 2rs = 0. Hence, r | 2s3, and so

r = 2 since gcd(r, s) = 1 and r is even. The only possibility for s = 1, and we

may verify that (r, s) = (2, 1) satisfies the above equation. We conclude that S is

pseudo-symmetric only when A = {3, 4, 5}.

Remark 3. Recall that S is saturated implies S has the Arf property, which in

turn implies S has maximal embedding dimension. Now S has maximal embedding

dimension if and only if m(S) = 3, which is the same as A = {3, 4, 5}. Therefore,

the only possibility for S to be saturated, or to have the Arf property, is when

A = {3, 4, 5}. It is easy to see that S is saturated from the fact that S = [3,∞)∪{0}
when A = {3, 4, 5}. We conclude that S is saturated, has the Arf propery, or has

maximal embedding dimension if and only if S = 〈3, 4, 5〉.

We close this section by determining the nine entries of the matrix in Proposition 3.

Proposition 5. Let a = r2 − s2, b = 2rs, c = r2 + s2 be a set of primitive

Pythagorean triplets. With the notations of Proposition 3, we have

c1 = r + s, r12 = r − s, r13 = r − s,
c2 = r, r21 = s, r23 = s,
c3 = r, r31 = r, r32 = s.

Proof. We use the notations of Proposition 3.

(i) Suppose a | (by + cz) with y, z ∈ Z≥0, y + z > 0. Since c ≡ 2s2 (mod a) and

gcd(2s, a) = 1, we have a | (ry + sz) and so both r ± s divide ry + sz. From

ry + sz = (r + s)y − s(y − z) and gcd(s, r + s) = 1 we have (r + s) | (y − z).
If y > z, then y ≥ r+s, and we have a |

(
b(y−r)+c(z+s)

)
and b(y−r)+c(z+s) <

by + cz.

If y < z, then z ≥ r+s, and we have a |
(
b(y+s)+c(z−r)

)
and b(y+s)+c(z−r) <

by + cz.

So if y, z are such that 1
a (by + cz) is minimized, then y = z. Thus, r12 = r13.

From ry+sz = (r−s)y+s(y+z) and gcd(s, r−s) = 1 we have (r−s) | (y+z). With

y = z = r12, this gives (r− s) | r12. Thus r12 = r− s, and c1 = 1
ar12(b+ c) = r+ s.
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(ii) Suppose b | (ax + cz) with x, z ∈ Z≥0, x + z > 0. Note that ax + cz =

r2(x+ z)− s2(x− z). If r is even, then 2r | (x− z) and s | (x+ z). If s is even, then

2s | (x+ z) and r | (x− z). Therefore, in any case, 2r | (x− z) and 2s | (x+ z).

If x > z, then x ≥ 2r, and we have b |
(
a(x − r − s) + c(z + r − s)

)
and

a(x− r − s) + c(z + r − s) < ax+ cz.

If x < z, then z ≥ 2r, and we have b |
(
a(x+r)+c(z−r)

)
and a(x+r)+c(z−r) <

ax+ cz.

So if x, z are such that 1
b (ax+ cz) is minimized, then x = z. Thus, r21 = r23.

From 2s | (x + z), with x = z = r21, we have s | r21. Thus r21 = s, and

c2 = 1
b r21(a+ c) = r.

From Proposition 3, c3 = r13 +r23 = (r−s)+s = r, r31 = c1−r21 = (r+s)−s = r,

and r32 = c2 − r12 = r − (r − s) = s.

We note that the results in Proposition 3 and Proposition 5 lead to the results in

Theorem 2.
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